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Abstract

Proton-impact excitation cross sections and excitation rate cofficients for tran-
sitions among all the ground state fine-structure levels of Fe XX ion 1s522s22p3
(8372, D372, D5 /2, P12, P3j2) were computed. The close-coupling approximation of
the impact-parametre method with the Coulomb trajectories of the relative mo-
tion of nuclei was used. All the m-components of the initial and final target states
were taken into account. The interaction matrix elements between target states
were calculated numerically for every step of integration with the wave functions of
2p? electronic configuration written in the intermediate coupling scheme with the
numerical semi-empirical one-electron functions (Shevelko and Vainstein 1993, it
Atomic Physics for Hot Plasma) The excitation rate cofficients were calculated for
the temperature range 3 x 10° - 6 x 108K and compared with the only available re-
sults of semiclassical approximation (first perturbative approximation of the impact
parametre method) (Bhatia and Mason 1980, Astron. Astrophys. 83, 380) in the
temperature range 6 x 10% - 1.5 x 107K. The calculated close coupling values of the
excitation rate cofficients are found to be somewhat smaller than the semiclassical
results (Bhatia and Mason 1980) in the temperature overlapping interval.
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1 Introduction

Since the pioneer work of Seaton [1] it is a common knowledge fact that collisions of
ions, including multicharged ions, with protons may play important role for the energetic
level populations, the radiation emission and the energetic balance in high temperature
astrophysical (Solar corona and nebulae) and laboratory (themonuclear reactors) plasmas.
In the case of multicharged ions at temperatures typical for Solar corona or laboratory
plasmas the contribution of proton collisions may be comparable with the contribution of
electron collisions mainly for transition between fine-structure levels. It is worth recalling
that in beam-heated, magnetically confined plasmas, as in modern thermonuclear reactors,
the ion temperature T;, for example the proton temperature 7, may be much larger than
T. [2]. That may substantially increase the role played by the proton-ion collisions even
if the proton excitation rates are much less than the electronic excitation rates at equal
temperatures.

Taking into account the huge technical difficulties of experiments with the multi-
charged ion beams that are necessary to measure the excitation cross sections, the role
of reliable theoretical results is very important. For majority of Fe!" ions there exist a
number of the theoretical results obtained through methods of different complexity. The
comparison of different results allows to choose the most reliable ones and to estimate
their probable accuracy. The review of these works with the analysis of the accuracy of
their results and convenient fit expressions for corresponding proton excitation rates was
published recently [3, 4, 5].

Looking through the list of references of the review[3] it is easy to see that the ion
FeXX = Fe!T is a kind of exception among other Fe ions. Only one set of computational
results on proton excitation rates was published rather long ago for this ion [6]. These
results were obtained in the well known semiclassical approximation for collisions with
the inclusion of the Coulomb interaction of partners [7], that is in the first approximation
of the perturbation theory in the frames of impact parametre method with the Coulomb
trajectories of the nuclei of the partner ions and with quadrupole potential of interaction
having a singularity at small internuclear distance. It is worth noting also that the
information on the input data for computations was very scarce in the publication in
question. In particular, only total probabilities for forbidden radiative transitions between
fine-structure levels were given in [6]. These total transition probabilities equal the summs
of E2 (electric quadrupole) and M1 (magnetic dipole) transition probabilities, yet for
computation of the proton excitation cross sections and rates even with the simplest
quadrupole potential it is necessary to know the quadrupole (E2) transition probabilities
separately[1, 8]. So the parametres of the interaction potential used in [6] remain unclear.
One may assume that the extreme scarcity of information on the proton excitation of
FeX X is connected with the difficulties of the detailed description of electronic states
with the 2p® configuration, though from the other side the situation with the proton
excitation cross sections and rates for the FeXII ion having the configuration 3p? is
much more satisfactory [4]. Anyway we found important to revisit the problem of the
proton excitation of the ground state fine-structure levels of the F'eX X ions using more
elaborate computation techniques than before and also to use more recent and reliable
input data.



