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Preface

The National Institute for Fusion Science was established on the 29th of May, 1989
as the major university fusion research center in Japan. The Institute of Plasma Physics
in Nagoya University, part of the Plasma Physics Laboratory in Kyoto University, and
the Institute for Fusion Theory in Hiroshima University were fused into this institute.
Present major activities include the design and construction of the Large Helical Device
(LHD) as well as the formulation of a more complete theory of nonlinear plasmas based
on simulation and analytical methods. One of our obligations as the central laboratory
is to promote international collaboration. The International Toki Conference is a part
of our collaboration program. Every year we host this conference on various topics. In
the first International Toki Conference held in 1989 we discussed next-generation helical
device projects which exist around the world. Among these, the LHD project is now in
progress as a main activity of our institute.

This past year we focused on another main task of our institute which is the promotion
of theory and computer simulation research of various plasmas. We placed particular em-
phasis on the nonlinear physics of fusion and related plasmas. The most prominent feature
of plasma physics, more so than other fields, is its intrinsic nonlinearity. Plasma theorists
are responsible for taking the leadership in developing a new concept and methodology
that can systematically elucidate the highly complex and nonlinear behavior of nature
and lead us to its intuitive comprehension. We are presently in the midst of a fog. Re-
cent, rapid progress of computer simulations have given us a light of hope, though faint,
in front of us. In this, the 2nd Toki conference, we aimed to brighten, to whatever extent
possible, this glimmer of hope.

More than twenty famous theorists from ten foreign countries and more than a hundred
domestic participants from universities, institutes and industrial companies gathered at
this conference. The topics discussed were rich in variety. I believe that we have been
able to sow the seeds of highly nonlinear physics in this conference. Until the buds bloom,
we must persevere for some time.

On behalf of the organizing and executive committee members I would like to express
my sincere thanks to all participants, particularly the foreign participants, without whom
we would not have been able to have such a successful meeting. I would also like to thank
the many other people who worked so kindly and effectively behind the scenes.

SATO, Tetsuya
Chairman

The Organizing Committee of
The 2nd Int’l Toki Conference
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Nonlinear Phenomena and Processes in High Energy Plasmas®

B. Coppt
Massachusetts Institute of Technology, Cambridge, MA 02139

Introduction

Both in space physics and in the field of high energy laboratory plasmas where, for instance, fusion
burn conditions can be achieved a large class of observed phenomena require the understanding
of the nonlinear processes that underlie them. Nonlinear plasma physics has had a rather humble
but clearly formulated beginning: experiments on plasma waves and their nonlinear interactions
have, in fact, confirmed the theories [1] that had been developed for instance on mode couplings,
nonlinear Landau damping, etc. The phenomena that confront us at present are considerably more
complex but their importance is such that tentative and rudimentary theoretical descriptions have
to be given of them. While accepting the fact that the analytical tools we have generated are not
adequate to the task, I think that our explanations should be based on clear concepts and start
from complete and correct linearized theories. In order to be specific on some of the issues involved,
two rather general areas will be considered: magnetic reconnection in collisionless plasmas, and
transport processes in magnetically confined plasmas.

I. Collisionless Magnetic Reconnection

The importance of understanding processes that lead to transitions of magnetic field topology
(commonly referred to as reconnection) has come to light first in space physics. These processes
have in fact a key role in explaining the interaction of the solar wind with the earth’s magnetic
- field and the development of large scale solar flares. On the other hand, although the first theory
[2] of collective modes producing magnetic reconnection in collisionless plasmas was reported more
than 25 years ago, laboratory experiments.attaining the very high temperature regimes where
these modes can be excited have come into reality only recently [3]. These experiments involve
magnetically confined toroidal plasmas where electron temperatures in the 5 to 10 keV range have
been obtained by suppressing the onset of macroscopic modes producing magnetic reconnection
due to the effects of finite electrical resistivity [4]. The latter type of mode is in fact considered to
be responsible for the crash phase of the so-called “sawtooth oscillations” of the central part of the
plasma column. The suppression of these occurs when a significant population of “high energy”
nuclei is injected into the plasma column.

The high temperature regimes thus obtained are subject to sudden collapses (so-called “mon-
ster sawteeth”) that we attribute to collisionless modes producing magnetic reconnection (5] and
having a prevalent poloidal number m” = 1. We observe that the earlier analyses that were carried
out for space physics [6] had shown that collisionless reconnection tends to develop only weakly in
plasma configurations that have a relatively large stability margin against the onset of ideal MHD
mode. On the other hand, a magnetically confined axisymmetric plasma of the type embodied by
the experiments of Ref. [3], can have relatively low stability margin against ideal MHD (m® = 1)
modes and consequently is susceptible to strong collisionless reconnecting modes. We find that the

relevant growth rates have numerical values consistent with the characteristic times of the observed



collapses [3]. The smallest characteristic distance involved in the spatial structure of these modes
is the inertial skin depth d, = ¢/wp. and therefore they can be classified as of the “inertial” type
[2], even though, unlike the modes treated in Ref. [2], they cannot be described by fluid equations.
The second characteristic distance is the ion gyroradius p; and the third is the radius r; where
q{r1) = Bygri/(BgR) = 1. We refer, for simplicity to a toroidal configuration with a large aspect
ratio (r/R'<< 1, R being the major radius) and circular magnetic surfaces where the magnetic
field is represented by B ~ By(r)e, + Bs(r)ey. The mode growth rate is about [5]

o =

1 T, 1]2
Vad, + = Ane (1 + F) /{r1L,)

where 1/L, = (r1/R)dg/dr.

Another attractive aspect of the linearized theory is that it produces the appropriate recon-
" nected magnetic field configuration. However, this theory breaks down for very small values of the
perturbed magnetic field i§,., when the size of the magnetic island §; ~ d.. We note that §; Bl /2
A theoretical model to extend the analysis beyond the point where §; ~ d, is proposed [5] and is
based on the assumption that the electrons are scattered over the region &; and lose momentum at
a rate corresponding to a magnetic diffusion coefficient D,,, ~ 487. This leads to §; replacing d,
as the smallest scale distance of the problem and to preserve v of the order of ¢Ape/(r1L,) while
a new form of the relevant dispersion equation, that is similar to that of the linearized theory, is
solved. The latter feature is consistent with the experimentally observed fact that the growth rate
of the instability remains about constant well beyond the limits of the linearized theory.

A theoretical model that could reasonably cover the range where §; > p; remains to be
formulated. An important guidance for this can come from the particle simulation codes that have
been recently developed. In fact, we consider existing codes that are based on fluid equations as
important steps in the direction of understanding how reconnection develops in low temperature
regimes but inadequate for high temperatures. To illustrate this point we note that experimental
evidence has been provided of the fact that a steepened plasma pressure gradient resulting from the
injection of pellets in high temperature plasmas, can suppress, or render more difficult to excite,
the modes responsible for the crash phase of sawtooth oscillations [7]. This can most easily be |
explained by the importance [8] that the frequencies w.; = —(c/r1) (dp;/dr)/(ne; B) have on the
dynamics of the considered modes that existing fluid codes do not usually include.



II. Transport Issues

The description of transport in regimes where the effects of collective modes are dominant over
those of collisions is frequently considered an obscure art where predictions cannot be made, given
the nature of the processes involved and their intrinsic nonlinearities, and where the main physical
factors are impossible to isolate. Examples are then given to illustrate that this image of the field

is not quite accurate.

a) Peaked Density Regimes

These regimes were originally suggested [9] on the basis of the linear and non-linear theory
[10} of the so-called n;-modes (n; = dInT;/dInn) in order to redress the deteriorated confinement
of the Alcator-C experiment. Therefore knowledge of the main ingredients of the theory, in spite
of the rudimentary state of its nonlinear part, led to the production of peaked density profiles
and to successfully raising the confinement parameter n,rz to its expected record values. By
now, a variety of interesting properties have been found (7] to be associated with peaked particle
density regimes. These findings require more than the near-suppression of 5;-modes in order to be
explained,

b} Profile Consistency and Coupled-Mode Transport

A substantial body of experimental evidence has been accumulated, since the “principle of
. profile consistency” [11} was proposed more than 10 years ago, on the fact that the experimen-
tally observed temperature profiles correspond to an effective thermal conductivity x.rs that is a
monotonically increasing function of the plasma radius. Typically k.s; enters an equation of the

form
id dT

S=-ti %)
where S is the energy deposition function and T'(r) is the temperature. The observed typical
dependence of k.;; on r is forced by the fact that the observed electron temperature profiles fall
within a rather specific class.

We deduce, from this, the conclusion that no single mode, among those that are presently
known can produce the observed typical form of x.;;. We consider, for instance, the diffusion
coefficient [10] that has been associated with the excitation of drift modes

Dy ~ Lo
eBr,rp
where 4 is the mode longitudinal wavelength and r,, is the pressure gradient scale distance. The
profile of k4 = nDy is definitely not of the type that can match the observations. The second
conclusion we draw is that the spatial coupling of the effect of two kinds of modes can produce
the desired form of x.r;. The considered situation may, in fact, be compared to having two
electrical conductors in series. The first kind of mode is exciteu within the main body of the
plasma column and the second kind is excited at the edge. A specific example that is proposed
as realistic for current experiments is the trapped electron mode, so called ubiquitous [12], that
is driven primarily by the electron pressure gradient in combination with the collisional impurity
density gradient driven mode at the edge of the plasma column [13]. Thus a diffusion coefficient



is derived and shown to reproduce the observed temperature profiles, to imply a scaling of the
energy confinement time consistent with scalings inferred from the available experiments, and to
account for the so-called isotopic effect [13]. A model for the nonlinear interaction of modes that
are localized in different regions of the plasma column is being analysed in collaboration with P.
Kaw,

‘¢) Related Energy and Current Density Transport

The redistribution of the current density in a high temperature plasma is usually described in
terms of the magnetic field “diffusion” associated with the collisional resistivity, as it is generally
concluded that the order of magnitude of the time scales involved in the current density redistri-
bution are consistent with the collisional resistive times. Yet there are indications that it should
not be sufficient to relate the applied electric field Ey to J through the collisional resistivity g
only, in order that the appropriate current density profiles be reproduced. In particular in regimes
where a significant fraction of the electron population is trapped and the collisional resistivity is
given by the so-called “neoclassical” expression, the resulting current density profile is “strange”
if the electron temperature radial profile is close to a Gaussian.

To deal with this problem we assume that in ohmic regimes, where the applied electric field
drives the current and at the same time heats the plasma, the transport of the electron thermal
energy and the redistribution of the current density are strongly coupled. We consider a matrix’
equation that describes the transport-for both quantities under steady state conditions, we pos-
tulate symmetry properties of the elements of this matrix and use them to define two transport
coefficients: an effective thermal conductivity and a thermal-viscous coefficient [14].

The requirement that the adopted transport coefficients comply with the principle of profile
consistency and generate acceptable profiles both for the electron temperature and the current
density is used together with the predicted [11] experimental observation that the loop voltage falls
within a relatively small range of values for the most disparate types of ochmic experiments. An
integro-differential equation is derived from the matrix transport equation and the resulting steady
state electron temperature and current density profiles are obtained {rom appropriate numerical
solutions. These show that the thermal-viscous coefficient leads to a broadening of the current
density profile and to an increase of the central electron temperature, while the temperature profile
remains largely unchanged [15].

We propose that the degradation that occurs in the presence of injected heating is associated
with the decoupling between the thermal energy transport and the current energy transport when
the electric field is no longer the source for both. In this case we argue that the contribution to
the electron thermal energy diffusion coefficient by collective modes that do not depend directly on

the current density distribution (such as those [13] mentioned in part b) of this section) becomes
prevalent.
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SELF-ORGANIZING PROCESSES IN MAGNETICALLY CONFINED
PLASMA

T. SATO, R. HORIUCHI, K. WATANABE, T. HAYASHI
and K. KUSANOQ®

National Institute for Fusion Science
*)Faculty of Science, Hiroshima University .

