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Abstract

We have calculated energy levels, radiative transition probabilities, and au-
toionization rates for Be-like oxygen (O*t) including 1s22Inl’ (n = 2 — 8,
I <n—1)and 1s23I'nl (n =3 — 6, < n — 1) states by multi-configurational
Hartree-Fock method (Cowan code} and perturbation theory Z-expansion
method {MZ code).

The state selective dielectronic recombination rate coefficients to excited
states of Be-like O ions are obtained. Configuration mixing plays an impor-
tant role for the principal quantum number n distribution of the dielectronic
recombination rate coefficients for 2snl (n < 5) levels at low electron temper-
ature. The orbital angular momentum quantum number [ distribution of the
rate coeflicients shows a peak at [ = 4. The total dielectronic recombination
rate coefficient is derived as a function of electron temperature.

Keywords: Be-like oxygen, dielectronic recombination rate coefficients, state selective rate
coefficients, satellite lines



I. INTRODUCTION

Spectral lines of Be-like oxygen ion are observed in laboratory plasmas and are often
used for diagnostics of plasmas. Observation and modeling of line intensity ratios of OV
multiplet lines for 2s3s *S;-2s3p *P; transitions was presented by Kato et al. (1996) [1]. For
‘the analysis of the spectra and various other applications, many atomic quantities are re-
quired. Kato, Lang, and Berrington [2] evaluated electron impact excitation rate coefficients
of Be-like oxygen and constructed a model for OV line intensities. Ab initio close-coupling
calculations using R-matrix method were performed by Nahar [3] to obtain the photoioniza-
tion cross section, oscillator strengths and energy levels for oxygen ions. The measurements
of polarization of the emission line corresponding to the 1s%2s6h — 15?2s7i transition of OV
produced by the double electron transfer were reported recently by Kano ef ol [4]. Us-
ing high resolution electron spectroscopy, energy levels and lifetime of many Be-like singlet
states of the 1s?3/nl" Rydberg series (n=3 to 5) of oxygen have been measured by Bordenave-
Montesquieu et al. [5]. Spectra of multiply charged oxygen ions were studied in the region
between 1800 and 6000 A by beam foil method in recent published paper [6].

High temperature plasma experiments have been performed in the LHD (Large Helical
Device) of National Institute for Fusion Science and OV resonance line (630 A) is measured
routinely with a monochromator. Other OV lines are also observed by UV spectroscopy.
Although oxygen is not main impurity element in the LHD after mounting the Carbon tiles
and the Ti-gettering [7], spectral lines of oxygen tons are strong. Plasmas in the LHD are
likely to show recombining plasma phase when disappearing.

In order to construct a more reliable model for spectral line intensities both in ionizing and
recombining plasmas, we need state-selective recombination rate coefficients for transitions
between excited states. The model in Refs. [2] and [1] did not take into account recombining
processes. Dielectronic recombination (DR) rate coefficient from Li-like O ions to Be-like
O ions has been studied in Refs. {8-11] but the state selective rate coefficients were not
published. o

Here in this paper we calculate energy levels, transition probabilities, and autoionization
rates for excited states of Be-like O, using Cowan’s code in section I, and obtain the state
selective recombination rate coeflicients (§1V). Dielectronic satellite lines are also calculated

(§1IT).

II. ENERGY LEVELS, TRANSITION PROBABILITIES, AND
AUTOIONIZATION RATE

Recently, the status and perspectives of calculations and measurements of transition data
in the Be isoelectronic sequence were presented in Ref. [12]. Transition energies and rates
between the 2s* 'Sy, 2s2p 3Py, and 252p 'P; levels in Be-like fons with Z=7-28, 30, 36,
42 were calculated in the valence and core-valence limit using the multi-configuration Dirac-
Fock method in [12]. Relativistic many-body perturbation theory method (MBPT) was used
to calculate transition energies, oscillator strengths and radiative rates between the 2s? 1Sq,
2s2p PP, 2p® 25F1L,, 2031 25T1L; levels in Be-like ions with Z=6-100 in Refs. {13-16].

