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Abstract 

 

Single- and multiple-electron loss processes in collisions of heavy many-electron ions 

(positive and negative) in collisions with neutral atoms at low and intermediate energies are 

considered using the energy-deposition model. The DEPOSIT computer code, created earlier to 

calculate electron-loss cross sections at high projectile energies, is extended for low and 

intermediate energies. A description of a new version of DEPOSIT code is given, and the limits 

of validity for collision velocity in the model are discussed.. Calculated electron-loss cross 

sections for heavy ions and atoms (N
+
, Ar

+
, Xe

+
, U

+
, U

28+
, W, W

+
, Ge

-
, Au

-
), colliding with 

neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at 

energies E > 10 keV/u. It is found that in most cases the agreement between experimental data 

and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code 

at low and intermediate energies with those by the LOSS-R code at high energies (relativistic 

Born approximation), recommended electron-loss cross sections in a wide range of collision 

energy are presented.  
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1. Introduction 

 

In ion-atom collisions, the interactions between colliding particles depend mainly on their atomic 

structure and the ion energy. At low energies, the electron capture (EC) is the most dominant 

process, particularly, for highly charged projectile ions, meanwhile the electron loss (EL) of 

projectile, often called projectile ionization or stripping, 

 

                    X
q+

 + A  X
(q+m)+

 + A + me
-
                                                (1) 

 

prevails at higher energy range (see, e.g., [1]). Here X
q+

 denotes the projectile ion and m the 

number of ejected electrons. A means that the target atom can be excited or even ionized.   

  

 At low energies, E < 50 keV/u, experimental data on EL processes involving many-

electron systems are very limited (see, e.g., [2, 3], meanwhile theoretical analysis of such 

processes is very complicated and results are even scarcer than experimental data (see, e.g., [4 – 

7]).  A few theoretical models to calculate the EL cross sections at low collision energies have 

been reported [4, 6], however, in many cases their results show significant overestimation of 

experimental data. For relatively high energies E > 1 MeV/u, extensive calculations of single- 
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and multiple-electron loss cross sections of heavy ions by atomic and molecular targets have 

been performed using the Classical-trajectory Monte Carlo (CTMC) method (see, e.g., [8 - 10]). 

 

The classical energy-deposition model, originally suggested by N. Bohr [11],  was successfully 

applied for ionization of atoms by ions in relatively high collision energies and, combining with 

statistical theory for multi-electron ionization probabilities [12], leads to quite reasonable results 

for the total and partial (m-fold) ionization cross sections of the target atoms (see [13, 14]). 

 

    At very low collision energies, a quasi-molecule model based on the adiabatic approximation 

for one electron in the two-Coulomb-centre system, is used for calculating EL cross sections 

(ARSENY code [15]), but this model is applied mainly for light projectiles and light targets.  

    

    Quite recently [16], the scaling formulae, based on available experimental data, were 

presented for single- and multiple-electron loss form arbitrary projectile in collisions with neutral 

atoms over a broad energy range from a few keV/u to hundreds of MeV/u. 

 

   Importance of slow ion-atom collisions has recently been realized in a number of applications, 

particularly, in material sciences based upon low-temperature plasma technologies [17, 18]. For 

example, in the edge plasma region of the fusion plasma machines like tokamaks, whose 

temperatures are much lower compared with the a hot plasma at central region, there are a 

number of low-charged heavy impurity ions, like Ni, Fe and Cr, which are originally sputtered 

away from the device walls and ionized. Then, they flow into the main plasma region, where 

they become highly ionized, resulting in enhanced radiation losses and, finally, cooling the high 

temperature plasmas.  

 

 In our previous paper [19], the energy-deposition model based on the semi-classical 

approximation, was applied for EL of projectiles in collisions with neutral atoms at relatively 

high energies ( E > 1 MeV/u) and a DEPOSIT code was created for systematic calculations of 

the EL cross sections including multiple-electron losses.  It was found that the code can 

reproduce reasonably well the experimental data in fast ion-atom collisions within a factor of 2, 

indicating that the code is generally reliable in describing most of the observations, analyzing 

related phenomena and in its applications.  