Fig. 1 shows three snapshots of a self-organizing magnetohydrodynamic plasma, *.
We take a cylinder with rectangular cross section in which a magnetized plasma is filled.
We assume periodicity along the axis (z) and that plasma is confined by a perfect con-
ductor with a toroidal system in mind. The initial condition is a force-free equilibrium.
Neither plasma flow nor pressure exists in the initial state. Furthermore, we make an im-
portant assumption that ohmically heated plasma is instantaneously cooled by radiation
loss. This is equivalent to assuming that entropy produced during the dynamical process
is thrown away from the system. We neglect the role of the plasma pressure.

The initial force-free equilibrium includes free magnetic energy because plasma itself
carries currents. In the present case, the free magnetic energy is sufficiently large that
an ideal current-driven (helical kink) instability arises. Accordingly, plasma (magnetic
field configuration) is deformed. Because of resistivity, whatever small it is, magnetic
reconnection is driven at places where antiparallel field condition is realized. At recon-
nection points where antiparallel field condition is satisfied currents are largely enhanced
because of poJ = VxB. Therefore, free magnetic energy is strongly dissipated there
due to enhanced ohmic dissipation #nJ?2. Simultaneously reconnection changes magnetic
topology. If there exists a minimum energy magnetic field configuration other than the
vacuum field configuration, it is expected that the system realizes a new ordered magnetic
field configuration with the minimum energy.

Fig. 1 depicts a trace of a constant axial (toroidal) magnetic field intensity. The
upper panel shows the initial equilibrium configuration, the second an intermediate con-
figuration where the initial magnetic structure is torn in peaces at converging points of
plasma flows by reconnection driven by an ideal helical kink instability. The bottom panel
shows a clear helical structure which is established after disordered magnetic energy is
dissipated by ohmic heating which in turn is thrown away from the system by radiation
loss. Summing up, we can say that a simple ordered structure (a helical structure in
this case) is created from a once disordered structure (middle panel) when the entropy
produced during the process is swept out from the system.

The above example suggests that the magnetohydrodynamic self-organization re-
quires :

1) Existence of a sufficient free (magnetic) energy that can drive a current-driven (helical
kink) instability. _

2) Plasma flows induced by the current-driven instability drive reconnection at their con-
verging points whereby magnetic topblogy is changed.

3) Disordered magnetic energy (entropy) is swiftly removed. Actually, disordered mag-
netic energy is transferred into thermal energy through ohmic heating enhanced by driven

_8__



reconnection which, in turn, is removed from the system by radiation. This process takes
place in the magnetohydrodynamic time scale rather than the resistive time scale.

Fig. 2 shows the time evolutions of the magnetic energy W and the magnetic helicity
K. Note that the initial state at this example is different from that of Fig. 1. As one
sees in this figure, the helicity decreases slowly and smoothly, while the energy exhibits a
stepwise decrease.

Incidentally, the evolutions of W and K are given by

ow
K

where 7 is the resistivity. These equations indicate that, generally speaking, both W and
K decrease with the time scale of ohmic dissipation.

The fact that W and K behave very differently during the self-organization process
must tell us some important physical law underlying the process. It is natural to infer
that the driven reconnection process must hold the key. The simulation result indicates
that the magnetic field completely vanishes at the reconnection point.

Recalling Eqs. (1) and (2) we find a beautiful dispensation of Nature that the cur-
rent driven instability deforms the magnetic field and generates a completely antiparallel
magnetic field configuration where W is drastically decreased but X is not influenced
(complete reconnection) as if the system knew its destination and the shortest path. The
topology of the magnetic field thereby is globally changed.

In conclusion, the magnetohydrodynamic self-organization is governed by the non-
linearly driven reconnection whereby the magnetic helicity is conserved but the magnetic
energy is stepwise decreased. This reminds us the mystery and dispensation of Nature.

In this regard we shall examine the time evolutions of the average wavenumber of
the magnetic energy and the magnetic helicity. This is shown in Fig. 3 for the same
example as that of Fig. 2. It is interesting to observe that the energy spectrum cascades
normally, while the helicity spectrum cascades ihversely. Higher mode spectrum of the
energy as a matter of fact swiftly disappears, resultantly, the (magnetic) entropy in the
system decreases to create a new ordered structure which has a simpler helical structure.

In the case of tokamak, on the other hand, there is a strong toroidal (potential)
field which is supplied from an external coil current and a relatively peak current flows
in the toroidal direction which produce a relatively weak poloidal field convertible to ki-
netic and thermal energies. Even though current driven instabilities occur by releasing
the free (small) poloidal magnetic energy, the released (flow) energy is not sufficiently
large that the massive toroidal field is folded to make a completely antiparalle] field con-
figuration. This indicates that the magnetic field would never vanish at a reconnection
point, in other words, only the poloidal field components can experience reconnection (in-
complete or partial reconnection). Therefore, J-B would be enhanced at a reconnection
point rather than being minimized, thus the helicity could not be conserved. This is the
reason why the tokamak configuration cannot be obtained by Taylor’s theory® assuming
the helicity conservation. The sawtooth oscillations in tokamaks, therefore, should be a
partial self-organization process which exhibits a slight topological change due to partial

_9_



reconnection.

Since resistivity is intrinsic to the reconnection process, it is conceivable that self-
organization should take place in the time scale dependent strongly on the resistive time
scale tp. As we will see in Figs. 2 and 3, however, the actual evolution time scale of
the self-organization is much smaller than, and rather independent of, the resistive time
scale. The time scale is of the order of a few tens of the Alfven transit time, ¢4, where
the Reynolds number R ={g/t,. _

The magic of this fact time scale can be well explained in terms of a driven type
reconnection®. A physical difference between the spontaneous reconnection and driven
reconnection is depicted in Fig. 4. As we can see in the upper part of this figure, in a
spontaneous reconnection process antiparallel field components must exist initially where
the current is locally peaked. Subject to a finite resistivity, the current peak tends to be
flattened. The time scale of this flattening is naturally governed by the resistive diffusion
because the resistivity is the direct cause of reconnection. In a tearing mode instability,
feedback flows leading to enhancement of the neutral point current exist, thereby, the
current flattening is enhanced. Nevertheless, the process is still largely dependent on the
resistivity because the flows are the effect of the resistivity induced reconnection.

On the other hand, in the case of driven reconnection which is depicted in the lower
part the current peaking is locally created at a converging point of the plasma flows driven
externally or induced internally by an ideal MHD instability, notably, a current-driven
helical kink instability. In this case the time scale of current peaking is determined by
the strength of the flow amplitude. Therefore, the flows are the cause of reconnection and
the dissipation is determined by J? rather than n. This indicates that the time scale of
the self-organization is governed by the MHD (i.e., MHD flows) time scale®.

When the magnetic free energy is sufficient, the current driven instability deforms the
magnetic field so largely that completely antiparallel field points are created somewhere
inside the system whereby the magnetic topology is globally changed and a minimum
energy topology of magnetic field is realized. It is noted that the magnetic helicity is
conserved during this proccess, while the magnetic energy is drastically decreased. The
reversed field pinch (RFP) relaxation is a typical example of this type 2.

When the free energy is not so large, only partially antiparallel field configuration
is formed where only partial reconnection occurs. Partial reconnection can not globally
change the magnetic topology. The magnetic helicity is not conserved in this case be-

cause J-B # 0 at the reconnection point. A typical example of the latter is the tokamak
sawtooth relaxation®.

1. R. Horiuchi and T. Sato, Phys. Fluids, 29, 4174, 1986.

2. K. Kusano and T. Sato, Nucl. Fusion, 27, 821, 1987.

3. J. B. Taylor, Phys. Rev. Lett., 33, 1139, 1974.

4. T. Sato, R. Horiuchi and K. Kusano, Phys. Fluids, B1, 255, 1989.
)

. T. Sato, Y. Nakayama, T. Hayashi, K. Watanabe and R. Horiuchi, Phys. Rev. Lett.,
63, 525, 1989.
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Current Sheet Formation and Rapid Reconnection

in the Solar Corona

A. Bhattacharjee and Xiaogang Wang
Department of Applied P hysics
Cofumbia University
New York, New York 10027

It is shown that a current sheet is formed in Parker's model of the solar corona
(Parker 1972) from the requirement that magnetc helicity is conserved in the presence of a
very small but finite plasma resistivity. The presence of dissipation permits slippagc of
field-lines with respect 1o the plasma, and makes Van Ballegooijen's theorem (1985)
inapp]_icablc.- A current sheet can thus be formed in the presence of smooth photospheric
flows. The structure of the current sheet encompasses a thin strip spanning two Y-points.
It is shown that the rapid reconnection involved in the formation of the current sheet
justfies the use of helicity conservation. Implications for coronal heating and numerical |

simulations of the corona are discussed.



Log-Stable Distribution of Energy Dissipation in Turbulence

Shigeo KIDA
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

The statistical properties of small-scale motion of turbulence, especially the low-order
moments such as the energy spectrum function, are well described by the Kolmogorov
similarity theory. But the higher-order statistics of the derivatives of velocity increasingly
deviate from the Kolmogorov prediction. Since the intermittent property of velocity field
had been recognized experimentally, lots of intermittency theories have been proposed-by
incorporating the intermittent structure of flow field, especially of the fluctuations of the
energy dissipation rate field. They describe the intermittency effects qualitatively, but the
l quantitative agreement i3 still controversial. Here, we propose a new intermittency theory
and compare the results with experiments.

Consider the fluctuations of the energy dissipation rate field

v [Oui  Buj\?
o(z) = 5‘;_:1_ (-é;; + 55) . (1)
We introduce a spatial average of ¢(x) as
e@)=w [ ea)de, @
Ve ()
where V,.(2) is the volume of a sbhere of radius r centered at z, and introduce the logarithm

of the breakdown coefficient €, /¢; (r < 1)

: (@)’ | (3)
where the positions  and @' are assumed to be close to each other in the sense that|z —
z'| <2(1—7r).

Now we make an assumption that (i) Pa(a|7), the probability aemity function (pdf)

of @, 4, is a function of ratio T and is independent of positions @ and z', (ii) the pdfs of a, ,

_1'3_



and a,,1 (r < p < [) are independent of each other, (iii) the form of P,(a|}) is the same if
variable a is appropriately shifted and scaled by a linear transformation as a — (a —~ d)/c,
where ¢ (> 0) and d are functions of ¥, and (iv) {(eP?), ;, the p-th order moment of e®r

exists for any p > 0.f Then, the pdf of a,; is uniquely given by a special case of the Lévy

stable distributions, the characteristic function of which is written as
. R eiw[2 @
pa (213) = (§) =TT ()

where —7 < arg(z) < 0. This distribution has two free parameters, i.e., the intermittency
parameter g (> 0) and the characteristic exponent of the distribution a (0 < a < 2).
Using eq. (4), we can show that the asymptotes of P, (a|}) for large values of |a| for

l1<a<2is
|a|~(e+D) as @ — —oo,

Pu (alf) ~ { -

exp [-—Aa“/(a_l)] as a — o,
where
' a-—1

A= — : (6)
1/(a=1)
ae/(a=1) (2—L¢._2 1n§-)

The p-th order moment of ¢(x) is calculated as follows. Using egs. (3) and (4), we

obtain
| ((£) )= @n=wa(int = (T, ™

If we put I = L, the integral scale of turbulence, and neglect fluctuations of ¢;(x), then

eq. {7) becomes

e? r\—#(p—p")/(2*~2)
(€;p>=(f)”pp/ :(

), (8)

where p, is the scaling exponent of the p-th order moment of &(x). Then we find

o

pPr—p
e _ 9

fp = for 0<a<2 (9)

It may be interesting to note the asymptotic form of the pdf of €. at small and large

values of ¢,. We can show, using asymptotes (5), that for 1 < a < 2,

. (ogp) - T SR (100
cATH exp [—A(lne,)*/ (¢ D] as e, — co. (10b)

T The moment (eP?),; for negative p does not exist.