We have carried out detailed calculations of the radiative and autoionization rates for
2snl, 2pni levels with n = 2~ 8,1 < (n'— 1) and 3snl, 3pni, 3dnl levels with n.= 3 — 6,
I < {n —1). The atomic energy levels and bound-state wave functions were obtained by



using the atomic structure code of Cowan [17}. The perturbation theory method (MZ code)
was also used for calculating energy and radiative transition probabilities. This method was
described in detail in Refs. [18], [19]. The results of our calculations are given in Tables I-VIIL

In Table I, we give energies and sum of weighted radiative transition probabilities for
the 2snl (n < 8) and 2pnl (n < 5) levels of Be-like O below the first threshold (1=918,702
em™'). Theoretical results for energies obtained from the two codes, Cowan (column 3) and
MZ (column 4) are compared with the data from the compilation in recommended NIST data
(column 5) [20]. We can see that the perturbation theory method (MZ code) agrees better
with [20] than the scaled multi-configuration Hartree-Fock method (Cowan code). The sixth
column in Table I lists the Hartree-Fock transition probabilities summed over all the lower
levels and multiplied by the statistical weight (g) of the upper level (g(4) >;.; A-(3,7)).

Table II lists the level energy E, sum of weighted radiative transition probabilities
9(7) Tjei Ar(3, j) (sec™?), autoionization rate A, to 15*2s ®S, and sum of all possible autoion-
ization rates 3 A, for 1s?2pnl(LSJ) states (n = 6 — 8) and 1s?3inl'(LSJ} states (n = 3 — 6)
which are autoionizing states above the 1s°2s ?S;, threshold. The autoionization rates are
calculated with the Cowan code. 15?3Inl’(LSJ) states have several possible channels for au-
toionization, i.e. to 1s?2s, 1s?2p, 1523s (for 3pnl and 3dnl), and 1s*3p (for 3dni). Tt should
be noted that some levels with large total radiative transition probability (3= g4, > 10%™*
for 1s22pnl and ¥ g A, > 107! for 1523Inl") were chosen for illustration among almost 1000
levels considered in this paper .

Table III lists wavelengths and weighted radiative transition probabilities for 2{1nly —2In'l’
transitions under the threshold in Be-like oxygen for selected transitions with gA, > 1081
In Table IV we compare wavelengths and weighted radiative transition probabilities obtained
from Cowan’s code with recommended NIST data [20] for some transitions. We find good
agreements for radiative transition probabilities of dipole transitions. In the table, there are
some non allowed transitions which have large transition probabilities. For example, 2p? D
- 2s4f 'F and 2p? 'D - 2s6f 'F have gA, larger than 10'%~1. This is caused by configuration
mixing of 2s4f and 2p3d states, and 2s6f and 2p4d states. Table V shows the mixing coeffi-
cients for these states. The large interaction of these configurations can be explained by the
energy level distribution. The energy levels of 2sn! and 2pnl configurations are very close to
each other, as seen in Table 1. It should be noted that the effect of configuration mixing on
computed dielectronic-recombination rates was discussed by Cowan and Griffin in Ref. [21].

Tables VI and VII list wavelengths and weighted radiative transition probabilities for DR
satellite lines, which will be discussed in the next section.

1I1. DIELECTRONIC SATELLITE SPECTRA

The DR process to bound states of Be-like oxygen is a series of following actions: an
electron is captured by Li-like oxygen into a doubly excited state of Be-like oxygen and
stabilized by radiative decay to a bound state of Be-like oxygen. That is,

0% (1s2s) + e~ — O*F**(1s?2pnl, 18*31nly) — O**(1s*2In'l) + ho. (3.1)

As an initial state we consider the ground state of O°*, 1s?2s. The 1s? 2pnl and 1s® 3l,nl,
fevels are taken into account as doubly excited states.