 

 In the present work we extend the application of the existing version of the DEPOSIT 

code to low and intermediate energy ranges so that it can now be used from low energies of 

about 1 keV/u up to the high-energy Born range. At low energies, similarly to high energies, the 

energy deposited to the projectile by collision with a neutral atom is expressed via 3D-integral 

over the projectile-ion space. For intermediate energy, a semi-empirical method of calculating 

the deposited energy is suggested. New formulae are realized in the new version of the 

DEPOSIT code described in this paper. The results of the relativistic Born calculations, 

performed by the LOSS-R code [20], are also given to get the upper limit of the total EL cross 

sections. Finally, multiple-electron loss cross sections are calculated at low energies and 

compared with available experimental data. 

The atomic units me = e =  = 1 are used where me and e denote the electron mass and 

charge, respectively, and  the Planck constant. 

 

2. Application of the energy-deposition model at low energies 

 

    2.1 Basic formulae 

 

In the work [19], single- and multi-electron loss processes were considered in the energy-

deposition model for energetic ions colliding with neutral atoms provided that the relative 
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velocity v is much higher than the ion orbital velocities, i.e. v >> vorb. In the present paper, an 

opposite case is considered, namely, when the velocity v is much smaller than the orbital 

velocities, v << vorb,. In principle, the low-energy electron-loss processes should be treated 

within a molecular approach such as adiabatic approximation (see, e.g., [15]). However, for 

collisions of heavy, like Xe
+
 + Ar, W

+
 + W, U

4+
 + Xe, the molecular treatment for such multi-

electron systems can be hardly realized. Therefore, for low-energy heavy particle collisions we 

again apply the energy-deposition  model as we did for high-energy collisions in [19] but using 

another physical assumptions. 

           

 Let us first consider the kinetic energy E which one bound (active) electron from the 

shell  of the projectile can gain in a single collision with a neutral target atom: 

 

2
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where u and u denote the orbital velocity and its gain due to collision with a neutral atom, 

respectively.   

The values u and u are obtained from the classical equations:  

 

   Iu 2 ,                                                                            (3) 

dt
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 .                                          (4) 

 

Here Idenotes the binding energy of the projectile shell U(R) the field of a neutral atom at a 

distance R from its nucleus, t the time and p the impact parameter between the active electron 

and the target nucleus.  

In the case of high velocities, v >> u, the velocity gain uv [21]uis small and 

one can neglect the linear term on u  in eq. (2). Then the deposited energy (p) is defined by 

the quadratic term of eq. (2): 

 

         



 uv,
2

)(
)(

2





u

pE .                                              (5) 

             

In the opposite case of low velocities, v << u, the first linear term prevails because uv, 

uis large and the deposited energy (p) is given by a linear term of the velocity gain u: 

 

                .uv,)(   uupE                                            (6)                

 

The field U(R) of the target neutral atom can be presented in a close analytical form as a 

sum of three Yukawa potentials with six fitting parameters obtained from the Dirac-Hartree-

Fock-Slater calculations [22]: 
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i

i
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R
i AeA

R

Z
RU i    ,         (7) 

where Ai and i denote the fitting parameters and Z the nuclear charge of the neutral target atom 

(also a number of the target electrons).  
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   Using a straight-line trajectory approximation  
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r
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and representation (7) for the atomic field, the energy deposited to one active projectile electron 

at low velocities v can be written in the form:  
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where vr denotes the relative velocity, and the function FA(k) is normalized to unity at k  0 (see 

[19]): 

 

0...,285.01)(  kkkFA .                           (11) 

  

According to eq. (9), the deposited energy (p) diverges at p  0 and, therefore, (p) 

should be normalized at p = 0. In the paper [19], where the fast collisions, v >> uare 

considered, the deposited energy (p) was normalized to the maximum energy 
max

which 

an active electron can gain in a head-on collision with the atomic nucleus: 