Asymptote (10a) implies that the pdf diverges nearly inversely proportionally to e, at the
origin. Therefore, the moment of ¢, of any negative power does not exist. Asymptotic
expression (10b) at large €, shows that the pdf decreases faster than any power decay.
The present results (9) of the scaling exponents of the energy dissipation rate may
be compared with experiments. Since, however, ¢(z) is difficult to measure in laboratory
experiments, we compare here our results with experimental measurements of scaling ex-
ponents of Avy, the velocity difference at two points separated by r. If {(Av,)"), the p-th

order moment of Av,, has a power dependence on r,
((Ave)) ~ 1, (11) -
then we find, using (8), (9) and relation
Avy ~ e 573, | (12)

that

2\*_p
=28 =% | (19)

Exponents ¢, were measured by Anselmet et al. (1984) up to p = 18 in a jet turbulence

at R, = 852. We com- 5 a=004
_ 0.8
pare our results (13) with L2
their data by the least- 4 - X
& 1.6
squares method to obtain
the best fit with i = 0.20 3 .
C Log-normal
and a = 1.65. In Fig. 1, P
we plot the variation of 2
exponent (, against p for
. 1+
various values of a and
for p = 0.2 together with
# & S T A R A AR
the experimental values. 0 5 10 15
For a = 2, exponent (13) P
reduces to the prediction Fig. 1. Scaling exponents (, of velocity differences.



of the log-normal theory,
while it coincides with that
of the 8-model in the limit
a — 0. The experimen-
tal data are distributed

between these two extremes.

Probability density

They are very close to our
theory with o = 1.6 over

2 < p<18.

Another independent In{8u/dz|

comparison is made in Fig. - |

Fig. 2. The probability density function for In|du/dz|.
2, where we plot, with :
bar graph, the pdf of the logarithm of absolute value of the derivative of velocity in a
turbulent boundary layer measured by Stewart et al. (1970). The solid and broken curves
are the log-stable distribution (with ¢ = 0.2 and & = 1.65) and the log-normal distribution,
respectively. Both of these theoretical distributions are shifted and scaled appropriately so
that they are best fitted to the measured probability density by the least squares method.
It is well known that the pdf of In |0u/0x| is asymmetric with respect to the mean value;
it has a longer tail for very small values of In |8u/8z| than for very large values so that the
skewness is negative. Therefore the log-nofmal distribution, which is symmetrié, inevitably
understimates (overestimates) it for small (large) values of In |du/dz|. It is seen that the
observed distribution is in excellent agreement with the log-stable distribution over the
whole range shown in the figure. Remember that this agreement is achieved by using the
values of parameters 4 and o determined by comparing with an independent experiment.
This suggests the possibility that these parameters may be universal independent of the

kinds of turbulence. A theoretical determination of them is however left for a future study.

References
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Statistical Properties of Two-dimensional
Magnetohydrodynamic Turbulence

D. Biskamp and H. Welter
Max-Planck-Institut fiir Plasmaphysik
8046 Garching bei Minchen, Germany

After a brief introduction to the basic properties of MHD turbulence the
statistical properties are discussed more in particular as obtained by eval-
uating a number of numerical turbulence simulation computations. First
the probability distributions (PD}) of various dynamical quantities are pre-
sented. For the field differences 64(r,7) (=v(f+7t+7)—V(Z,1)),
65(1",1') the PDs are Gaussian at large seba.rations 7 or T, while they be-
come approximately exponential for 7,7 —+ 0. This behavior is very similar
to that observed for Navier-Stokes turbulence and appears to depend only
on the quadratic nonlinearity, as is shown by a simple probabilistic ar-
gument. The PD of the local energy dissipation rate €(Z,t) is consistent
with a log-normal distribution at larger e but exhibits a different behavior
at small €. In order to discuss intermittency the f-model developed for
hydrodynamic turbulence is adapted to MHD. Comparison of simulation
results of energy spectra with the f-model predictions shows intermittency
corrections to be small, regarding both the spectral index of the inertial
range and the dissipative scale. Fourth order correlations seem to exhibit a
stronger intermittency effect, in particular a Reynolds number dependence
of the flatness factor F Rin. Arguments are given that this behavior is,
however, not yet characteristic of the asymptotic regime Ry — oo, where a
constant value of F'is expected. (A similar conclusion was recently reached
by R. Kraichnan.) As a result'intermittency appears to be a weaker effect

than presently assumed.



Turbulent dynamo and subgrid-scale modeling

of MHD turbulence

Akira Yeshizavwva
Institute of Industrial Science
University of Tokyo

7-22-1, Roppongi, Minato-ku, Tokyo 106

A bulk turbulent dynamo model is presented for
understanding of the effects of MHD fluctuations.
This model can explain some interestiné properties
‘'of the steady state of HHD.tufbulence that are
related to RFP and Earth’s magnetic fields. A
subgrid-scale model is also derived as a numerical
approach for investigating the intermittent proper-
ties in these phenomena that are beyond the reach of

the bulk dynamo model.

1 . Effects of MHD fluctuations

The magnetic induction equation and the Navier-
Stokes equation for 2 viscous, incompressible elect-
rically conducting fluid are given by

dB/dt = VX (uxB - 23j§), V-B=0, (1)

i = VxB = (1/72)}(E + ux B), (2)

du/dt + V-(uu - BB) + 2Q X u

= - Vpu t v Au, V-u = 0. (3)

Here B is the magnetic field, u is the velocity, j

is the electric current, E is the electric field,



pxw (= p + B%/2; p is the pressure) is the MHD
pressure, A 1s the magnetic diffusivity (resisti-
vity), ¥ is the kinematic viscosity, aﬂd Q is the
angular velocity of the rotating systenm. The
Coriolis effect related to Q 1s very important in
Earth’s magnetic dynamo,.

VYe divide f into the ensemble-mean part or the
filtered part f and the deviation f’; namely,

f =T+ £, f=<Ef> or fG(x-y)f(y)ldy (4)
[G(x) is the filter function]. The ensemble-mean or

filtered equations of (1)-(3) zare

9B/at=VXx(uxXB + Er -23), V-B=0, (5)

j = VxXxB=(1/2)(E + uXxB + Ex), (6)
du/9t + V-(uu - BB) + 20 Xu
= - Vopu ¥+ VR + » Au, V +u = 0. (7)

Here Er and R are the so-called turbulent electro-
mnotive force and thg Reynolds stress, respectively,

vhich are defined by

Ex = uw’ X B’ + Epe, (8)
R = - (u’u’” - B’B’) + Roe, (9)

where the subscript DF means the double filtering

effect, which will be neglected 1n this wvork.

O . Bulk dynamo model
In the bulk modeling based on the ensemble-mean
quantities, we first express Er etc. as?

Er = aB - B3 + v (Q + o/2), (10)

uitﬁ the aid of the results from a twvo-scale DIA?Z



[Q {= V Xu) is the vorticity). The first two terms
are very familiar as the alpha and beta effects,
r;spectively.

In order to express a etc., ve introduce the
following one-point quantities;

K = (u'"2 + B’2)/2 (MHD turbulent energy),{1lla)

V = u B’ (cross heiicity), - (11b)
H = B*+3j" - u”+w ' (residual helicity), (1ll1lc)
e = v (Auy’ /70 x3)2% + L {(3B;7/73 )¢

{energy dissipation rate). (114d)

Using (11), @ etc. are modeled as

¢ = C,He /R, B = Csz/? s Tt (12)

In order to close the equations for E'and :, ve
similarly model the transport equatiomns for K, e ,V,
and H, This system of equations is called the four-
equation model in the terminology of fluid turbu-
lence.

The bulk dyramo model is very useful in
discussing about the steady global properties of
phenomena, for instance, the validity of the concept
lof the helicity injection by the so-called F-@

pumping.®-*

I . SGS modeling
A major motivation of the SGS modeling is that
the kinematic viscosity + of plasma cannot be

estimated experimentally, but that its magnitude has

much influence on the level of MHD fluctuations.?®



In the SGS modeling, the original » 1is replacéd by
the turbulent viscosity =+ t, which is much larger
than » . Therefore the above difficulty can be
avoided.

The policy of the SGS modeling is to construct
a model as simple as possible and make full use of a
large couputef. At this time, the motion on.the
small energy-dissipative scale at high Reynol&s
numbers are estimated using the conservsétion pPro-
perties of the KHD energy, cross helicity, etc. For
instance, let us consider the equation for K that

dK/dt + V- -(uk) = Px - & + V -Tg, (13)
where Pg (= Rysd us/ 3 x+ - Ez-j) is the production
rate and Tg is the transport rate. In the nearly
steady state, we have

J & dV = [ PxdV. (14)
We relax the condition to-assume the local balance:

£ = Px. ) (15)
From (15), we can estimate » y, B , etc. in the ‘

functional form of VE and YV u.*®
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Hybrid Fluid/Kinetic Descriptions of Tokamak Plasmas*

].D. Callen, Z. Chang, ].B. Hollenberg, ].P. Wang
University of Wisconsin, Madison, WI 53706-1687 USA

Introduction. Collisional fluid moment descriptions
(resistive/neoclassical MHD, Braginskii equations [1], etc.) have provided many
useful theoretical models of the macroscopic behavior {2], microscopic fluidlike
instabilities, and equilibrium transport properties [3, 4] of tokamak plasmas.
- Such descriptions are considered useful because the distribution functions in
tokamaks are experimentally measured to be nearly Maxwellian with small
(< 10-2) flow, etc. distortions, and because they embody the simplest
representations of the (nonlinear) conservation of density, momentum and
energy in tokamaks. However, the usual fluid moment descriptions neglect
many important kinetic effects -- magnetic particle trapping, Landau damping,
finite Larmor radius (FLR) effects, etc. At the other extreme, at least the simplest
“collisionless” kinetic treatments of plasma instabilities (drift waves, trapped-
particle instabilities, etc.) often do not include many important semi-collisional
and nonlinear fluid effects -- momentum-conserving collisional friction between
species, poloidal flow damping, bootstrap current, lack of transport for E +V x
B =0 perturbations, magnetic island structures, etc. In order to bridge this gap
and to provide a comprehensive nonlinear theory of tokamak plasmas that
includes both types of effects, we have developed [5] an exact Chapman-Enskog-
like approach for determining the "small" kinetic distortions of species
distribution functions that are needed to calculate the fluid moment closure

relations -- primarily the stress tensors I1, ©. A first step in the hybrid
fluid /kinetic direction was the development of neoclassical MHD {6], which
extended the reduced resistive MHD equations {7] from the collisional Pfirsch-
Schliiter regime into the long mean free path banana-plateau collisionality
regime. Below, we briefly discuss neoclassical MHD, our new Chapman-Enskog-
like approach, neoclassical MHD and linearized kinetic closure relations, the
determination of net transport in our hybrid fluid /kinetic approach, and provide
a brief summary of the status and future directions of this work.

Neoclassical MHD. The fundamental physical effect added to resistive
MHD to obtain the neoclassical MHD equations [6] is the viscous damping of
poloidal flows in tokamak plasmas. Mathematically, the parallel viscous force
B ¢V e []j is added to the parallel momentum balance equation. The addition of
the consequent "magnetic pumping" produces poloidal flow damping, an
enhanced polarization drift, the bootstrap current, and the electrical conductivity
diminution due to trapped particles. In the original neoclassical MHD work [6]
only the transport equilibrium (3/0t << v), flux-surface-averaged parallel viscous
force < B ¢ V ¢ I > was available -- from the neoclassical transport work by
Hirshman and Sigmar {4]. With our recent development of the Chapman-
Enskog-like approach we have been able to more directly derive {8] this viscous



force, and obtain its non-flux-surface-averaged form (see below). Further
extensions of the parallel (and other) viscous force terms are currently being
explored using our new Chapman-Enskog-like approach.