During the DR process, DR satellite lines are emitted from doubly excited autoionization
states to bound states. Radiative transitions from 1s?2pnl states to 1s*2snl states produce



satellite lines of the resonance line 1s%2s — 1522p of the Li-like oxygen. Similarly, radiative
transitions from the autoionization states 1s23l;nls to the bound states 1s22Vni, produce
satellite lines of 1s?3l; — 1s?2F. There also exist DR satellite transitions from autoionizing
states 1s*2pn! to 1s?2pn'l’ with changing principal quantum number n. They appear at a
longer wavelength region.

In Tables VI and VII, we list wavelengths (A [A] } and weighted radiative transition
probabilities {gA.[s™*]) for transitions with large values of gA,. Only the strongest lines are
listed here {gA, > 10%™! for 2i;nly — 3In'l’ transitions in Table VI and ¢4, > 108! for
20inly — 2pn’l’ transitions in Table VII).

The emission rate coefficient of the dielectronic satellite line is

Iy \*"? Qal3, j) E,(1)
effr: N _ o« —24 H d\% 7 s 3 -1 29
C’ (4,7} =33x10 (kT) p exp ( i ) photons cm’s ™, (3.2}

Zi’o Aa(ia 36) + Zk Ar(iz k) ’

where Iy is the ionization potential of hydrogen; 7 denotes a final bound state: 7 a doubly
excited state; iy the initial state (which is 1s? 2s ground state); and 7}-a possible final state
for autoionization such as 1s® 2s and 1s® 2p states from 3/, nl, states. The statistical weight
of the initial state iy is go; g(7) the statistical weight for a doubly excited state; A,({7,4y) the
autoionization rate from ¢ to iy state; A,(¢, j) the radiative transition probability from 7 to j
state; and E,(7) is the energy level of the autoionizing state ¢ measured from 1s?2s level. 7,
is an electron temperature and a Maxwellian distribution is assumed for electron velocities.
This is an emission line intensity per electron per O°* ion. For the most case, 4, > A, and
then Qg is roughly estimated as Qu(%, j} = g(¢)A-(Z, 7).

Figures 1 and 2 show examples of DR satellite line spectra. Fig. la-g show DR satellite
lines for T, = 10eV and Fig. 2a-g show DR satellite lines for 7. = 100eV. As spectral
resolution, B = A/ AX = 500 is assumed to synthesize these spectra. When T, is low, DR
capture to 2pnl states is dominant and DR satellite lines from 2pnl to 2pn’l’ are significant.
But when T, is high, DR capture to 3inl’ is dominant and DR satellite lines from 3In!’ to
20°nl" are stronger. For example, at T, = 10eV Fig. 1b shows strong DR satellite lines of
2s2p - 2pnl transitions at 110 — 130A (2s ~ nl transitions), and of 2p” - 2pnl transitions at
130—145 A (2p — nl transitions). These strong lines are not found in Fig. 2b at T, = 100eV.
Instead, DR satellite lines of 2snl - 3pnl transitions are very strong at ~ 151 A.

For other main satellite lines are 2s — 2p transitions (2snl — 2pnl) at ~ 1030 A (Figs.lg
and 2g), 2p — 3d transitions (2pnl — 3dni) at ~ 180A (Figs.1b and 2b), 31 — nl transitions
(2p3l — 2pnl) at around 250 — 450 A (Figs.lc, 1d, 2¢, and 2d), 41 - nl transitions {2p4{ —
2pnl) at around 700 — 1000 A (Figs.le, 1f, 2e, and 2f), and 5/ - nl transitions (2p5l - 2pnd)
at around ~ 3000 A (Figs.1h and 1h).