              
2max v2)0(  pEEhigh  .                                                  (12) 

To find the 
max

 value for slow collisions, we use assumptions  similar to those made in the 

paper [5], i.e., the energy transferred to the active electron is mainly due to collisions with the 

target electrons but not with its atomic nucleus because the projectile electrons can adjust 

adiabatically to the slow nuclear motion of colliding particles. The maximum energy 
max

 can 

be found from a  simple consideration that each projectile shell has its own mean radius r then it 

is easy to obtain: 
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where RA denotes a radius of the target atom. The factor v
2
/2 corresponds to the energy deposited 

to the projectile active electron by a single collision with one target electron so that the N
)

eff is a 

number of effective head-on collisions (p = 0) of a projectile electron from the shell  with a 

target electron gas within a cylinder of diameter 2r. 

 

   According to eq. (14) the number of effective collisions does not exceed the total number of 

the target electrons. The assumption (13) is quite rough but allows one to get reasonable results 

as will be shown below. The alternative way to find N
)

eff is to use a model suggested in [5]  

using two overlapping spheres of colliding particles but this model requires five additional 

assumptions and two fitting parameters which can be obtained only from experimental data. We 

choose the semi-classical energy-deposition model which is free from any fitting parameters. 
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In the classical energy-deposition model the total energy T(b) transferred to all projectile 

electrons by the target atom is given by 

                                                                                                                                                             

  ,)()()( 3 


 rdpErbT                            (15)                                                                                                                                                                 

where )(r  denotes the electron density of the projectile ion at the distance r from its nucleus 

and b the impact parameter between nuclei of two colliding particles. The sum over  means 

summation over all shells of the projectile. With account for normalization given by eqs. (13, 14), 

the energy (p) transferred to one projectile electron at low energies can be presented in the 

form: 
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The FA(k) function is given by eq. (10). In the case of a straight-line trajectory approximation (8), 

b, p and r values are related by a simple geometrical equation given in [19]. In the present model, 

the target atomic potential U(R) is considered to be unchanged during  the collision time.  

 

The electron density )(r  in eq. (15) is normalized to the total number of the projectile 

electrons N: 

                                 



0

)( Ndrr .                                                   (17)  

  According to the energy-deposition model, electron loss of the projectile can occur only if the 

total energy T(b), deposited to the whole projectile ion, is larger than its first ionization potential 

I1, i.e.  

 

 

                                          1)( IbT   .                                                 (18) 

 

 The total electron-loss cross section of the projectile by neutral atom, i.e., summed over many-

fold (m) electron-loss cross sections, is given by 
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where bmax is the maximum impact parameter, at which the active electron can be ionized, and is 

found from equation:  

 

                                       1max )( IbT    .                                                 (20) 

   

2.2 Validity conditions for the energy-deposition model at low energies 

 

At low velocities v, the first linear term in eq. (2) prevails so that one has  

                      
2
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from which we can estimate the upper limit of validity for velocity v. Actually, from eqs. (13), 

(14) and (21) one gets: 

           




r

R

Z

u
A

2
v2  .                                                                (22) 

 

Assuming that at low energies the main contribution comes from the loss of the outermost 

projectile electrons with the ionization potential I1, one has from eq. (22): 
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where Rion denotes the mean radius of the projectile. Typical mean radii for some ions and atoms 

of interest are given in Table 1. 

 

 

 

 

Table 1. The mean radii of positive ions, Rion, calculated by the ATOM code [23], and neutral 

atoms, RA, taken from relativistic Dirac-Fock calculations [24] (all in a0 units). I1 denotes the 

first ionization potential (in eV). 