Chapman-Enskog-Like Approach. An Ansatz of a heat flow distorted
distribution function not far from a flow-shifted local "dynamic" Maxwellian and
fluid moment equations for n, T, V, q have been used (5] to recast the full kinetic
equation (with a complete linearized Fokker-Planck Coulomb collision operator)
into an equation for F -- the departure of the distribution function from its lowest
order Maxwellian with "dynamic" fluid moments n(x, t), T(x,t), V(x, t), q(x, t).
The needed closure relations are obtained by calculating the viscous stress tensor
11, and heat stress tensor © from solutions of the kinetic equation for F. Both the
test particle and field particle (or momentum, energy restoring [9]) parts of the
Coulomb collision operator are retained and shown to cancel various frictional
force and dissipation terms. A drift-kinetic limit of the dynamics has also been

developed_{S] and found to be of the form (for V ¢ V =0, q = 0 for simplicity here)

o<F>
ot

+ (vi+V) o V< E> - <Cr(<F>) > =

(m/T) (vi2-v12/2) (VeV nB) fiy+vybe VeIllfyy (1)

where the < > brackets indicate averages over a gyroperiod. This Chapman-

Enskog-like result clearly exhibits the fact that magnetic pumping (Ve V ¢n B)
drives the P; (vy / v) or stress distortions of the distribution function.

Neoclassical Viscous Force. The parallel viscous force obtained from an

equilibrium (3/9t << v) solution of Eq. (1) for an axisymmetric tokamak yields a
A

parallel viscous force of the form B ¢ Ve 1 = mnyu Ug<B2> fT(8) where p is the

viscous damping coefficient (~ ‘\/ € v in the banana collisionality regime), and
Ug¥) =V o V6 / B s V8 is the poloidal flow flux function. The spatial shape
factor fr (8) is approximately 2 sin2 in the Pfirsch-Schliiter and plateau {10)
collisionality regimes where B ¢« Vo I]_~ (B o V B)2. However, in the banana

collisionality regime where the dominant physical effect is the viscous drag on
the untrapped particle parallel (poloidal) flow, which is caused by the trapped

particles, the shape factor P (0), albeit quite complicated, is fairly close in shape
to the fractional trapped-particle density distribution n7(8 ) / no =

[e(l + cos 0) ]1/ 2. This extension to a non-flux-surface averaged parallel viscous

force should be quite useful in numerical simulations of neoclassical MHD
instabilities, turbulence and transport [11].

Linearized Kinetic Closures In A Sheared Slab. The general Chapman-
Enskog procedure has also been used to develop closure relations for linearized
drift-type microinstability problems. Neglecting the heat flux evolution




equation, an appropriate linearized drift kinetic equation has been solved [12] in
a sheared slab geometry for Lorentz-type collision model that includes
momentum and heat restoring terms. The linearized closure relations that are
obtained include full Landau damping and collisional effects, and reduce to the
linearized Braginskii equations with all coefficients accurate to within a factor of
two in the fluid, collisional limit. In the collisionless limit they reduce to the
usual drift-kinetic Landau damping results. Our results show that Landau
damping comes into the fluid equations through both the perturbed viscous
stress and heat flux, instead of just the heat flux [13). Simplified linear and
nonlinear forms of these closure relations are presently being developed.

Development of Net Transport Equations. The flux-surface-average of our
extended fluid moment equations yield “radial” transport equations that include
classical, neoclassical and fluctuation-induced transport effects. It can be directly

shown from these equations that while perturbations with E+ V x B - (1/nq) Vp

= 0 cause no net transport (for Vn x VT = 0, those which include dissipative
effects due to plasma resistivity [14] and viscosity do. The net transport
equations reduce to the neoclassical transport equations [3, 4] in the equilibrium

(d/9t << v) limit where the fluctuation effects (fluidlike or kinetic) are negligible.
In particular, they include the neoclassical bootstrap current, poloidal flow
damping, irreducible minimum neoclassical ion heat conduction, and other
effects which do seem to be observed experimentally in tokamaks. Turbulent
fluctuations induce additional, anomalous transport through changes in the
{second order and nonlinear) anomalous friction and viscosity in tokamak
plasrnas.

Summary and Discussion. The work presented above represents a
beginning in the development of a comprehensive hybrid fluid/kinetic model for
describing tokamak plasmas. The rigorous Chapman-Enskog-like approach
which we have outlined has allowed us to add new effects (variation of parallel
viscous force within a flux surface, linear Landau damping) to the closure
relations. While we are constantly seeking to further expand the effects included
through analytic calculations, it will undoubtedly be necessary to calculate many
of the effects numerically. In fact, one can imagine a "grand challenge"” class
computational problem in which the kinetic equation for F is solved through
computer simulation (via particle pushing, gyrokinetics or other techniques).
Then, such results would be used to calculate the needed closure moments which
in turn would be utilized in a fluid moment code that advances time at a very
different rate. Alternatively, one could perform a DIA-type renormalization of a
Chapman-Enskog-like kinetic equation like Eq. (1) to obtain nonlinear closure
moments in the presence of strong turbulence effects. The Chapman-Enskog-like

approach outlined here provides a rigorous framework for such future
developments.
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The Theory of Turbulence and Anomalous
Transport in Plasmas: Past, Present, and Future

John A. Krommes
Princeton University, P.O. Box {51, Princeton, NJ 08543 U.S5.A.

1. INTRODUCTION

The purpose of this lecture is to briefly review the theory of plasma turbulence, describe some recent
developments, and comment on future directions. This is a daunting task, made even more difficult by
a very severe length constraint. Therefore the discussion cannot possibly be complete, nor can the logic
be unbroken. The reader is referred to the references for much more detailed discussion.

It is important to state at the outset what one expects from a “theory.” To many people, it may
suffice to determine a simple scaling law for a transport coefficient. Others will not be content until they
have understood, both qualitatively and quantitatively, the intimate details of the nonlinear dynamics,
both for an individual realization as well as on the average. In any event, it must be made clear that
once a fundamental primitive nonlinear amplitude equation, such as that of Hasegawa and Mima,!
has been specified, the remaining problem—of determining the associated transport, specira, elc.—is
essentially one of mathematics. A great deal of confusion results when one postulates behavior that,
however desirable or intuitive, contradicts the actual mathematical behavior of the given equation.

At the simplest level, one is interested in transport coefficients, here generically called D. The
theory of random walk leads to the form D ~ Az?/2At, where Az and At are characteristic correlation
lengths and times. TFor example, in drift-wave problems. Az ~ p, (where ps = ¢ /wei, ¢ = T /m,
and we = eB/mic) and At ~ w' [where wa{k,) = k,Va and V4 = ¢;p5/Ln]. Then D ~ plux ~
(ps/Ln)(cTe/eB) = Dg for kips = O(1). This scaling is called “gyro-reduced Bohm.” Such useful
results do not require elaborate theories; they are simple dimensional consequences of the primitive
equations.

On the other hand, the dimensional arguments are by no means complete, More precisely, the
diffusion coefficient for a drift-wave problem might be written in the form D = C f(y/ws) Do, where C is
a numerical coefficient, v is a characterisic linear growth rate, ws is evaluated at some characteristic
wavenumber, and f is an undetermined function. Detailed theories are needed to determine C and f,
as well as more subtle details such as the fluctuation spectrum as a function of k and w. Note, however,
that all analytic theories will determine some numerical coefficient C. It is useless, then, to perform
long analytic calculations based on unjustifiable algorithms, however tractable, A proper theory of
turbulence is difficult and subtle; rapid progess must not be expected. However, in this work I report
some encouraging advances.

The theory of plasma turbulence has many facets. Historically there were quasilinear theory®3
(QLT), weak turbulence theory® (WTT), resonance-broadening theory*~% (RBT), and clump theory”8
(CT), for example. Later, the importance of the direct-interaction approximation®-13 (DIA) and related
theories was recognized. Each of these can be classified as a statistical closure. Recently, an alternative
procedure has been explored: the theory of rigerous bounds on transport.'*3 Although it is possible to
describe detailed logical connections between all of these, I cannot do so here because of limited space.
Therefore, in Sec. 2 1 shall merely comment briefly on RBT, CT, and the DIA. In Sec. 3 I describe
state-of-the-art research on realizable Markovian statistical closures. In Sec. 4 I introduce the theory of
rigorous bounds. Finally, in Sec. 5 I very briefly discuss trends for the future.

2. HISTORICAL PERSPECTIVE

In general, we shall be interested in nonlinear equations of the schematic form 6,¢+E¢+%U¢¢ =1
Here £ is a linear operator, U is a coupling coeflicient (an operator), and 7 will later be set to 0. In plasma
physics, Dupree was the first to go beyond QLT and WT'T and to address regimes of strong turbulence,
where perturbation theory is inappropriate. His RBT*~6 provided a simple algorithm to determine trans-
port in steady states. To place that theory in perspective, we introduce two of the fundamental objects
in the theory of statistical dynamics!®!3: the correlation function C(z,t,z',t") = (6(=, 1) by(=’,1"))
and the infinitesimal response function R(=z,t;x’,¢') = (61,b(3:,t)/6?)(:c’,t’))|;20. Here 8t = o — (),
{...) denotes an ensemble average, and §/5% denotes a functional derivative. Assume that the turbulence
15 statistically steady. Then C describes the intensity and correlalion properties of finite-size fluctua-
tions in the steady state, whereas Jt describes the relaxation of infinitesimal fluctuations away from the
steady state.



2.1 Resonance-broadening theory

For definiteness, consider the simple drift-kinetic equation 9, f + VgV f = 0. (I temporarily ignore
linear terms for simplicity.) The associated unaveraged response function R obeys 8,R + Vg-VR +

{(6V5/6f)§] -V f = §(x—z')6(t—t'). The term in §Vg/éf describes an important effect due to self-

consistency, which Dupree ignored—essentially, he considered the problem of passive advection. Still
following Dupree, now make the strong assumption that Vg = V is spatially uniform. Then upon
Fourier-transforming one finds for the passive problem 8 Ri + ik-V(1)Ry = 6(t—t’). This so-called
stochastic oscillator equation!” can be solved exactly*®13; if one furthermore assumes that V' is Gaus-
sian, then on the average Re(7) = H(r)exp(—k2 D7) for time difference 7 = ¢ — ¢’ bigger than the
autocorrelation time ¢ of the velocity fluctuations. Here D = [*dr (6V.(7) 6V2(0)) and H is the Heav-
iside function. The diffusion effect induces a resonance-broadening due to random Doppler shifts, as is
evident upon Fourier-transforming: if £ = k% D, then Ry, = 1/[—i(w + iL})], Re R, = T/(w* + £7).
Dupree noticed that these forms can be derived from linear theory by replacing w — w + ik D. Then,
in an unjustifiable leap of logic, he suggested that the true, nonlinear dielectric function D of the plasma
could be simply obtained from the linear dielectric D(9) according to D(k,w) = DO (k,w +ik2 D). If the

linear dispersion relation DO (k, w) = 0 leads to wy = wﬁ? +i7{?, then D(k,w) = 0 leads to wx = wstk)

and 7 = ‘n(:)—kiD; this then suggests the saturation criterion v = 0, 0or D = 'yf.t)/ki. Here & must be
interpreted as some characteristic wavenumber k. Apparently, this algorithm immediately determines
a diffusion coefficient!

