ISSN 0915-6364

NATIONAL INSTITUTE FOR FUSION SCIENCE

A New Formula of the Energy Spectrum of
Sputtered Atoms from a Target Material
Bombarded with Light Ions at Normal Incidence

T. Kenmotsn, Y. Yamamura, T. Ono and T. Kawamura

(Received - Mar. 30, 2001)

NIFS-DATA-65

This report was prepared as a preprint of compilation of evaluated atomic, molec- [
ular, plasma-wall interaction, or nuclear data for fusion research, performed as a collabo-
ration research of the Data and Planning Center, the National Instifute for Fusion
Science (NIFS) of Japan. This document is intended for future publication in a journal or
data book after some rearrangements of its contents.

Inquiries about copyright and reproduction should be addressed to the Research

Information Center, National Institute for Fusion Science, Oroshi, Toki, Gifu, 509-5292,
Japan.

RESEARCH REPORT
NIFS-DATA Series

TOKI, JAPAN




A new formula for the energy spectrum of sputtered atoms from a
target material bombarded with light ions at normal incidence

T. Kenmotsu®, Y. Yamamura®, T. Ono” and T. Kawamura®

a) National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi 509-5292, Japan
b) Okayama University of Science, 1-1, Ridai-cho, Okayama 700-0003, Japan
¢} Chubu University, 1200, Matsumoto-cho, Kasugai-shi, 487-8501, Japan

keywords : sputtered energy spectrum, light ion sputtering, few collisions process,

low incident energy, normal incidence

Abstract

A new formula has been derived to fit the energy spectrum of sputtered atoms from
a target material bombarded by light ions. It is based on Falcone-Sigmund model. The
formula agrees better with measured energy spectra and simulation results calculated
with ACAT code than the Thompson formula for a Ti target material bombarded by 200
eV H" ions and by 100 He™ ions at normal incidence. The formula has weak dependence

on the incident energy of a projectile.

Introduction

It is known that the energy spectrum of sputtered atoms from a target material
bombarded by heavy ions is well represented by the Thompson formula [1]. This
corresponds with the fact that heavy ions can make a developed collision cascade in the
material. For sputtering due to low-energy light ions, however, some experiments [2]
show that the energy spectra of sputtered atoms deviate from this formula. This
deviation can be explained by the difference between sputtering process due to heavy
ions and that due to light ions. Light ions can make only few collisions cascade because
of the mass difference between light ions and target atoms. Thus, a direct or few
collisions process becomes dominant for light ions. We will derive a new formula to
agree with the energy spectrum of sputtered atoms from a target material bombarded by
light ions at normal incidence on the basis of Falcone-Sigmund model {3]. Finally, we

will show that our formula represents experimental data and simulation data calculated



with ACAT code [4] better than the Thompson formula.

Theory

Let us define a function F(E,E;) to be an average number of recoil atoms with
energy in (Ep, Eo+dEp) 1n a collision cascade initiated by a light ion with incident energy
E. Following the well-known procedure [5], the following integral equation can be
denived for FL(£,Ey):

a0 (E.TNFE.E,)~ Fo(E-T.E))- Fo(T.E )+ 5.(E) 2= Fy (B E,)
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where E is the incident energy of the colliding atom, E-T and T are, respectively, the
energies of the scattered and recoiling atom after a collision that is governed by the
differential cross-section d & (E,T), and S. (E) is the electronic stopping power. The
integration 1s done over T. For light ion bormbardment, 7 can be assumed to be much
smaller than E, because the mass of the light ion is much smaller than that of the target
atoms. Then, Fi(T,Ep) 1s expected to be negligible compared with F,(E,Ey) . Thus, we
will omit in the following the term F(T.Ey) from the right-hand side of eq.(l).
F(E-T,Ep) 1s expanded as

d
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By substituting eq.{2) nto eq(1), eq(1) 1s reduced to the following equation:
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We will neglect the vanabie S, (£) from the left-hand side of eq.(3) in the following,
because it is rather small in the low energy region( e.g. a several hundred eV region).