 

Ion I1   [eV] Rion [a0] Atom I1   [eV] RA [a0] 

Ar
6+ 

124 0.99 H
 

13.6 1.50 

Ar
8+ 

422 0.36 He
 

24.6 0.93 

Xe
18+ 

573 0.60 N
 

14.5 1.44 

Pb
25+ 

814 0.52 Ne
 

21.6 0.97 

U
5+ 

62.5 2.33 Ar
 

15.8 1.65 

U
10+ 

158 1.80 Kr
 

14.0 1.92 

U
28+ 

918 0.73 Xe
 

12.1 2.24 

W
+ 

15.0 3.22 W
 

7.86 3.40 

Ge
- 

1.23 - C 11.3 1.74 

Au
- 

2.31 - O 13.6 1.24 

 

 

It is also possible to estimate a lower limit for validity of approximation at low collision energies. 

From eqs. (15), (13) and  (18) one has: 
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where the summation is made over all subshells  of the projectile with the number  N of 

equivalent electrons in the shell. 

 

3.  New version of the DEPOSIT code  

 

   Using the energy-deposition model, it is possible to obtain analytical formulae for the energy 

T(b) transferred to the projectile at both high [19] and low (section 2.1) relative velocities when 
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the problem is reduced to numerical calculation of the 3D-integral over the projectile-ion space. 

Unfortunately, it was not possible to obtain the normalization energy 
max 

 at p  0  for 

intermediate velocities when v ~ v. However, below we suggest a semi-empirical method for 

calculations of EL cross sections at intermediate velocities.                       

 

    Let us define the energy p in it by two equations depending on the ratio between v 

and u: 
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The lower equation in (25) was used in [19] to describe electron loss at high velocities. 

 

For simplicity, let us consider an electron loss of Ar
+
 ions colliding with some atom.  This ion 

has K, L and M electron shells (1s
2
, 2(sp)

8
 and 3(sp)

7
) with the corresponding set of average 

orbital velocities u u15.4, uL4.5 and u1.2 a.u. According to eq. (16), the total 

deposited energy TAr+(b) is given by the sum over all three shells: 

 

                    )()()()( bTbTbTbT MLKAr
  .              (26) 

 

If the relative velocity is small, e.g., v = 0.5 a.u., a contribution from all shells is calculated by 

the upper formula in eq. (25). If velocity is large, e.g., v = 16 a.u., then the lower formula of eq. 

(25) is used. If v = 6 a.u., a contribution from the K shell is calculated using the upper formula 

and from K and M shells by the lower formula of (25), respectively. Such procedure of dividing 

shells into two groups depending on ratio between velocities v and u allows one to provide 

effectively a smooth transition of T(b) from low to high velocities and, therefore, to calculate the 

deposited energy T(b) at all energies. 

  

 We note that such dividing electron shells into two groups with different velocities is 

used in atomic physics, for example, in the works [25]. There, in considering interactions of fast 

ions with solids, the target electrons are divided into two groups: one of the outmost electrons, 

described as an electron gas in the valence band, and another one of the inner-shell electrons 

described by the bound-state wave functions. 

    Equations  (15) and (25) are realized in a new version of the DEPOSIT code which now is 

intended to calculate the deposited energies T(b), the total- (tot)  and m-fold (m)  electron loss 

cross sections of positive, negative ions and neutral atoms colliding with neutral atoms at low, 

intermediate and high relative velocities. We remind that the previous version of the DEPOSIT 

code [19] was used only for calculations at high velocities v  >> v. 
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4. Numerical calculations and comparison with experiment 

 

 In the present work, the total EL cross sections are calculated using eqs. (15) and (25) 

and m-fold cross sections using for the usual formula in the independent-particle model: 

 

      



0

)(2v)( dbbbPmm     .                 (27) 

Here Pm(b) denote the m-fold electron-loss (ionization) probabilities which were calculated in the 

Russek statistical model [12]. To calculate the projectile electron density (r) in eq. (15), the 

Slater radial nodeless wave functions are used (see [19]).  