However, although this result is dimensionally correct, it is impossible to justify the logic in detail.
There are many points of concern: (1) Many diffusion coefficients characterize the turbulence; the
RBT D may or may not be the particle diffusion coefficient. (2} It is unclear which &k to use in the
saturation criterion. Typically this is taken to be the most unstable linear mode, but that may not be
where most of the energy resides nonlinearly. Furthermore, if the algorithm were taken literally, only one
(marginal) mode would remain at saturation; that is not a turbulent state. {3) One began with a passive
problem, but ended with a saturation level criterion for the velocity fluctuations. (4) The assumption
of spatial uniformity of the advecting field is suspect. If the problem is intended to model aspects of
self-consistent turbulence and if k is an energy-containing wavenumber, then the wavenumbers & of other
energy-containing fluctuations satisfy k ~ £, not £ < k. (5) As a consequence of the last point, the
theory does not conserve important invariants such as the energy. (6) The nonlinear dispersion relation
leads to a line spectrum: D(k,w)dpr.w = 0 — Spp . o §(w—w ). (The paradox is resolved by noting
that R describes relaxation of instantaneous fluctuations sway from steady state, whereas gy, is a
property of the steady state.) (7) Most importantly, there is no nonlinear emission term in the theory.
The RBT is concerned with the behavior of the response function R, which describes nonlinear damping
or absorption. However, in addition nonlinear forcing or emission must be present in order to support
a steady state with many fluctuating modes.

2.2 Clump theory

RBT is a primitive theory of the nonlinear dielectric. Following Dupree,® [ shall call the fluctuations
associated with dieleciric response(®) the coherent fluctuations §f(<°") and everything else the incoherent
fluctuations 6f(1<), Then exactly §f = §f(ceh) 4 §#inc) Dupree further wroted §f(inc) = gf(me) o ge(eh
neglected without explanation the mode-coupling contribution §f(™<), and proposed the so-called clump
algorithm to describe the effects of localized fluctuations §f(°Y on saturated turbulence. This algorithm
has been analyzed extensively,?®!® and fundamental logical flaws have been uncovered. The difficulty!®
is that mode-coupling effects are everywhere. Far from being ignorable, they contribute to both &f(<"
and §f(<°h}, Dupree’s intuitive treatment is not in accord with the dynamics of the actual nonlincar
equation or with the conventional definition of the dielectric function. The algorithm, which begins by
computing the clump lifelime due to stochastic stretching, is a useful way of thinking about the very .
small scales®®; however, it cannot be used for describing the mode coupling and saturation of the large,
energy-containing scales. Transport coefficients are determined by the energy-containing -fluctuations.

{2) Detailed discussions of the nonlinear dielectric function are given in Refs. 18 and 13. The proper definition
of the coberent response is described in Refs. 13 and 19.



2.3 The direct-interaction approximation

In fact, Kraichnan had already by 1959 gone far beyond the scope of RBT and CT with his DIA %10
This theory has been studied and reviewed extensively!3; it is a reasonable starting point for discussions
of saturation and transport, and it embraces!! QLT, WTT, RBT, CT, and much more. The DIA
equations are

t t t!

6,Rk(t;t')+/ di Ze(t; D Re(T ) = 6(t 1), 6,Ck(t,t')+/ dek(t;f)Ck(t—,t’):/ di F(t, YRE(E 1),
v 0 0

where the “mass operator” T and the “nonlinear noise” F are defined by

Ti(t;t) = - Z My p oMy Ry (41)C(1, 1), Fe(tit) =3 Zij,p,qF Cy(t,1)CI (¢, t').

rna e

Nonlinear emission is described by F. (The operator RFRY is positive-definite.) The DIA takes into
account self-consistency in a reasonable way, conserves quadratic invariants, and leads to broadened
spectra.

A further, most important property of the DIA is that it is realizeble—it is the exact solution of
an actual statistical problem. This can be demonstrated in several ways; for our purposes the best is
to exhibit an underlying Langevin equation,?! namely &% + Lty + f;df'ﬂk(t'ﬂﬁ)k(ﬂ = fie(t), where
Felty =2 Zp ¢ Mxp, o&p (L)€ (). Here £ is an auxiliary Gaussian field whose covariance is constrained
to be that of 1 itself. The mere existence of the Langevin equation ensures that solutions of the DIA
are well-behaved. For example, it is guaranteed that C(x,t,z,t) > 0.

3. REALIZABLE MARKOVIAN CLOSURES

In genmeral, it is necessary to solve the DIA numerically.?? In plasma physics, the earliest work
was that of Krommes,?? who compared direct numerical solutions of a three-mode problem involving
a strange attractor with solutions of the DIA; he found excellent agreement for the saturation levels.
Unfortunately, the DIA exhibits an unfavorable scaling of computation time with the number of time
steps Nr: Since for each ¢ and ' a convolution over £ must be performed, the run time is O(N3). This is
necessary in order that details of the two-time fluctuation spectrum be computed accurately. However,
sometimes one is not interested in those details. For example, transport coefficients are given by one-
point correlation functions in time. One therefore attempts to develop Markevian clesures, which are
local in time.

In a Markovian closure, one asserts that I(¢;t') = p(t)6(t—t"), F(t,t}) « 6(t—t'). In a Langevin
sense, this means that one represents the random nonlinear stirring as a white noise process in time;
(fk(t—f—-r)fk(t)) o 6(7/Ok,p.q), Where © is the triad interaction time: O p g = [3dl Ri(t; ) Rp(t; D) Ro(t; £).

(We are still omitting the linear termis, so © is real.) One therefore proposes the Markovian Langevin

equation?! B¢x(t) + ne(Ode(t) = fe(t), where fe(t) = 7- Yoo g Mip.g [w(t)\/Ox pq) EX(1)EX(L) and
w(t) is a Gaussian white noise process of unit intensity. One finds that © evolves according to 8,0y p o +
[nk(t)+qp(t)+r]q(t)]@k p.g = 1; note that in steady state O ,, ,,(oo) (qk—i-n,,—i-nq)‘l If one now defines
Ik(t) Ck(2,t), then one finds by proceeding from the DIA that i () = — 5, . Mep M) OF Iq(t)I (4);

P q.k
one is finally led to the computationally tractable spectral evqut.lon equation O Ix(t) + ‘Zm(t V() =

opiq| M, ol” Re O p g (£) () Ig(1).

Unfortunately, severe difficulties emerge when one attempts to admit lincar waves or non-
Hermitean effects. In this case, one must replace n by i + n; © and 75 are now complex, so
Re @ may no longer make sense as a triad interaction time. As an example, consider the equation
dO/dt + An© = 1 for time-independent, complex An. The solution is O(t) = (1 — ¢ 2™)/An, so
ReO(t) = |An|"? {An, [1—e~27! cos(Amt)] + Ame~2M ! sin(Anit)}; this quantity can easily be neg-
ative! Because the random force is proportional to /@y , 4, realizability fails! Typically, this failure
manifests itself by an explosion of the spectral functions J(t) to —oo.

Recently, progtess has been made in the development of realizable Markovian closures that include
the effects of waves. The final form of any such theory is heavily constrained by the desiderata of
(1) realizability; (2} conservation of invariants; (3) covariance; (4) achieving a reasonable final state.
The method?? is, briefly, to modify the transient dynamics of ©(t). As an example, the equation
dO/di + (Re An)© = Re An/An does not exhibit an oscillatory approach to equilibrium, yet has the
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same final state as before. (This prescription, although quite simple, becomes quite involved when
multiple fields are considered. Also, the actual realizable closures under present consideration?? ate
mote involved; the details cannot be described here.) '

These ideas have been tested by careful comparisons between direct simulations and various closures
for a forced, dissipative Hasegawa-Mima equation. A realizable closure with wave eflects was found™?
to give excellent agreement with the simulations. The detailed results will be presented elsewhere.

4. RIGOROUS BOUNDS

Statistical closures attemnpt to compute the statistics as accurately as possible. However, since they
are approximations, little can be said a priori about the relation of the results to the true dvnamics.
(Realizability does not necessarily imply accuracy.) An intriguing alternative is to determine a rigor-
ous bound on the transport. By exploiting the rigorous steady-state balance equation for important
energy-like quantities, one can develop nonlinear variational principles whose eigenvalues are upper or
lower bounds on the true transport. Space precludes a detailed discussion here. However, the subject,
relatively new to plasma physics, has been described in detail in a number of recent publications,!415
to which I refer the reader.

5. DISCUSSION

In summary, there have been promising advances in (1) the theory of realizable Markovian closures
that include wave effects, and (2) the theory of rigorous bounds on transport. In addition, it is clear
that as computing power increases, the already important role of direct simulations will correspondingly
increase. However, [ must caution that simulation is useless unless the results are interpreted in the light
of detailed analytic theory. The theory of statistical dynamics provides the appropriate tools. In the
future, I believe simulation and analysis will become ever more intertwined, in ways that we possibly do
not presently anticipate. All of these areas pose fascinating, challenging problems for future research.
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Ion Temperature Gradient Turbulence and Coherent Structures

D.1Choi , B.G.Hong®), F.Romanelli®) and M.Ortavianib)
Korea Advanced Institute of Science and Technology

P.0.Box 150 Cheongryang, Seoul, Korea

To study the anomalous transport associated with the ion temperature gradient driven mode, we

investigate the effect of magnetic shear on the coherent structure of the toroidal ion temperature
gradient driven mode (1;-mode) wrbulence. Recent 2-D numerical simuiations!+? of the T);-mode

show that long-lived, large scale coherent structures exist and considerably affect the level of
magnitude of the anomalous transport. A significant reduction of the mrbulent heat flux with
respect to the quasilinear estimate and positive dependence on dissipations are indeed observed.

We address the question whether the nonlinear equations admit a coherent solution in the presence

of the magnetic shear.

The stationary solutions of the nonlinear equations describing the dynamics of T;-mode are
investigated and found to be a dipolar vortex in shearless case. This.is a simple generalization of
the dipolar vortex solution of the Hasegawa-Mima equation.

In the presence of the magnetic shear, we find a quified dipolar vortex solution through
perturbation theory. The circular boundary of shearless modon solution becomes an ellipse and the
number of free parameters reduce to one. This solution is self consistent as far as the radius of the
vortex is small compared with the position of the ion sound trning points. The vortex dynamics

will be as important as the turbulence represenied by the wave .compotients-in the study of the

anomalous ransport,
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Three-Dimensional Particle Simulation of Trapped Electron Instabilities in
Tokamaks

C.Z Cheng and H. Okuda
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

Abstract

Anomalous plasma transport due to dissipative trapped electron instabilities in
toroidal geometry is studied by means of three-dimensional particle simulations. The
electron dynamic is approximated with a guiding center drift-kinetic description, and the
full ion dynamic is retained. The electron-ion pitch angle scattering is simulated by a
Monte-Carlo collisional model. The collision frequency is chosen such that the bulk of the
plasma is in the banana and the plateau regimes corresponding to high temperature
tokamak experiments. Initially the particles have Maxwellian velocity distributions with
density and temperature nonuniformities. Within an electron-ion collision time the
electrons establish a neoclassical distribution, and a bootstrp current is formed consistent
with the neoclassical theory. In the linear stage of the dissipative trapped electron
instabilities, the growth rates and the radial and poloidal ballooning structures observed in
the simulation agree well with linear theory. In the nonlinear stage of the dissipative
trapped electron instabilities, the poloidal ballooning effect is reduced because of the
generation of strong plasma turbulence due to ExB nonlinearity. The resultant
wavenumber and frequency sprectra resemble the experimental observations. Particle and
temperature diffusion, which is relatively small in the linear stage of the dissipative
trapped electron instabilities, is enhanced rapidly in the nonlinear stage leading to the

stabilization of the system. The observed particle diffusion agrees well with the gyro-
reduced Bohm diffusion D = (p;/ Ly)(cTe/ eB). '



Edge Anomalous Transport in
Heliotron/Torsatron

M. Wakatani and K. Watanabe
Plasma Physics Laboratory,
Kyoto University
H. Sugama
National Institute for Fusion Science
M. Yagi
Japan Atomic Energy Research Institute

Abstract

Resistive interchange instabilities (or ¢ modes) destabilized by the pressure gradient
in the unfavorable magnetic curvature region are studied to explain the edge anomalous’
transport which increases in the radial direction. First reduced resistive MHD 1model is
applied to derive the transport coefficient. By extending this model several new effects
are investigated for comparison with the Heliotron E experiment: 1) radial electric field
effect on the g modes, 2) coupling between the ¢ mode and the resistive drift wave and 3)
coupling between the g mode and the 7; mode.