We computed the proton excitation cross sections for the energy interval 0.3-400
keV/amu and also the proton excitation rates for the temperature interval 3x10° — 600 x
10% K in the close-coupling approximation of the impact-parametre method. The target
atomic basis consisted of the intermediate-coupling wave functions for the external shell
with 2p? configuration constructed from one-electron semi-empirical wave functions [9].
The system of ordinary differential equations for the amplitudes was solved numerically.
The system describing the transitions from one of the M j;-components of the initial energy
level took into account the close-coupling of the inital state with all the M’,-components
of the final energy level (up to 6 final states). The matrix elements of the interaction
potential taking into account the angular parts of the basis wave functions were calcu-
lated numerically during the solution of the system of ordinary differential equations. The
Coulomb trajectory of the projectile proton corresponding to the constant modulus of the
relative velocity (speed) was used!. The excitation cross sections for transitions between
the fine-structure levels and corresponding excitation rates were obtained by summing
over the final magnetic states and averaging over the initial magnetic states. The proton
excitation cross rates are compared with the semiclassical approximation results [6]. The
cross-sections for the transitions D35 —* P3j» and 2Dy —2 Py /o are compared with the
Born-Coulomb approximation results computed by ATOM program [9].

2 The scheme of computations

The absolute majority of results for the proton excitation of multicharged ions were ob-
tained with the use of the impact parameter method providing for the classical trajectories
of the nuclei of heavy partnes [8, 4, 3]. It concerns both perturbative methods and more
refined approaches as close coupling of a number of states from some basis set. As it
is well established in the literature, the impact parameter method is accurate enough
already at energies above tens of electonvolts per nucleon. Correspondingly we use the
impact parameter method for all the energies in question. As we ignore the necessarilly
small probabilities of electron capture by the impinging proton, the electron wave func-
tion of the system in the frames of the impact parametre method may be presented as a
linear combination of the wave functions describing the unperturbed states of the target
ion with N = 3 7active” electrons®. Using the :

‘I’(I’hfl,---ra,fa;t): Z aa,J,MJ(t)QOa,J,MJ(I’h&,---r3,§3)€_iE°"Jt- (1)
a,J,MJ

where 1, & are the coordinate vector and the spin projection variable of the k-th electron,
a-the totality of quantum numbers beside the total angular momentum number .J and
its projection number M;. In the case in question the indexes «,.J define the definite
fine-structure energy level in the intermediate coupling approximation [16, 17] so @ =25+1
L';, and in the approximation used in the work a,J =* §/2;2 3/2;2 ’5/2;2 P{/2;2 Py s.

Tt is worth noting that the method developed allows after the slight modificaton to take into account
the variation of speed during collision due to static and dynamic screening of the target nucleus by the
electron distribution and the corresponding deflexion of the ”exact” classical trajectory of the projectile
proton from the Coulomb hyperbola.

2 Atomic units e = m = h = 1 are used throughout the paper unless it is indicated otherwise.



Here the prime sign near the total orbital momentum quantum number recalls about the
intermediate coupling approximation used. So the model takes into account 5 energy
levels of the ground configuration of the ion. The total number of M; components taken
into account equals 20.

Substituting the expansion (1) into the time-dependent Schrdédinger equation and
projecting the resulting equation onto the the orthonormal set of the basis functions
agm, (r1, &1, ...r3,&3), we obtain the system of close-coupling equations in the impact
parametre approach, that is the system of first order ordinary differential equations for
the amplitudes aq s, (1)

ita,ror, (1) = 3 Vo sadgsador, RO ag g, (e o= Fat 2)
&7, 05

where the function R(t) determines the trajectory of the projectile. The potential of
interaction V'(ry,...rs; R(¢)) has the form