         The results of calculations by the DEPOSIT code are compared with available 

experimental data and CTMC calculations in a wide range of collision energies. We note that in 

the work [2], the experimental data are compiled only for the partial (not total) EL cross sections 

m, therefore, the total experimental data mentioned in the figure captions from [2] correspond to 

the sum of m  values.  

    At high-energy range, the results for EL cross sections in the relativistic Born approximation 

(the LOSS-R code) are also given to show a high-energy limit of the total EL cross sections. The 

recommended EL cross sections rec over a wide range of the collision energy are also displayed 

in the figures which were obtained using the following formula: 

 

                           
highlowrec 

111
 .                                          (28) 

Here low and high denote the cross sections calculated by the DEPOSIT and the LOSS-R codes, 

respectively. The LOSS-R code is originally intended for calculation of the single-EL cross 

section in the Born approximation and is quite reliable at high collision energies (see [20] for 

details) including relativistic energy range. Besides, it is well known experimentally and 

theoretically that at high energies single-electron loss gives the main contribution to the total EL 

cross sections (see, e.g., [8, 9]). 

 

 

4.1 The total EL cross sections 

 

Experimental and calculated total EL cross sections of singly charged positive ions colliding 

with atomic gases are shown in Figs. 1 – 5 at collision energy range from about 10 keV/u to 10 

MeV/u.  There is quite good agreement with experimental data within a factor of 2 or better. 

Typically, the data by the DEPOSIT code are larger than experimental data except for the case of 

Ar
+
 + Ne collisions at energies below maximum (Fig. 2). CTMC cross sections decrease more 

slowly and are larger than the Born EL cross sections (Figs. 2 and 3). 
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Fig. 1.  Total electron-loss cross sections of N

+
 ions by Ne atoms as a function of the ion energy. 

Experiment: solid circles – estimated from [2]. Theory: dashed curve – DEPOSIT code, thin 

solid curve – LOSS-R code, thick solid curve – recommended cross section, eq. (28). 

 

 

 
Fig. 2.  Total electron-loss cross sections of Ar

+
 ions by Ne atoms as a function of the ion energy. 

Experiment: circles – estimated from [2], squares [10]. Theory: solid curve with circles – CTMC 

[10], dashed curve – DEPOSIT code, thin solid curve – LOSS-R code, thick solid curve – 

recommended cross section, eq. (28). 
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Fig. 3. Total electron-loss cross sections of Ar

+
 ions by Ar atoms as a function of the ion energy. 

Experiment: solid circles – estimated from [2], solid squares [10]. Theory: solid curve with small 

circles – CTMC [10], dashed curve – DEPOSIT code, thin solid curve – LOSS-R code, thick 

solid curve – recommended cross section, eq. (28). 

 

 

 
Fig. 4. Total electron-loss cross sections of Xe

+
 ions by Ar atoms as a function of the ion energy. 

Experiment: solid circles – estimated from [3]. Theory: dashed curve – DEPOSIT code, thin 

solid curve – LOSS-R code, thick solid curve – recommended cross section, eq. (28). 
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Collisions of U
+
 ions with Ar are of a special interest for accelerator physics in view of the 

International FAIR project [26]. For this case, the results of the DEPOSIT and LOSS-R codes 

are presented in Fig. 5 together with experimental data [2] and recommended EL cross section. 

We note that in this particular case the Born approximation (the LOSS-R code) strongly 

overestimates experimental data at low and intermediate energies. 

 

 

 
 

Fig. 5. Total electron-loss cross sections of U
+
 ions by Ar atoms as a function of the ion energy. 

Experiment: solid circles – estimated from [2]. Theory: dashed curve – DEPOSIT code, thin 

solid curve – the LOSS-R code, thick solid curve – recommended cross section, eq. (28). 

 

 

        It is interesting to investigate the behavior of the total EL cross sections for collisions of 

highly charged ions with neutrals. The total EL cross sections for U
28+

 + Ar collisions are 

presented in Fig. 6 where available experimental data together with CTMC, the present semi-

classical and Born calculations are given. It is seen that the recommended cross section is in 

good agreement with four experimental points. 