1. Transport driven by the g mode turbulence

Reduced MHD equations for stellarators are useful to study the g mode turbulence
and associated anomalous transport!~%). Since the edge plasma beta value is assumed
extremely low, magnetic fluctuations are negligible. For this situation E x B motion
due to fluctuating electric field becomes a dominant transport process and the diffusion
coefficient 3
(1 g =25, 2

4m 2 dr
is obtained by using the mixing length theory or the scale invariance principle. Here 1 is
resistivity, & = —rdlnn/dr, B, is poloidal beta and d/dr is averaged curvature due to
stellarator field. The numerical coefficient of the expression (1) can be determined by the
two-point renormalized theory® which gives about 4. Although DY increases toward the
edge of the plasma column, a numerical coefficient of the order of 10 is necessary to be
consistent with the experiment.

Other point is that the resistive MHD model assumes 90° degree phase difference
between the density fluctuation and the potential fluctuation. This seems different from
the fluctuation measurements in Heliotron E*). By using a generalized Ohm’s law we may



extend the electrostatic resistive MHD model to include the diamagnetic drift effect®,

(2) (%+ng¢.v)vi¢=%§Vﬁn—¢)+anVQ~2
a | . _
3) (E+ZXV¢-V)(n+n) A

“;i‘vﬁ(n—¢)+V(n—¢) x V-3,

" where edp/Te = ¢, Afng =R+ n,wat =1, &/p, = z, v/c, = v. These two-field model
equations for {n, ¢} will be discussed in §3.

2. Radial electric field effect on ¢ mode
Here we use the reduced MHD model in the electrostatic limit,

(@ (2+:x96:9)Vis=-22vis 1 vnxa ;
o .
(5) (§+zxv¢-v)n=o,

to study the radial electric field effect on the linear ¢ mode. In the (z, y, z) coordinates the
electrostatic potential is written as ¢ = ¢o(z) + tg(z, y, z) . In the sheared slab magnetic
field of B = By[(z/L.)y+ 2], V. =23/0z+§0/0y and V= §(z/L.)d/ By, where z = 0
is the mode resonant surface. The profile of ¢o(z) is given by to satisfy

(6) , ve(z) = £ x V¢ - § = votanh(z/Lg).

In the slab model V! = [dQ(z)/dz]Z, and two parameters k = —(dpo(z)/dz))/po(z)
and g = [dQ(z)/dt](Fy/po) are introduced in the linear stability analysis. The eigenvalue
equation is obtained by linearizing (4) and (5),

d? prau’ 1 £?

7 — — k? — -1
(0 d&? +£Z'—-O."u. (@—au)z EGJ-—au

Ot

=0,

where £ =z/A, A7 = [ngi/pggnnzc“f,j] ! VW =Wy, v, = [pggzrcznchfk:/Bg]U ,

k= kyAﬁ @& = kyUO/’Yg) B = A/LE) u = tan h‘(lu"f)) v = -—21!.(1 —u).

Here it should be noted that oy, and A correspond to the linear growth rate and the
characteristic mode width of g mode without the poloidal shear flow, respectively. Figure
1 shows the growth rate of the g mode modified by the.flow vg(z) as a function of & for
different 4 in the small k,A limit. The conditions, k,uy > v,Le/A and A < Lg, are
required for decreasing the growth rate. If we consider k, ~ 0.2{cm™!) and 7, == 10%sec™!,
a ~ 3 requires v, ~ 1.5 x 10%m/sec. At present vy 2 10%m/sec is not realized in the
Heliotron E.



3. Drift resistive interchange turbulence driven transport :
Linear stability analysis of the drift resistive interchange mode described by eqs.(2)
and (3) gives (141
_T @ Weldy 1/2 +1
®) “o 2 pse byl jwy — wa|'? ve V2
for wy = m/r(dQ/dr) < w. = —m/r{1/ng - dno/dr) in the sheared cylindrical plasma
model, where e = a/R,. The eigenvalue is valid in the semi-collisional regime. The
important parameter for egs.(2) and (3) are A = |w.Vi/v.|. When A > 1 or adiabatic
care, the Boltzmann relation #i ~ @ is realized and transport rate decreases. On the other

hand, for A < 1 or non-adiabatic case, deviation from the Boltzmann relation becomes
large and the growth rate given by (8) also increases. The left figure of Fig.2 shows the

poloidal mode number spectra of » |nm,,_|2 and Z |q‘),,m|2 for A €« 1 case, where m and

n are poloidal and toroidal mode namber; respecti’:.fely. It is clearly seen that the density
fluctuation spectrum has a larger m component than the potential fluctuation. This means
that the real space density fluctuation structure has a finer scale than that of the potential
fluctuation. The right figure of Fig.2 shows the poloidal mode number spectra for A > 1
case, which shows that A ~ ¢ is approximately valid. The both potential fluctuation
spectra in Fig.2 are similar. Thus the density fluctuation of A 3» 1 becomes smoother
than that of 4 < 1 and the resultant particle flux decreases.

Since v, increases radially for r/a 2 0.8 in the Heliotron E experiment, this result
may be consistent with the increase of D, in the radial direction. When the density
fluctuation spectra are observed in various positions, we can compare the above result
with experiment.

4. g mode coupled to n; mode

Here we show that the ¢ mode couples to the 7 mode driven by the ion pressure
gradient linearly in the presence of the unfavorable magnetic curvature. The n; mode
appears for 7 > ¢ in the regime of kiv3, > wre. The condition for the g mode is that the
electrons behave adiabatically in the regime of kﬁv%e < wv,. Hence the mode structure in
a collisional plasma in the sheared magnetic field with the unfavorable curvature will be
strongly affected by the mechanism driving the g mode near the resonant surface and the
7; mode in the finite k) regime around the resonant surface for n; = d¢nT;/dfnn, 2, 1. We
have derived the following four-filed equations including the coupling between the n; mode
and the ¢ mode®),

N,m;c

) 1
5. (aViq& + 51 Viqs]) -3

) =

v.l. : [Pis v.l.¢] =

B,_, T
——Vj (¢— z e) + [P. + nTe, 0]
cn €Ty
G, c |
(10) N, EU“; + Fﬂ[qﬁ, TJ”,'] = -—V”Pg - enovnr,b,
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N,

(11) (%n-{- -:g:[qb, n]) [¢— :::‘ ] = NV ||y = 17? (‘?5 255)1
0

[
(12) pric +.§o[¢, P}=0

where [f, g] = Vfx Vg% is a Poisson bracket. From egs.(9)-(12) the eigen-value equation

is written as

d? & A )~

_ 2 ir-1 _ =

(13) (d<+ i oreg)?
" @—1 T2 @TE @—1 TR —w
_ i Wg ) Tk _ R TR g
whereI‘ 22H( + = +w+K + == A 2Hw+K+ i o

and @ = W/, §= Ln/Ls, K= (1 + 17.-)/1', 7 ="Tef[Ti,w, = Ln 4d0Q/dr,

Tals| = 2w me fwnemi, G = TH(@ — wy) f@.

Figure 4 shows the growth rate of the mode with a radial mode number of £ = 0 as a
function of v. = v.fw., for K = 2,k, = 2.74 x 1072 and s = 7.35 x 10® corresponding
to ¢ = 1 surface of Heliotron E. Here uwj, = 0 case (curve b) corresponds to the slab
n; mode. The unfavorable average curvature case of wj, = 0.181 enhances growth rate
compared to curve b). Both curves a) and b) show a destabilizing dependence on the
collision frequency. When », increases, the radial mode structure expands, as shown in
Fig.4, due to the coupling to the ¢ mode. .

In Heliotron E the new type of ; mode coupled to the g mode is destabilized strongly
for n; 2, 1, which may produce the ion anomalous thermal transport in the edge region.

5. Summary

Theoretical results of the ¢ modes may be promising for understanding the edge tur-
bulence and the anomalous transport in Heliotron E. When the wave number spectrum
of the density and the potential fluctuations at various radial positions and the particle
transport driven by the edge turbulence are obtained like in the TEXT tokamak, we may
compare the details of the ¢ mode theory with the data. We also expect that the radial
electric field improves the energy confinement of Heliotron E.
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Stellarators need optimization because classical physics issues seriously limit their viabil-
ity as fusion devices. Such issues are for example their magnetic surfaces, their MHD and
neoclassical properties, and their realization by coils. On the other hand, stellarators can
really be optimized. An example for their optimization potential are quasi-helically sym-
metric toroidal magnetic fields [1] which show that the magnetic geometry of a stellarator
can be decoupled from its real space geometry. Thus, stellarator optimization does not
only mean an improvement of some given basic concept but primarily the selection of
basic physics properties. :

Stellarator optimization naturally divides into a set of general guidelines and a set of
specific physics objectives.

The plasma behaviour in the confinement region can be optimized by noting that the
geometry of the confinement boundary within the last closed flux surface completely
determines the properties of the confinement region. Thus, boundary value problems may
be solved during optimization, the parameters of the boundary being the optimization
variables. Boundary value problems are the basic steps of the optimization procedure
employed here, which allows large steps to be taken in the stellarator configurational

space. The boundary representation used for Helias [2] equilibria appears to provide a
suitable configuration space.

In this paper, the objectives of the optimization and its result as well as aspects of the
MHD stability and the collisionless a-particle confinement behaviour of the optimized
configuration are described. : '

1. OPTIMIZATION OF HELIAS CONFIGURATIONS

For the optimization of Helias configurations for W VII-X the following set of criteria has
" been used [3]: ' '

1. high quality of vacuum field magnetic surfaces (sufficiently small relative thickness Ajq
of islands),

good finite-B equilibrium properties (sufficiently high Beq),
good MHD stability properties (sufficiently high fB.p,),

small neoclassical transport in the %-regime (small equivalent ripple &),

small bootstrap current in the Imfp-regime (Jps sien/ s tok sufficiently small),
good collisionless a-particle containment (fraction of prompt loss f, sufficiently sinall),

good modular coil feasibility (sufficiently large distances A, and radii of curvature .
of the coils).

The constructiveness of this set of classical physics goals in connection with an optimiza- .
tion procedure results from the dimensionless goodness parameters indicated above.

Criteria 1 and 7 are taken into account by solving Helias boundary value problems with
side conditions on the shaping parameters. Crilenia 2 and 3 are satisfied by maintaining
resistive-interchange and ballooning stability at {8} =~ 0.05 for configurations with 5
periods and aspect ratio of approximately 10. Maintaining resistive-interchange stability
15 directly incorporated into the optimization, while ballooning stability is taken into
account through its driving terms [4]. Criteria 4, 5, and 6 are taken into account by
optimizing the structure of B(6, ¢) in magnetic coordinates. This optimization procedure
constitutes an inner optimization loop.

Ne s wow



The evaluation of ballooning stability and of the three neoclassical properties 4, 5, and 6
leads to an iteration of this inner loop until satisfactory properties are found. Goodness
parameters Ais, feq, Bstabs de, JBS stell/ IBS toks fa Which can simultaneously be achieved
appear to be 0.1, 0.05, 0.05, 0.01, 0.1, 0.1 [5].

1.5 ¢

10/.0

Fig. 1: Flux surface cross-sections of a configuration obtained by the optimization prescription
described below. Shown are sections at the beginning of a period, after quarter of a
period, and after half a period.