3
Zp
V(ry,..r3;R(E) == ) ——— (3)
192::1 rx — R(t)]
where the projectile charge Zp = 1 for the proton collisions that is our case . The

expressions for the matrix elements

Va,J,MJ;a,f,MJ(R(t)) =< Qa,1,M; (T1,&1, T3, &3) |V (11, ---1'3;R(t))|90a,f,MJ(r1,fl, T3,83) >
(4)

are given in Appendix A. The initial conditions for the system (2)
a,70; (t = —00) = 00,60 j0u, 1, (5)

where the indexes &, j, M] define the initial state. So the solutions a, s, (t) depend
implicitly on the initial state and are to be designated more presisely a, ;.5 7 31, (t),
but the indexes of the initial state are omitted if not absolutely necessary. If the collision
energy E = m,v?/2 considerably exceeds the maximum excitation energy

maz(Eyy — Ey y) << E (6)

the trajectory R(t) may be chosen as the solution of the classical dynamics equation with
the Coulomb potential of interaction between the projectile and the target

mit(n) = 2 — o 2 )

where for the case in question Zp = 1 and the target charge Zr = 19. The strict initial
conditions for the equation (7) have the form:

R(t = —o0) = b +vit; R(t = —00) = v; (8)

where b is the impact parametre. During the numerical solution the conditions (8, 5)
were naturally replaced by the similar conditions at large but finite internuclear distance



R(to) = Rpmaz = 50, to < 0. As the recomputings with smaller values of R,,,, have
shown, this choice guaranteed the independence of the computation results from the
starting point.

It is worth recalling that strictly speaking the simple form of the classical dynamics
equation (7) is valid only under additional condition

IR|min >< 1> (9)

where the minimal internuclear distance |R|pin = 2b2E/(\/Z1%Z% + 4B —ZpZy), b#
0, and the average radial coordinate of an "active” electron < r >~ n?/(Zr+1), n=2.
If some of the conditions of validity of the equation (7) is violated, the more general
classical dynamics equation may be used, taking into account the distributed electron
charge. One can use in this equation either the static distribution corresponding to the
initial electronic state of the target or the dynamical electron distribution expressed by
means of the time-dependent electronic wave function (1).

After the numerical solution of the close-coupling system of the differential equations
the excitation probabilities for the M; components are expressed in a standard way

Pai 1y, (Vs 0) = |aa,rar, (t — 00) (10)

In practice the solution procedure was finished when the internuclear distance reached
the value R(t,,) = Rpaz = 50, t,, > 0. The cross section for transition from the state
a, JMj to the state a, .JJ, M; are also expressed in a common way

o0
Oaity sty (00 = 27 | Do i i s sar, (03, b)bib (1)

In the numerical realisation the upper limit of the integration is replaced by b,, =
Rpnaz/2. After the computation of the cross sections for all the M] components of the
initial energy level F(a,.J) = E(2g+1ij) the total cross section of the transition from
the initial level to another energetic level E(a, J) = E(***1L;) may be obtained through
summing over final components M; and averaging over initial components M;, that is
expressed as

1
S 2J 41

Z Z O&,J,M;—a,J,M; (vi) (12)

a’J’M‘] d7JA7]\A4J

U&,f—)a,J(Ui)

The program for the numerical solution of the system (2, 7 ) with the initial condi-
tions (5, 8 ) was written in the MATHCAD system (version MATHCAD-13). To check
the correctness of the program functioning the computations were made for the transition
probabilities between the fine structure levels of the B-like ion FeXXII. The cross sections
for the transition 2P, /2 -2 Py /2 transition at the collision energies 0.8-50 keV /amu were
compared with the results of [11] obtained also in the frames of the close coupling approxi-
mation with the Coulomb trajectory. In [11] the interaction potential for long internuclear
distances was expressed in terms of the E2 transition strengths, and for short distances
was corrected with the factor containing the approximate H-like wave functions of the
corresponding state. Besides the configuration interaction was approximately taken into
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account by the method of the polarization potential [12, 13]. Our results coincide with
the results of [11] within 8% for the collision energies 0.8-3 keV /amu, that is below and
near the cross section maximum, but go above the results of [11] with almost constant
factor of 1.5. That may be connected with the differences in the interaction potentials
and the effect of the polarization potential, but the functioning of the program seems
quite correct.