Satellite lines from 2pnl and 3In!’ autoionizing states with higher n to low bound states
appear at a shorter wavelength region (Figs.1a and 2a). '



IV. DIELECTRONIC RECOMBINATION RATE COEFFICIENTS
A. State-selective rate coefficients

The DR rate coefficients to excited states are obtained by summing the rate coeflicients
of DR processes through all possible doubly excited states:

2 3/2 )
oind) =5 (gegr) 3 S Qid)exe (~20), (11)

where Q4(i, j) is given by eq.(3.3).

As described in Section 11, our calculated data are for a limited set of intermediate states
and we need to include contributions from autoionizing levels with higher n. For modeling
a recombining plasma with a collisional-radiative model, we need the DR rate coeflicients to
highly excited states 2snl with n > 7 as well.

In order to estimate contributions from autoionizing states with higher n levels to the rate
coeflicients and also the rate coefficients of final 2snl levels with higher n, we use empirical
scaling laws. For transitions through 2pn! autoionizing levels, different scaling laws are used
for different final states, 2snl and 2pn'l”. For the former, 2pnl -2snl transition has nearly
constant A, with increasing n. For the latter, A, of 2pnl -2pn/l’ transition is estimated by
using the hydrogenic approximation, 4,(p, ) = 1/{(p® — ¢*)pq}, where p and ¢ are principal
quantum numbers of upper and lower levels respectively (Ref. [22]). These two different
scaling laws are also used to calculate the sum of all A, from the upper level 2pni.

A (2pnl, 2sni) ~ A,(2p8l,2s8]) forn > 8§, (4.2)
A (2pnl, 2pn'l’) ~ A, (2p81, 2pn'l )(( — n’% for n > 8, (4.3)
ST A(2pnl) = > A (2p8L, 2snl") + (8/n)* Y A,(2p8L, 2pn'l') for n > 8. (4.4)

o'l nflr

The second term of the right hand side in eq.(4.4) has n~2® dependence. This is an approx-
imation form after performing the sum over n’ (Ref. [22]). For A,, the usual n=3 scaling law
is adopted:

Ay(2pnl) ~ A, (2p81)(8/n)°. (4.5)

We adopt the A, and A, values of 2p8{ levels to extrapolate for higher n levels. The weighted
radiative transition probabilities (gA,), sum of weighted radiative transition probabilities
(3X(gA,)) and autoionization rates (3 A, ) for 2s8! - 2p8{ transitions are included in Table
VII. When n’ < n, the scaling factor in eq.(4.3) becomes (8/n)°.

For the 3in'l' levels with n’ > 6, we only take into account transitions through 3pnl to
2snl. A, and A, for 3pnl levels with higher n are estimated as below.

A (3pni, 2snl) ~ A,(3p6l, 2s61), (4.6)

> Ar(3pnl) = 3 A,(3p6l)(6/n)’, (4.7)

n'lt



Au(3pnl) ~ A,(3p61)(6/n)3, (4.8)

Z Au(3pnl) ~ Z A,(3p61)(6/n)>. (4.9)

We adopt the values of 3p6! levels to extrapolate values of higher n levels. Table VI also has
the atomic data for those transitions.

The energy levels for high n states are estimated with asymptotic formula given by
Safronova et al. [23]. '

E(1s%2snl) ~ F(1s*2s) — 5% (Z -3+ éln@) : (4.10)
E’(ls22pnl) ~ E(1s"2p) — 21? (Z _34 bg?gl)) X (4.11)
E{1s*3pnl) ~ E(1s"3p) — oz (Z -3+ b‘”’?_(f)) : (4.12)
b]_ (l) = 2&0(15, l) + GQ(QS, l), (413)
bg([) = 2ag(1s,l) + ag(gp, l), (4.14)
bs(l) = 2a4{1s,1) + ap(3p, 1), {4.15)

where ag(n’l’,1) are taken from the Table III in Ref. [23].