An explanation for the compatibility of the seven criteria listed above can be obtained in
terms of a unified optimization procedure. Key ingredients are:

1) it suffices to consider the structure of B(0, ¢); the real space geometry is a result of
the optimization; ‘ ,

i) the spectrum of B(0, ¢) can be optimized;

iii) a unified optimization procedure simply consists in keeping the spectrum pure and
in minimizing the helical and toroidal curvature terms under the constraints of small
bootstrap current and location of trapped particles in the weak-curvature region.

Indeed, optimization in a large (approximately 20 dimensional) space of boundary vari-
ables {6], in which only an el%ipticity and a triangularity parameter are kept fixed, with
the above prescription yields the configuration in Fig. 1, which is nearly i1dentical with
the one obtained by optimization according to the seven criteria listed above. Ingredient
iii) of the optimization procedure described above elucidates the degree of unambiguity
of the optimization result. The major type of a qualitatively different result would be
obtained by requiring the principle toroidal curvature term to be zero; this would result
in quasi-helically symmetric equilibria with a finite bootstrap current. The solution cho-
sen here essentially eliminates the bootstrap current as an alien element of stellarators
proper and, on the other hand, achieves the other neoclassical physics requirements (see
sec. 1.1, principles 4 and 6); here it has to be noted that the good collisionless a-particle
confinement requires a non-vanishing $-value, see Sec. 3.

2. MHD-MODE BEHAVIOUR

Global mode calculations made with the Finite-Element Fourier code CAS3D (7} (Code
for the Analysis of the MHD Stability of 3D Equilibria) concentrated on applications
to unstable and stable Helias configurations with 5 equilibrium periods, aspect ratio 10,

(Jﬁ/]i) ~2 0.7 and a small-shear ¢-profile including the rational ¢ = 3/4. Parameter studies
in a set of configurations of this type show that, though the low-poloidal-node-number
non-local modes are less restrictive than the Mercier criterion, the two stability limits are
so close that, in practice, low-shear stellarators have to be Mercier stable. The results
obtained from CAS3D demonstrate various critical aspects of the 3D linear stability anal-
ysis. For optimal convergence the calculation has to be based on a large number £ Fp
to L = 60 has been considered) of Fourier components in the perturbation functions. For
this purpose CAS3D provides an automatic selection process. Discussion of the various
contributions to the energy functional shows that energy minimization occurs simultane-
ously with the annihilation of the field line compression term. Near the Mercier stability
limit the mode localizes radially. These and other aspects were successfully embedded
into the code development (CAS3D1, which only employs the perturbation component

E- Vs in the eigenvalue problem). Furthermore, the dominating poloidal mode number M
of the perturbations enters the code as an input parameter which is not connected with
t}};e spatial resolution of the stability calculation so that high-M unstable modes could be
obtained. :
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Fig. 2: Fourier coefficients of £ - Vs as obtained from CAS3D1MNint for a strongly-negative-
shear Mercier stable 3D stellarator (left) and for a weakly-positive-shear Helias equi-
librium. The toroidal node number is 72. :

With a further modification concerning the numerical stability of the discretized eigen-
value problem (8], the code (CAS3D1MNint) has also been used to investigate modes
with ballooning character in tokamaks and stellarators. Ballooning modes in Mercier
stable stellarators with significant negative shear (i.e. a rotational transform decreasing
towards the plasma edge) have been obtained. Fig. 2 shows the transition of high-node-
number ballooning mode behaviour in such a case to the structure of these modes in the
weakly-positive-shear situation of Helias equilibria.

As results of these investigations the following statements can be made. In Helias stel-
larators Mercier mode stability has to be satished to avoid global modes and low-poloidal-
node-number ballooning modes then do not exist.

3. COLLISIONLESS a-PARTICLE CONFINEMENT

The collisionless a-particle confinement is assessed by guiding centre orbits of a sample of
a-particles started at aspect ratio A =40 (which corresponds to 1/ of the plasma radius
a) with random values in the angular-like magnetic coordinates ¢ and ¢ and the pitch
angle n = v /v. In W VII-AS all o-particles that undergo reflections are quickly lost,
but no passing particle is lost. In a quasi-helically symmetric stellarator all particles are
completely confined. A particular characteristic of the optimized configuration of Sec. 1
is that the f-effect at (B8) =~ 5% is sufficient to improve the a-particle confinement in

such a way that the fraction of prompt losses is reduced to approximately 0.1 [9], see
Fig. 3. '

100 T T T T T Fig. 3: a-particle losses in He-
lias50B with (8) = 0(0), 0.024 (x?,

Lost | [%] e and 0.049 (4); as a function of co
e lisionless time of flight. A ran-
.t dom sample of a-particles (ratio of
gt plasma to gyroradius 30) is started
S0+ / . at aspect ratio 40. Shown is the
; . fraction of reflected particles which

is lost. Number of reflected parti-
: W cles is 100 in all cases. Altogether
there are 260 particles, i.e. 160
——————— * passing partticles. Each symbol in-
0 ' ; b as® } dicates the loss of one particle.
107% 187 107?072 q07! 10




A significant improvement of the fast particle losses already occurs at the modest value
of {8) = 0.024, which may also be of importance for NBI- and ICR-heating.

The favourable collisionless particle confinement result can be understood in terms of the
creation of a maximum-.7 configuration, with 7 the second adiabatic invariant. Figure 4
shows the formation of poloidally closed J-contours as § is increased. Another way of
characterizing the favourable orbit behaviour is shown in Fig. 5.

Fig. 4: Constant J-contours in Helias50B with {(8) = 0.0 and (8) = 0.049. Shown is a /5, @
plane with 5 the flux label and & the poloidal magnetic coordinate. Dashed lines lnd1cate
regions close to maxima, dotted lines those close to minima. The.reflection value of B
is a constant and defines the reflected particles considered as moderate-deeply trapped.

Fig. 5: Drift surfaces of barely passing a-particles in W7-AS (left) and the optimized Helias

stellarator (plasma- to gyro-radius ratio 30). Start values for \/s: 0.25, (0.5), 0.75; (+
positive vy} o negative v))).
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EQUILiBRIUM BETA LIMIT OF HELICAL SYSTEMS
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ABSTRACT

The equilibrium beta limit, which is defined by the breaking of magnetic surfaces
due to the finite beta effect, is investigated for two types of helical systems. The
results indicate that the breaking often imposes severer limitation on beta than
the Shafranov shift. However, if we properly choose controllable parameters, such
as the vertical field B,, we can obtain a high beta equilibrium, such as g > 5%.
Furthermore, a simple method is proposed, by which the breaking can be actively
suppressed and fairly high beta equilibria with clearly nested magnetic surfaces can

be realized.

1.Introduction

The equilibrium beta limit of a helical system is conventionally defined by the amount
of the Shafranov shift, such as A,(f) < 5{- . However, we must care about the breaking
of rha.gnetic surfaces due to the finite pressure effect, since it is well known that a non-
axisymmetric toroidal finite beta equili.brium does not necessarily regularly nest magnetic
surfaces. The boundary region of a helical system is ergodic even in a vacuum field.
Therefore, the physical issue in this paper is to investigate how large the boundary ergodic
region expands in a finite beta equilibrium, as is shown in Fig.1, and to look for methods
to suppress it. In spite of several works thus far, numerical evaluation of the breaking of
magnetic surfaces due to the finite pressure effect remains unclarified,

The origin of the appearance of magﬁetic islands in a finite beta equilibrium of toroidal
helical systems is attributed to the plasma current which is induced to satisfy the equi-
librium force balance condition j x B = s7p. The resonant field, ﬁhich can be produced
by the plasma current for the case of nonaxisymmetric torus, causes the appearance of
magnetic islands inside the plasma. When an island is inducéd., the pressure profile is
significantly modified near the island. Thus, a consistent analysis between the j x B = ¢p

condition and the island formation is required.



Fig.1 Magnetic surfaces of an { = 2 heliotron equilibrium with B ~ 4%, where islands are
induced on the boundary due to the finite pressure effect. The induced islands area is

expanded on the left.

In order to analyze quantitatively the total 3D effect of the plasma current on rational
surfaces, we have developed a 3D equilibrium code (HINT).[1][2] In the following, we show
results of HINT on Heliotron/Torsatron and Helias configurations and propose a simple

method to suppress the breaking.

2. 1=2 Heliotron/Torsatron

In order to understand the general tendency of the "fragility” of magnetic surfaces in
a finite beta equilibrium, we have executed parameter survey for several kinds of physi-
cal parameters. The M (pitch period number) dependency of the breaking of magnetic
surfaces is shown in Fig.2(a) for the I=2 heliotron configuration. This survey was made
under conditions that the pitch parameter 4. = %i‘- is fixed to be 1.3, the vacuum mag-
netic axis is at the helical coil center, external qﬁadrupole component B, = 0, and the

helical coil has no modulation. The broken line in Fig.2 indicates a tentative beta limit at

which the outer region of about 30 % of the minor radius becomes ergodic. In general, the



breaking has a tendency to be suppressed as M increases. For low M (low aspect ratio)
configurations, however, we find that the breaking can be improved by properly choosing
several free parameters.[2]

Figure 2(b) shows the effect of the external vertical field B,, which controls the radial
position of the vacuum magnetic axis. As is shown in Fig.2(b), the inward shift of the
magnetic axis is favorable to suppress the breaking, and in fact, we can obtain the high
beta equilibrium (such as 8 > 5%) keeping clearly nested surfaces by a small inward shift
for the M = 10 configuration. As for the effect of B, vertically elliptic shaping of the
surfaces is favorable to suppfess the breaking. Another survey indicates that the breaking
is signjﬁca.ntly improved by decreasing v.(= 1.2), or is also improved By making the helical

coils positively modulated.
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Fig.2 (a) M dependency and (b} B, control of the breaking of magnetic surfaces for [ = 2

heliotron configuration. Lines indicate a tentative beta limit at which the outer region of

about 30 % of the minor radius becomes ergodic.

3. Helias

The Helias configuration [3], in contrast with the heliotron configuration, has a very low
shear, but the Pfirsch-Schhiiter current is optimized to be small. The island size induced
by the finite pressure effect is determined by the competition between these effects. The
way islands appear for the Helias is diﬂ'ereﬁt from that for the heliotron case; the number
of relevant dangerous rational surfaces is much smaller, but the size of islands is much

bigger when they appear. The results indicate that the dangerous rational surface, that is



the : = 5/6 surface, comes into the plasma region as beta increases, and m=6 islands are
formed on the surface. However, the size of the island is not so serious as to destroy the‘
whole plasma. When we further increase beta, the 5/6 surface is again removed away from
the plasma region, and a high beta equilibrium with clear surfaces can be achieved. In this
process, it turns out that the pressure profile plays an important role: A broader profile
is favorable. This is because the magnetic axis shift becomes smaller and the change of
iota profile is smaller, whereby the number of relevant dangerous rational surfaces can be

suppressed.