3 The computation results.

3.1 The results for the total cross sections.

The total proton excitation cross sections for transitions between the fine-structure levels
of the ground state of the FeX X ion are presented in Tab. 1 and plotted in Figures 1,
2, 3. In Figures 2, 3 the plots of the computed total cross section for the transitions
?D3jp —? P35 and Dy —? P )5 may be compared with the plots of the corresponding
Born-Coulomb cross sections computed with the ATOM program [9]. It is easy to see that
the close coupling and Born-Coulomb curves are very close at energies above 10 keV /amu.
The remaining descrepancies (30-40%) are partialy connected with the use of LS wave
functions in the ATOM program and may be partially the result of the finite integration
area in the equation (11). One can not also exclude the effect of the accumulation of the
round-off errors that becomes more noticeable for small values of the cross sections.

Regretfully, we do not know publications on the cross sections for the proton excitation
from the 453/2 level, so we have no possibility to compare our results with any results of
other authors.

3.2 The results for the rate constants.

The proton excitation rate constants are given in Tab. 2. The temperature dependencies
of the rate constants are also presented in Figs. 4, 5, 6 in comparison with the results of
Bhatia and Mason [6] calculated in semiclassical approximation.

It is seen that for the majority of the transitions the close coupling results for the
excitation rates constants are lower than the semiclassical (the first perturbative approxi-
mation) resuls with a factor about two. Beside the effect of close coupling that in majority
of cases diminishes the cross sections it is worth noting again the fact that in the work
referenced [6] lacked the information on the separation of electric quadrupole (E2) and
magnetic dipole (M1) contribution to the radiative spontaneous probabilities and the line
strengths that were used for the estimation of the quadrupole interaction potential.

4 Conclusions.

We computed in the first time the cross sections and the rate constants for the proton
excitation of the fine structure levels of the ground state configuration of the FeXX ion
in the close coupling approximation of the impact parametre approach with the Coulomb
trajectories of the nuclei for rather wide intervals of the collision energies and the proton



Table 1: The proton excitation total cross sections, o(107' ¢cm?). Here a &+ b = a x 10%?.

Energy (keV/amu) 0.3 0.6 1.2 2.4 4.8

1S3/2 =% Dy 7.63-11 | 3243 | 1.58 | 7.03 | 5.26

48372 —2 D5 o 3.03-11| 6.95-4 | 219 | 1.78+1 | 1.62+1
1S322 Pija 8.50-13 | 2.10-7 | 2.18-2 | 6.45-1 | 8.45-1
1S3/ =2 Pyo 3.11-13 | 1.82-9 | 2.76-4 | 2.18-2 | 3.69-2
?D3j2 =2 Ds /o 2.86-2 | 327 | 1.48+1 | 1.79+1 | 1.08+1
2Dsjo —2 Py 1.76-8 | 6.94-2 | 1.05+1 | 3.11+1 | 2.18+1
?Dyjo =2 Py | 3.24-11| 5.83-4 | 1.85 | 1.48+1 | 1.33+1
2Dsj2 —2 Py 9.19-6 | 0.2.39-1 | 7.42 | 1.66+1 | 1.19+1
?Dsjo =2 Py | 4.22-10 | 2.66-2 | 11.3 | 4.01+1 | 2.50+1
2Pijs =2 Pyo 8.34-4 | 1.39 | 1.46+1 | 2.09+1 | 1.25+1

Energy (keV/amu) | 9.6 50 | 100 | 400
TS42 —2 Dsy 2.60 | 4.89-1 | 2.46-1 | 6.18-2
4849 =2 Dy 822 | 1.50 |7.50-1 1.88-1

185 =2 Py | 4.69-1 | 8.59-2 | 4.29-2 | 1.07-2
1855 =2 Py | 2.04-2 | 3.26-3 | 1.55-3 | 3.79-4