Then, one obtains
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Lindhard’s power law [6] is adopted for the differential cross-sections on both sides of
eq.(4).

do(E,,E,) = CE,"E.""dE,, (5)

where E; is the energy of projectile and E, is the energy of the recoil atom .

Then, one reaches

d o m
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where Tmax is the maximum energy of the recoil atom transferred from the colliding
atom, m is a constant (O<m<1) in the energy region concerned. For light ion sputtering,
the dominant mechanism is that, after entering the target material, the projectile is
backscattered first by a target atom and then knocks off a target atom near the surface,
mostly in the top layer, on its way out {7]. So, T is defined by the following equation

for normal incidence:
=y(l-py)E=},E, N

where y =4M,M»/(M, +M-Y is the energy transfer factor in an elastic collision. M, and
M, are the masses of projectile and target atom, respectively. To make a target atom
recoil with energy E; in collision with a backscattered projectile, the incident energy of
projectile must be larger than Ey/ »» from the similar energy relation between the
incident energy and the energy of the recoil atom to eq.(7). Taking this fact into account,

together with eq.(7), one arrives at, after some rearrangement of eq.(6),
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In the Falcone-Sigmund model, each recoil atom is assumed to slow down

continuously along the straight line. The energy loss is also assumed to have the form

4E _ 4« 9
dR

where R is the traveled path length, A is a constant which depends on target material,
and « (=1-2m) is a constant. Then, the energy E; of a recoiling atom with initial

energy Ep, after having traveled from x to the surface, is given by

1
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where Ry is the range of a recoiling atom defined later, and #; is the angle between the
recoiled direction and the outward surface mormal. Eq.(10) is derived from the
following procedure on the basis of Falcone-Sigmund model. First, E; is given by the

following equation:
[ E“dE=-a[ar (an
£ ’
After integration, eq.(11) gives

EF—E'® =—A(l—a)——, (12)
cosf,

where R=x/cos &g.
In addition, Ry is defined by the following equation:

j: E“dE=—-A f dR. 13

Then Ry1s derived as



R, =—% . (14)

By substituting eq.(14) into eq.(12), one arrives at eq.(10)

Let us introduce the quantity J(E,_«,)dE\d « to describe the average number of
recoiled atoms passing the surface plane with energy interval (E.Ei+dE;} and in the
direction interval ( «, « +d « ) per incident atom, where «;=cos #,. This quantity

can be expressed as
dex
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where & is the Dirac delta function.

We use the following property of Dirac’s ¢ -function:

1
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where a 1s defined by ¢ (a)=0.
If ¢ (x)is expressed by
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then a is derived as

-a)
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Putting eqs.(17) and (18) into eq.(106), one reaches

fdx B(@(x))=(-a)EZE "R, cosé,. (19)



Conclusion

A new formula has been derived on the basis of Falcone-Sigmund model to
describe the energy spectra of sputtered atoms from a target material bombarded by
light ions. In comparison with the experimental data as shown in Figs.l and 2, the
formula agrees betier with the measured energy spectra than the Thompson formula.
Furthermore, it agrees well also with the simulation data calculated with the ACAT code.
From this result, a direct or few collisions process is most probably the dominant
mechanism for light ion sputtering. We are presently studying the maximum energies,

for many target materials, below which our formula can be applied.
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Fig.1 Sputtered energy spectra calculated with the new formula and with Thompson’s
one for 200 ¢V H" ions incident on a Ti target at normal incidence. Also shown

are the experimental data and the simulation data calculated by the ACAT code.
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Fig.2 Sputtered energy spectra calculated with the new formula and with Thompson’s

one for 100 eV He" ions incident on a Ti target at normal incidence. Also shown

are the experimental data and the simulation data calculated by the ACAT code.
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