    

In highly charged ions, the outermost electrons are already tightly bound (in this case of U
28+ 

the 

ionization energy of the outermost electron is ~ 1 keV), and thus their radii tend to shrink toward 

a point-like charge (for U
28+

 the radius is 0.75 a0 and for neutral He it is 0.93 a0. i.e. of the same 

size, Table 1) instead of a large electron cloud and simultaneously their velocities can be too 

large to have multiple collision interactions in an single encounter. As the interaction time of 

projectile electrons with the target electron cloud becomes shorter, the effective numbers of 

collisions between projectile and target electrons decreases, and, therefore, the effective cross 

sections are drastically reduced.  
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Fig. 6. Total EL cross sections of U
28+

 ions by Ar atoms as a function of the ion energy. 

Experiment: solid circle – [27], solid squares  – [9]. Theory: solid curve with circles – CTMC [9], 

dashed curve – DEPOSIT code, thin solid curve – LOSS-R code, thick solid curve – 

recommended cross section, eq. (28).  

 

 

    The present version of the DEPOSIT code can be also applied for electron loss of negative 

ions by neutral atoms as seen in Fig. 7 where EL cross sections of Ge
- 
and Au

-
 by Ar atoms are 

given in comparison with experimental data [28, 29].  We can not present the Born results (and 

recommended data) at higher velocities, v > 3 a.u., since the Born cross sections are not available 

for these ions. The dashed curve for Au
-
 ions (right figure) is taken from the model [29] and 

represents a simple estimation of the EL cross section as a convolution of a free-electron 

scattering cross section and the velocity distribution of the outermost electron in the anion’s rest 

frame.  

 
Fig. 7. Total electron-loss cross sections of Ge

-
 and Au

-
 ions by Ar atoms as a function of the ion 

energy. Experiment, solid circles: Ge
-
 [28],  Au

-
 [32]. Theory: dotted curve – the model cross 

section from [29], solid curves – DEPOSIT code.   
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   Figures 8 and 9 reproduce the EL and ionization cross sections of W and W
+
 in collisions with 

neutral atoms, electrons and protons. These cross sections are of interest for plasma physics 

especially for ITER problems. 

 

    The total EL cross sections for W
+
 ions colliding with H, He, Ar, W atoms and ionization 

cross sections in collisions with protons (p) and electrons (e) are shown in Fig. 8.  The EL cross 

sections were calculated with the help of DEPOSIT and LOSS-R codes, one-electron ionization 

cross sections by protons using the LOSS-R code, one-electron ionization cross sections (1e) by 

electron impact using the ATOM code [23]; solid circles are the experimental 1e-cross sections 

from the work [30]. For comparison, the two-electron ionization cross sections (2e) induced by 

electron impact are also presented in the figure; the open circles are experimental data [31] and 

the solid curve corresponds to the semi-empirical formula given in [32].   

 

Similar picture but for collisions of neutral W atoms with plasma particles is shown in Fig. 9.  

 
 

Fig. 8. Ionization cross sections of W
+
 ions. Experiment: solid circles - single ionization cross 

sections by electron impact, from [30],  open circles – double-electron ionization cross sections 

[31]. Theory: e and p  - single ionization cross sections by electrons and protons, the ATOM and 

LOSS-R codes, respectively; H, He, Ar and W – total electron-loss cross sections by neutral 

atoms, recommended data, eq. (28);  2e – double-electron ionization cross sections by electron 

impact, semi-empirical formula given in [32]. Electron-impact ionization cross sections are given 

as a function of equivalent electron energy. 
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Fig. 9. Calculated EL and ionization cross sections of neutral W atoms: e and p  - single 

ionization cross sections by electrons and protons, the ATOM and LOSS=R codes, respectively; 

H, He, Ar and W – total electron-loss cross sections by neutral atoms, recommended data, eq. 