2Dy —2 Dy 536 | 1.05 |5.27-1|1.32-1
2Dyjy =2 Py | L1141 | 218 | 110 | 2.78-1
2Dy =2 Py 6.87 | 1.28 |6.44-1 | 1.62-1
2Dsjy —2 Pyjy 6.18 | 1.16 | 5.75-1 | 1.43-1
2Dsjo =2 Pyjy | 1.08+1 | 2,00 | 1.01 | 2.57-1
2P,y —2 Py 6.26 | 1.25 |6.28-1|1.581




Table 2: The proton excitation total rate constants , «(107'% cm?s™!). Here a £ b = a x 10%°.
T, 10° K 3 6 9 12 15
48372 =2 D35 | 7.12-3 | 5.83-2 | 1.28-1 | 1.91-1 | 2.41-1
48372 =2 D55 | 1.21-2 | 1.23-1 | 3.03-1 | 4.78-1 | 6.25-1
4830 =2 Pijp | 3.42-4 | 4.21-3 | 1.13-2 | 1.94-2 | 2.63-2
1S3 =2 P3jp | 1.09-5 | 1.33-4 | 3.86-4 | 6.84-4 | 9.72-4
?Dsjp =2 D5 | 1.31-1 | 3.38-1 | 5.25-1 | 6.56-1 | 7.43-1
?Dyjp =2 Pijp | 1.10-1 | 4.42-1 | 8.06-1 | 1.11 1.35
?Dyjp —2 Pyjp | 9.77-3 | 1.03-1 | 2.52-1 | 3.96-1 | 5.17-1
’Dsjp =2 Pijp | 8.31-2 | 3.21-1 | 6.31-1 | 8.97-1 | 1.10
>Dsjp —% Py | 8.34-2 | 3.69-1 | 7.64-1 | 1.09 1.34
?Pyjy —2 P3jp | 1.46-1 | 3.48-1 | 5.58-1 | 7.14-1 | 8.23-1
T, 10° K 30 60 120 240 600
48372 =2 D35 | 3.51-1 | 3.66-1 | 3.18-1 | 2.48-1 | 1.73-1
4835 =% D5jo | 9.94-1 | 1.06 | 8.87-1 | 6.75-1 | 4.27-1
18300 =2 Pyjp | 4.62-2 | 5.24-2 | 4.21-2 | 3.22-2 | 2.21-2
4830 =2 P3jp | 1.89-3 | 2.12-3 | 1.58-3 | 1.11-3 | 8.10-4
2Dy —2 Dsjo | 8.84-1 | 8.19-1 | 6.57-1 | 4.95-1 | 3.08-1
*D3jp =2 Py | 1.86 1.93 1.68 1.32 | 8.55-1
?D3jp —2 Pyjp | 8.19-1 | 8.83-1 | 7.53-1 | 5.82-1 | 3.68-1
’Dsj =2 Pyjp | 1.53 1.59 1.40 1.12 | 8.45-1
?Dsjp =2 Pyjp | 1.79 1.76 1.49 1.15 | 9.35-1
*Pijs =% P35 | 1.00 | 9.56-1 | 7.98-1 | 6.16-1 | 4.22-1




temperatures. One M; component of the initial state and all the M ; components, up to
six, were included into the close coupling model. Our results show that the only avail-
able semiclassical results (the first perturbative approximation of the impact parametre
approach with the Coulomb trajectories of the nuclei) [6] may in many cases overestimate
the rate constants with a factor reaching two. To make the final conclusion we plan to
recompute all the cross sections and the rate constants using the enlarged close coupling
scheme. It seems also desirable to take into account the deviation of the "exact” trajec-
tory of proton from the Coulomb hyperbola and the change of the proton speed during
the collision. The inclusion of the interaction with the nearest levels of the higher config-
uration, at least in the model of the polarization potential, may also influence the final
resuls.
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Appendix

A  Wave functions and matrix elements of the inter-
action.