Figure 3 shows the electron temperature (7,) dependence of the DR rate coefficient for
each final bound state of Ne® with n up to 6. The transitions through the intermediate
states. 2pn{ (n > 7) have a maximum at T, ~ 2eV for the DR rate coefficients and those
through 3in!’ states have a maximum at T, ~ 30 — 50eV.

The DR rate coeflicients for 2s%, 252p, and 2p® states have only one peak at T, ~ 1.5eV
(Figs.3a and 3b), because there is no DR transitions through 3Inl’ states to these states.
The 253! and 2p3! states can be reached by DR process through both 2pnl and 3In'l’, and
these DR rate coefficients have two peaks (Figs.3b, 3¢, 3d, 3g, 3h). The 2snl states with
n = 3 — 6 are, however, not reachable through 2pn! states with n > 6 by dipole transitions.

Figure 4 shows the n dependence of the DR rate coefficient of the final 2snl and 2pnl
states at T, = 10eV and 100eV. The rates of the same nl levels are added. At higher
7. the rates of 2snl states decrease according to n™? law. The n dependences of the rate
coeflicients at higher n at high temperature are caused by DR transitions through two kinds
of autotonizing states, 2pni and 3pni states. The transitions through 3pnl states cause faster
decrease at relatively lower n (Fig.4b). Figure 5 shows the n dependences of oy for different
temperature and fast decline of «y at higher temperature is clearly seen at high n.

The DR rate coefficients of 2snl levels with n < 6 are significantly different from those
with n > 7, as seen in Figs.4 and 5, especially at low temperature. As mentioned above,
we do not expect any strong dipole transitions from 2pnl with n > 7 to 2snl with n = 4,5
simply and actually cq(2s5() is small at 7, = 3 and 10eV. However, the configuration mixing
plays an important role and enhance the DR rate coefficients of these siates. Table V shows



the mixing coefficients for 2pnd 'F + 2snf 'F. As seen in Table V, 2s6f 'F configuration
has large mixing coefficients of 2p6d 'F' and this makes transition probabilities from 2pnp
states to the 2s6f ' state large as a result of mixing of 2p4d - 2pnp transitions. Because of
the mixing, DR rate coefficient to the 2s6f 'F state becomes large even at low temperature
(Fig.3e). Similarly, 2p4f 'F configuration is largely mixed with 2p3d LF and ag(2pdf 'F)
at low temperature is large (Fig.3e). Configuration 2s5f 'F, on the other hand, has small
configuration mixing coefficients and the DR rate coefficient is small. The similar effect to
the DR rate coefficients is seen for Be-like Ne [24].

Table VIII shows other examples of mixing coefficients. The mixing of 2s6g, 2s6d, and
2p4f configurations is large, but the mixing of 2sbg, 2s5d, and 2p4f is small for J = 3 (Table
VIIIa). On the other hand, the mixing of 2s5g and 2p4f with J = 4 is large (Table VIIIb).
Tt should be noted that the even parity complex state with J=4, for example, demonstrated
in Table VIIIb includes 34 configurations. We present only some blocks of this matrix in
order to show the mixing of selected states. For J = 2 configuration mixing of 2s6d, 2p4p,
and 2p4f is large, but one of 2s4d and 2p4p is small (Table VIIIc).

Figure 6 shows the [ distribution for the DR rate coefficients, where the rate coeflicients
of 2snl levels with n up to 500 are added for fixed I. The rate coeflicients to 2pni levels
are not included. The [ distribution is peaked at [ = 4 and decreasing with increasing
1. We obtained the similar { distribution for the DR rate coeflicients of Be-like Ne, which
shows peak at I = 5. When the electron temperature is low, especially at T, = leV, the !
distribution is not smooth. At low temperature transitions from 2pnl to 2pn'l’ are dominant
for the DR process and only 2pnl to 2s2p transitions make 3, ay(2snp) large. For other
I, the configuration mixing of low n levels contributes the { distribution. When electron
temperature becomes higher, however, the transitions from 2pnl to 2snl and transitions
from 3pnl to 2snl become dominant and the effect of the configuration mixing @ is hidden
in the sum Y, ay(2snl).