(28);  2e – double-ionization cross section by electron impact, semi-empirical formula [32]. 

Electron-impact ionization cross sections are given as a function of equivalent electron energy. 

 

 

4.2 Rate coefficients for ionization of W
+
 and W projectiles 

 

For plasma modeling and beam attenuation applications in plasmas, the main interest constitutes 

the electron-loss rate coefficients, i.e., v values averaged over a Maxwellian velocity 

distribution function of the plasma particles.  

 

 Figures 10 and 11 show those for W
+
 and W in collisions with plasma particles which are 

obtained from the cross-section data given in Figs. 8 and 9, respectively. From these figures, it is 

clear that the rate coefficients for EL of both W atoms and W
+
 ions are far dominated by electron 

impact at and below the temperature of 100 eV which is close to that in divertor plasmas and in 

principle no other particles play any role at all in their electron losses. As the temperature 

increases up to 10 keV range which is relevant to the central part of the main plasmas, those by 

heavy particles sharply increase and dominate the electron contribution, as expected. 
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Fig. 10.  Electron-loss rate coefficients of W
+
 ions as a function of the particle temperature by 

neutral atoms (H, He, Ar and W), protons and electrons.   e and 2e denote one- and two-electron 

impact ionization rate coefficients, and  arrow indicates the ionization potential I1 = 14.9 eV of 

W
+
 ion. 

 

 
 

Fig. 11.  Electron-loss rate coefficients of W atoms as a function of the particle temperature by 

neutral atoms (H, He, Ar and W), protons and electrons.  e and 2e mean one- and two-electron 

impact ionization rate coefficients, and  arrow indicates the ionization potential I1 = 7.9 eV of W 

atom. 
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4.3  Multiple-electron loss cross sections at low energies.  

 

   The properties of the total and multiple-electron loss cross sections and probabilities of heavy 

ions colliding with neutrals are considered in several papers (see, e.g., [16], [19] and [33]). The 

data on multiple-electron loss cross sections at low energies are quite scarce. Typical multiple 

electron loss data for Ar
+
 and U

+
 ions in collisions with neutral Ar are compared with the present 

calculations in Figs. 12 and 13. The agreement between calculated and experimental data are 

reasonable within a factor of less than 2 keeping in mind hat these cases are so complicated to be 

handled theoretically.  

 It is found that, in both cases, sum of multiple-electron loss cross sections are comparable 

to or even larger than those of single electron loss. Therefore, they can not be neglected but play 

a key role in loss processes of heavy particles, particularly under heavy target atom collisions. 

This can also be the case for W atoms and ions which is our present interest, though there are no 

data available. 

 
Fig. 12.  The m-fold electron-loss cross sections of Ar

+
 ions by Ar atoms. Experiment: solid 

circles – [2]. Theory: solid curves – the DEPOSIT code, present work. 
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Fig. 13.  The m-fold electron-loss cross sections of U
+
 ions by Ar atoms. Experiment: solid 

circles – [2]. Theory: solid curves – the DEPOSIT code, present work. 

 

 

Conclusion 

 

    The classical energy-deposition model, previously used to describe the total and multiple-

electron loss cross sections of heavy ions at high-energy collisions with neutral atoms, is 

extended to apply it at  low and intermediate energies using a new version of the DEPOSIT 

computer code.  

 

It is found that the EL cross sections calculated by the DEPOSIT code for heavy (positive, 

negative ions and neutral) projectiles colliding with neutral atomic targets are in reasonable 

agreement (within a factor of 2) with available experimental and theoretical data at energies E > 

10 keV/u. Furthermore, calculated partial multiple-electron loss cross sections at very low 

energies are also found to be consistent with the observed data though the data themselves are 

very limited.  

 

Combining the present results obtained by the DEPOSIT code at low and intermediate energies 

with the Born approximation results at high energies (the LOSS-R code), the cross sections for 

various ion-atom collisions are recommended over a wide range of the collision energies.  
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