Semiempirical one-electron basis functions (orbitals) were computed using the ATOM
program [9]. The program computes radial one-electron functions as eigenfunctions
of the radial Schrodinger equation with the spherically symmetric potential taking into
account contributions of all the occupied states described by nodeless Slater orbitals. The
solution in question is forced to have the necessary number of nodes. If the eigenenergy
of the one-electron state in question is known from more elaborate computations or from
the analysis of the data, the potential is scaled so that the eigenfunction corresponds
to this eigenenergy. In the opposite case both the eigenfunction and eigenenergy are
defined together. Though the ATOM program allows to include the exchange potential
into the radial Schrodinger equation for the one-electron functions, we did not include
the exchange as its effect is negligible on this step. Wave functions of different states
of the p* configuration in the LS coupling scheme may be expressed explicitly as linear
combinations of Slater determinants. We obtained the wave function component with
Mg = 3/2 of the zero-order *S (S = 3/2, L = 0 ) state by means of one determinant (see
for example [10], ch. 5 and [14]) that in standard notations of Condon and Shortley [15]

has the form 3 3
\IJ(S:§,L:0,MSZ§,ML:0)=|1+,0+,—1+| (A1)



We recall that here the numbers designate orbital magnetic numbers m; for individual
electrons, and signs in the superscript designate the signs of spin magnetic numbers m
for individual electrons. The normalizing factor 1/\/§ is supposed to be included into
the expressions. Next the wave functions *S with smaller Mg were obtained using the
lowering operator for the spin projection S~ [10]

3 3
ST =25 =2 (ra — i8ky) (A2)
k=1 k=1
Correspondingly
3 1 1

U(S==-,L=0,Mg=—-,M; =0) = 1=,0", —1* 1,07, —1" 1*,0%, -1~
( 27 ) S 27 L ) \/§(| ) ) |+| ) ) |+| ) ) |)
(A3)

The wave function of the zero-order 2D (S = 1/2, L = 2 ) state with the M, = 2
component is also expressed as one determinant
1 1
\P(Szi,L:2,M5:§,ML:2):|1+,1_,0+| (A4)

The components 2D with lower values of M; are obtained using the orbital momentum
lowering operator L~ [10]

L™=l = Y (e —ilxy) (A5)

k=1 k=1
Then
WS = L L =2 Ms= o My =1) = — (1", 17, ~1*| — [1,07,07)) (A6
2T 2’ V2o o
and
W(S = 2, L =2, Mg = £, My = 0) = (1, 0%, -1
, , 5 ZgUt0%
—2[1%,07, =17 +|17,0", —17)) (A7)

The wave function for 2P state with M, = 1 and Mg = 1/2 may be constructed from
the same two determinants that form the 2D with the same M, and Mg if we use the
orthogonality condition

1 1
<? P,M5:§,ML:1|2D,M5:§,ML:1>:0 (A8)

Then
1 1 1
\IJS:— L:l [\/j = — [\/j :1 = —
( 27 ) S 27 L ) \/E

And then using the the orbital momentum lowering operator L~ from eq. (A5)

1 1 1
(S =5 L=1,Ms =5, My =0) = (17,07, -7 = [17,0%,17])  (AL0)

(1,17, =17+ 17,07,07])  (A9)



The wave functions of the components with the negative signs of M, and Mg are obtained
from the corresponding expressions (A1) — (A10) by the change of the signs of all the
my or/and my for the spin-orbitals in the determinants. The wave functions with definite

J and M are expressed as linear combinations of the corresponding wave functions with
definite M;, and Mg