Chen [10] mentioned that states with I =9 — 11 contribute about 20 % to the total DR
rate coefficient for An = 0 transitions, based on his results of Be-like Fe. But for relatively
low Z ions, A, for 2pnl autoionization levels decreases faster with higher I. Our result
indicates that ! > 8 levels do not contribute as much as he estimated.

B. Total dielectronic recombination rate coefficients

Here we derive the total DR rate coefficients by summing the rate coefficients of all the
levels to compare with results previously obtained by other authors. We take into account
the levels with n up to 500 for the summation. The contribution of levels with n > 500 is
negligible, since the DR rate coefficients decrease with n™> at larger n.

Figure 7 shows the total rate coefficients as a function of electron temperature. In
the figure the coniributions from different transitions classified with intermediate doubly
excited states are shown. At low temperature the recombination process through 2pnl states
dominates. Especially at T, < 2eV the transitions through 2pnl to 2pn'l' states dominate
the recombination rate coefficients. At such low electron temperature only autoionization
2pnl levels near the ionization threshold can contribute the DR process. At 1, > 50eV, the
recombination through 3inl’ states dominate the rate coefficients (Moribayashi and Kato
[11]}). At much higher temperature, T, > 1keV, however, the inner shell excitation such
as Ot(1s%2s) + e~ — O***(1s2s2pnl) — O**(1s’2snl) + hv can contribute to the rate



coefficients {25]. We neglect this process in this paper.

In Fig.7 we compare our total recombination rate coefficients with those from previous
work by other authors. Our rate coefficients agree well with those of Chen [10]. The rate
coefficient obtained by Romanik [9] is larger thari our result at around 10eV. The differences
are probably caused by the different method: Coulomb-Born calculation with empirical
wave function was used by Romanik who also mentioned that his values of 4, had large
uncertainties arising from use of threshold collision strength. At T, <3eV our result shows
the importance of 2pnl-2pn/l’ transitions, which was suggested in Ref. [8].

V. SUMMARY

Energy levels, wavelengths, weighted radiative transition probabilities, and autoioniza-
tion rates were calculated for Be-like oxygen ion with two theoretical methods, perturbation
theory (MZ-code) and multi-configurational Hartree-Fock method (Cowan’s code). Calcu-
lated atomic data are used to estimate the dielectronic satellite lines and to obtain dielec-
tronic recorbination rate coefficients into the bound states of Be-like oxygen ion.

We take into account doubly excited states 2pnl (n > 6, | < 7) and 3inl’ (I < 5)
as intermediate resonance states with n up to 500 to calculate the DR rate coefficients.
The DR rate coefficient for bound states of Be-like O ion (final state) is obtained. These
state selective rate coefficients can be used in a collisional-radiative model for investigating
population kinetics and plasma diagnostics for recombining plasma. The transitions through
intermediate states 2pnl make a peak in the rate coefficients at T ~ 2 — 10eV and those
through 3In!’ states make a peak at T' ~ 30 — 50eV.

Configuration mixing plays an important role for the DR rate coefficients of 2sn! levels
with n < 6 at low temperature. The [ distribution of the DR rate coefficients indicates that
! > 8 levels are not important and the contribution is small for the case of Be-like O ion.
The similar result was obtained for Be-like Ne ion [24]. This result is different from large 7
ion such as Be-like Fe ion {10]. ' ' _ '

The total rate coefficients is in good agreement with previous work except by Romanik
[9]. At T, < 2eV, DR capture near the ionization threshold and 2pni-2pn/l’ transitions are
important, as Nussbaumer and Storey (8| pointed out.
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Figure 1: d. Same as (a) but for A = 400 — 600 A.
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