U sanmy, =, (LMLSMg|JM)¥y s s, 0 (A11)
Mr,Ms

where (LM SMg|JMj) are the corresponding Clebsch-Gordan coefficients [10, 16]. The
Clebsch-Gordan coefficients, or strictly saying Wigner 3;5 symbols differenting from the
Clebsch-Gordan coefficients only with simple factors, are tabulated for almost any prac-
tical case in [16]. The program for the computation of 3j symbols is available free in the
Internet [18]. It is worth noting that Wy g jar, so constructed are in fact wave functions
of zero approximation in a sense that they take into account only effects of the static
central averaged potential V,.s(r) (see details in [9]). Taking into account both the di-
rect electron-electron pair interaction U (r;,r;) = 1/|r; — rg| and the main relativistic
corrections, that is the spin-orbit and spin-spin ineractions, we obtain the system of equa-
tions for coefficients of the matrix connecting the intermediate coupling wave functions
e(*SHL J, My) = (> L)), ) for the physical states with the wave functions of LS
zero approximation W(* 1L, ) = Uy g 70, [16, 17]

("S5 /90r,) = as¥(*Ssp2,01,) + bW (*Dsjanr,) + csY(*Pajanr,)

WDy 0r,) = an¥(*Ssp2.a1,) + b0V (*Dsjang,) + co¥(*Psja )

V(P nr,) = apV(*Ssja.01,) + 0P (*Dajonr,) + cp V(2 Pajo,ua,)

(D% ar,) = Y (*Dsj2,1,)

(P )y ar,) = U Pry2m,) (A12)

The coefficients ar, by, c;, may be defined simultaneously with the corrected energies
E(**1L, from the secular equation that for J = 2 has the form [14]
111

6¢
(EU(QD) + 1—077> - C\/_b ~ o= Fa

1 5
5(\/5a + (EO(QP) — é) b+ (c=EFEb
—6—Ca+Cb+Eg(4S)c = Ec (A13)
V5
For the remaining levels J = 2 and J = 3 the energy corrections have the forms [14]
37
E(Dya) = By(*D) -
E(*Pyj3) = Ey(*P) + 51 (A14)

where ( and 7 indicate one-electron matrix elements of the spin-orbit and spin-spin in-
teraction respectively . The explicit expression for n and ¢ have the forms [14]

42 / / 2 RS, (1) Ry, (ra)drydry (A15)
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¢= 5 | T R ) (A16)

2c? dr 2
It is important to notice that in equations (A12, Al4 ) the initial LS energies
Ey(**'L) include the contributions from the direct electron-electron interactions Ue,(r;, Tg).
The numerical solutions of the equations (A13, Al4) for the case in question were
published in [17] (there it was supposed n = 0). The results of [17] that we used are

as = 0.9279, bg = +0.1709, cg = —0.3314,
ap = —0.3003, bp = +0.8694, cp = —0.3924,
ap =0.2211, bp = +0.4636, cp = 0.8530. (A17)

Taking into account the fact that the energies E(>**1L;) were calculated earlier with
high accuracy using substantially more elaborate approach including the configuration
interaction of many states [19] it might be practical to use in future just these energies as
initial data and to compute Fy(*L), ¢ and n as auxiliary parametres.

Using the eq. (A11) one may express matrix elements of the electrostatic potential of
the projectile V(ry,...r3; R(%)), eq. (3) as

< \I]L,S’J,MJ |V(I‘1, ...I'3; R(t))|\IfL/75/,J/,M} >=
S S (LMLSMg|JM;)(L'M;S' My|J M)

My, ,Mg ML,M%
X < \IIL,S,ML,M5|V(I‘1; ...rg;R(t))|\IlL/75,,M/L’M/S > (A].S)

The direct calculation of the matrix elements (A18) with the wave functions (Al-
A10) gives the expressions in terms of the matrix elements of the one-electron interaction
operator u(r) = Zp/|r — R| over one-electron wave functions xapm(r) = |m >. The
necessary expressions are given in the table 3.

The remaining non-zero matrix elements are

3 3
<W(*S, Mg = 5)|V(r1, L3 R() (S, Mg = 5) >=

1 1
< U(*S, Mg = 5)|V(r1, .r3; R()|¥(*S, Mg = 5) >=
< 1ull >+ < 0Jul0 > + < —1|u| - 1> (A19)

The one electron matrix elements < m|u|m’ > were calculated numerically after the
separation of the angular parts according to the standard schemes [16, 9].
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Table 3: The matrix elements Vﬁcs for the LS states with S = 3, Mg =1

P M, =1
D, M, =2 (< 0fu =1 > — < 1[ul0 >)
D,My=1] 3(<1ull >—-2<0ul0>+2 < —1|u|—1>)
D, My, =0 B 0Jull > — < —1[ul0 >)
PMp=1| 503 <lull >+2<0[ul0>+<—1ul-1>)
P, My =0 (< =1u0 > + < Ofull >)

P, M, =0 P M, = —1
D, M =2 —V2 < 1u|—1> 0
D, M, =1 $(< 1u0 > — < 0fu| — 1 >) —<1lul—1>
D,M;, =0 0 B(1ulo > — < 0u] — 1 >)
P, M, =1 (< O0ul — 1>+ < 1ful0>) 0
PM,=0| <1ull>+<0ul0>+<-1u|—1>] (< 1u|0 >+ < 0fu] —1>)
D, My, = 2

D,M,=2| 2<1ull >+ <0Jul0>
D,Mp=1| (< 1|ul0 >+ < Ofu| — 1 >
D, M, =0 0

D, M, =1
D, My, =2 Z5(< Lul0 > + < 0fu] — 1>
D,Mp=1]30B<1ull>+2<0ul0>+ < —1ful—1>)
D, M, =0 (< 1ful0 > + < 0fu] — 1>

D, M, =0

D, M, =2 0
D, My =1 B(< 1ul0 > + < Ofu| — 1 >
D, M;, =0 | <1lull >+ <0ul0 >+ < —1lu] —1>
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Figure 1: The proton excitation total cross sections for the 4S5 /2 —2 L transitions. CC (close-
Coupling): 453/2 2 D3/2 solid line, 4S3/2 2 D5/2 dash line , 4S3/2 2 P1/2 dot line, 453/2 -2 P3/2
dash dot line.
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Figure 2: The proton excitation total cross sections for the 2D3/2 —2 Lj transitions. CC
(close-coupling): 2D3/2 -2 D5y dot line, 2D3/2 -2 Py /5 solid line, 2D3/2 -2 Py, dash line; B
(Born-Coulomb): 2D3/2 2 Py 5 crosses.
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Figure 3: The proton excitation total cross sections for the 2D5/2 —2 Ly and 2P1/2 2 Py
transitions. CC (close-coupling): 2D5/2 2 Py 3 solid line, 2D5/2 2 Py /5 dash line, 2P1/2 2 Py 9
dot line; B (Born-Coulomb): 2D5/2 2 P, /5 crosses.
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Figure 4: The proton excitation rate constants for the 453/2 —2 L transitions. CC (close
coupling): 45'3/2 2 D35 solid line, 45'3/2 —2 Ds /5 dash line, 45'3/2 —2 Py /5 dot line, 45'3/2 —2 P39
dash dot line; Bhatia [6], SC: 453/2 —2D3/2 crosses, 453/2 —2D5/2 circles, 45'3/2 —2P1/2 triangles,
453/2 2 Py /5 squares.
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Figure 5: The proton excitation rate constants for the 2Dj /2 —2 L transitions. CC (close
coupling): 2D3/2 2 Dy /5 solid line, 2D3/2 2 Py 5 dash line, 2D3/2 2 Py /5 dot line; Bhatia [6],
SC: 2D3/2 —2 Dy crosses, 2D3/2 2 Py /5 circles, 2D3/2 —2 Py 9 triangles.
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Figure 6: The proton excitation rate constants for the 2D5/2 —2L;and 2P1/2 —2P3/2 transitions.

CC (close coupling): >D5/, —2 Py, solid line, D55 —2 P35 dash line, 2Py /o —2 P35 dot line;
Bhatia [6], SC: ?D5/, —2 Py 5 crosses, 2Dy 5 —2 Py 5 circles, 2Py 5 —2 Py 5 triangles.
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