4. Suppression of breaking by adding a simple extra coil

As is stated above, the axisymmetric external poloidal fields, such as B,, can be used
to suppress the breaking of surfaces. One problem of this method, however, is that such
an external field significantly changes the physical properties of the configuration, such
as the well depth. Here we propose another way to suppress the breaking. Islands which
appear on a rational surface either in a vacuum field or in a finite beta field of a heliotron
configuration have the following empirical properties; 1) the island size is noticeably larger
on the outer side of the torus, and 2) iSlands appear in phase at the outside of the torus.
By taking advantage of these properties, we can come up with a set of simple extra coils
enough to suppress induced islands. This method is studied by using the Cary-Hanson
technique {4] to measure the island size. Results indicate that islands which appear in a
finite beta equilibrium of a { = 2 hehotron configuration are clearly suppressed by a.ddmg
an extra coil. It is interesting to note that the required extra coil current is only about 3%
of the helical coil current. One important advantage of this method is that the physma.l
properties, such as the well depth and the ¢ profile, are very slightly changed when the
extra coil field is imposed. Thus, this method can provide an efficient and powerful way

to remedy magnetic islands for any reasonable beta value.
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Abstract

In this paper, some recent theoretical developments on the formation and
dynamics of magnetic islands in toroidal plasmas are reported. It is shown that an
energetic ion population can have a significant effect on the nonlinear stability of a
single-helicity tearing mode. A dynamical equation for the magnetic island width is
- derived from kinetic theory. It is shown that island growth can be suppressed in
tokamak plasmas by injecting an energetic ion beam with a density profile which peaks
just outside the rational surface. This technique can be used for suppressing major
disruptions caused by the nonlinear growth of m =2, n =1 islands in a tokamak. The
formation of magnetic islands as a result of plasma pressure in three-dimensional
equilibria is also studied. The width of the equilibrium islands is shown to depend on
the resistive interchange properties of the plasma. This analytical theory is applied to
the Heliotron-E configuration. Equilibrium beta limits due to the criterion of island
overlap are investigated. It is suggested that experimental observations of internal
disruptions on Heliotron-E can be interpreted as a loss of equilibrium due to island
overlap. Energetic ions can also be used to modify magnetic islands in three-
dimensional equilibria. It is shown that energetic ions can be used to reduce the size of
equilibrium islands in a stellarator due to vacuum field errors.

1. INTRODUCTION

The formation of magnetic islands in toroidal magnetic configurations generally
has a detrimental effect on the confinement properties of plasmas. Islands caused by
resistive tearing instabilities [1,2] are believed to play a role in a vanety of relaxation
phenomena in toroidal discharges. In particular, the nonlinear growth of the m=2,n =
1 tearing mode can trigger major disruptions. For confinement systems without a
continuous symmetry, such as stellarators, magnetic islands exist in equilibrium. If the
magnetic islands are large and overlap with each other, magnetic confinement is lost
since stochastic magnetic fields cannot sustain a plasma pressure gradient.

In this paper, we examine two problems involving the formation of magnetic
islands. In Section 2, we propose a method for drastically reducing the size of
nonlinear m 2 2 tearing modes by introducing a population of energetic ions in the
vicinity of the magnetic island {3,4]. This technique can be used for disruption control
in tokamaks by suppressing the growth of m = 2, n = 1 magnetic islands. In Section 3,
we calculate the widths of magnetic islands induced by plasma pressure in stellarator
equilibria [5] which extends earlier work on this subject [6]. When neighboring
magnetic islands overlap, magnetic confinement is lost. This island overlap condition
can then set an equilibrium beta limit in stellarators. The theory is applied to the
Heliotron-E device in Section 4. It is demonstrated that experimental observations of



internal disruptions on Heliotron-E are consistent with the interpretation of an
equilibrium beta limit [7]. Finally, we apply the method introduced in Section 2 to
show that an injected beam of energetic ions can be used to control the size of islands in
stellarator equilibria [4].

2. SUPPRESSION OF TEARING MODES BY ENERGETIC IONS

In this section we present a method which can be used to suppress the nonlinear
growth of m 2 2 tearing modes. In order to understand the underlying physics of the
calculation, we first give a simplified heuristic interpretation of the results in slab

geometry [3,4]. Consider the equilibrium magnetic field given by B = Boﬁ + B,
(x/Lg) ¥ where x = 0 is the location of the rational surface, L, is the local shear length,
and By is a large constant magnetic field in the 2-direction. If a coherent symmetry-
breaking perturbation B; = b, sin(ky) %is imposed, magnetic islands of half-width w
= 2(1)0Ls/kBy)1,2 form at the rational surface. Fig. 1a shows the projection of the
magnetic field in the &- ¥ plane.

The guiding center motion of an energetic ion is given by v = vib + v,
where b = B/B, B =B, and v, = [(v} + v/2)/Q,] b x VInB is the magnetic drift. For
B = B(x) and B’ > 0, the drift velocity is predominantly in the 9-dh-ection. If the drift

velocity is added to the field aligned velocity of the equilibrium field, the null line of the
velocity of the equilibrium field is shifted by an amount

(v +vinv) LB,
X & Q. LBBy >

1

from the null line of By, where Ly = (d.InB/dx)_1 and £, is the hot-ion cyclotron
frequency. (For toroidal geometry, Ix,| = £qQv\/€2;, where € is the inverse aspect ratio

and q, the safety factor .) In the presence of the perturbation, the spatial contours of
the hot-ion velocity field show islands similar to the magnetic islands of Fig, 1a. This
is shown in Fig. 1b, where the assumption Ix,l > w is used. Note that the sign of v

determines whether the islands form above or below x = 0. The contours of Fig. 1b
represent constant-density contours of the hot ions.

If untrapped energetic ions have a net fluid velocity, they produce an electrical
current. The plasma electrons tend to follow the ions in order to cancel this current;
however, since the electrons scatter into the trapping loss cone faster than the ions, a
net current in the direction of the ion flow results [8,9].

In the vicinity of the island, as shown in Fig. 1c, the effect of the perturbing
field is to slightly deform the constant energetic ion contours from horizontal lines, as
long as the inequality Ix,| > w holds. We now allow for an energetic ion density

gradient. For n]'1 > 0, there are more ions at the top of Fig. 1c than at the bottom. For
this density gradient, the energetic ions produce a current profile as one passes from the
X-point of the island to the O-point with j, (X) > j;, (O). This spatial dependence of the
current produces a magnetic field that is stabilizing. If the sign of the density gradient

or the magnetic drift is reversed (given by B’), the energetic ions causes a field that
enhances the perturbation. Note that the stabilizing effect is independent of the

direction of injection of the energetic ions and depends only on the sign of n,'1 B’



The details of the calculation in toroidal geometry are carried out using a kinetic
theory in the long mean-free-path regime [4], along with the usual Rutherford analysis
[10]. Effects due to resistive interchanges [11], and bootstrap currents [12,13] are
included in the calculation. The injected energetic ions are assumed to be circulating, so
~ that the effects due to magnetic trapping of the energetic ions can be ignored.

The dynamical equation for the magnetic island half-width w of a nonlinear '
tearing mode is given by

LA a -Nw + 2, | )

T 9

where 1, is the neoclassical resistivity,

ko = 210 /4n , N = 146Vek, 02 dglnn,/4ndglnB

Q = 075 E+F) 1 - 05Vep R2 P q ),
where @ is the toroidal flux function that labels magnetic surfaces, k,, is a numerical

coefficient that is approximately one, Opp, is the hot-ion plasma frequency, R is the
major radius, and g, and q(’) the safety factor and its derivative evaluated at the rational
surface. The first term on the right-hand-side of equation (1) describes the magnetic
free energy (measured by A’) available to the tearing mode [10]. The term Q contains

the effects due to resistive interchanges, described by the quantity E + F [14], and
bootstrap currents. The new result of this analysis is the term Nw in equation (1). As

mentioned above, this term is stabilizing if n/ B” > 0. For discharges with A’ > 0, it is

possible to control the island width by tailoring the hot-ion density profile. The
saturated island-width is given by

= K AN+ (k A72N)2 + QN @
Numerical estimates of w consistent with the inequality Ix | > w; indicate that by using

energetic ions, the saturated island width can be made much smaller than the usual
quasilinear saturated island width [15]. The energy requirements for this scheme
appear to be quite modest, and involve a small fraction of the energy expended on
Ohmic or neutral-beam heating. Thus, our analysis suggests that it is possible to
suppress the m = 2, n = 1 island in tokamaks by having the energetic-ion profile peak
just outside the q = 2 surface. .

3.  MAGNETIC ISLAND FORMATION IN THREE-DIMENSIONAL PLASMA
EQUILIBRIA

Well-defined magnetic surfaces do not generally exist for three-dimensional
equilibria {16]. However, if one postulates the existence of magnetic surfaces, it can be

shown that the general solution of the equilibriurn equations contains singularities in the
plasma current. To see this, assume that the magnetic field can be written

B=V®x VO—td), - 3)

where @, 8, and ¢ are magnetic coordinates, where @ is the toroidal flux function, 0
and ¢ are the poloidal and toroidal angles, respectively, and t is the rotational



transform. The magnetic field-lines lie on surfaces of constant @. The Jacobian, / =

(V(I)-VBXV¢)—1 and the paralle] current profile Q = J B/B? are represented by a
Fourier series

i=r§n/mn eimB—imb, Q=§ann eime—imp , (4)

for equilibria with no symmetry. Using the force balance equation J x B = Vp, and.

the quasineutrality condition V-J = 0, we find p = p(®) and the current amplitude Q,,
has the general solution

Qun = P /& ~0/m)] + Qp 5@ - D)) , ©)

where émn is an undetermined amplitude of a current sheet at the rational surface +{(®,)
= n/m. '

The singularity is resolved by allowing for the formation of a magnetic island at
the rational surface. The magnetostatic equations are then solved for self-consistently.
The detailed calculation [5] leads to an equation for the magnetic island half-width.
Written in terms of the extent of the magnetic island as measured by the rotational

transform, 3t, the half-width of the magnetic island is given by the expression

\/ &7+, | ©)

_(E+F)Z
1'1‘]r

C= iy (8
2\ Jw
E +F is the resistive interchange instability criteria [14], Z is a numerical constant =

0.5, lt(a) — +(0)! is the total shear, and m is the poloidal mode number of the island. If
E + F is negative (indicating resistive interchange stability), equation (6) predicts a
small island since the term IC| is usually made small by design. However, if E + F is
positive (resistive interchange instability), magnetic islands may by large.
Furthermore, if E + F > 0, it can be demonstrated that island overlap is inevitable [6].
The island overlap criterion establishes an equilibrium beta-limit that is generally more
stringent than the ad hoc limit obtained by assuming that the flux surfaces are perfect,
and then identifying the plasma beta at which the Shafamov shift exceeds one-half of
the plasma radius.

where

ke(a) — +(0), (7)

The present calculation assumes that the vacuum magnetic field has well-defined
. magnetic surfaces. If vacuum magnetic islands exists, equation (6) is modified by
letting ICl — ICl + (81:v)2, where 8t is the amplitude of the vacuum magnetic island. -

Notice that equation (6) predicts that devices with favorable resistive interchange
properties can reduce the size of magnetic islands as plasma pressure is mtroduced
[17].

To understand the physics of this result, it is useful to draw an analogy between
2-D axisymmetric systems with saturated 3- D instabilities, and intrinsically 3-D

H_48_'



configurations [6]. In the 2-D case, the perturbations grow from the axisymmetric
equilibrium until some nonlinear process saturates the mode. A 3-D equilibrium can
then be thought of as a 2-D equilibrium with intrinsic symmetry-breaking perturbations.
If the stellarator has unfavorable resistive interchange properties, the equilibrium has
the same island structure as the axisymmetric device with saturated instabilities [11].

4. EQUILIBRIUM BETA LIMITS IN HELIOTRON-E

The theory of the previous section is now applied to the Heliotron-E experiment
[7]. The island widths, given by equation (6) in the previous section, are evaluated
numerically using a modified version of the STEP code [18]. Since Heliotron-E has
unfavorable resistive interchange properties over a large part of the plasma, substantial
magnetic island formation is predicted for Heliotron-E equilibria. Figure 2 plots the
magnetic island half-width 8+, computed for plasmas with $(0) = 2% and mode
numbers m = 10-29. Also plotted is the width computed from the Chirikov criteria

(given by 8t = i, — ¥,|/2 where %, and ¥, are neighboring resonant surfaces). Notice

that for 0.65 < t < 1.0, island overlap is predicted since 6t > 6t,. Although the

analytical calculation breaks down when magnetic stochasticity occurs, this result is
suggestive of an equilibrium beta-limit due to the onset of island overlap.

These results motivate us to revisit experimental observations of internal
disruptions in Heliotron-E [19]. It is observed that as B increases for discharges with

peaked pressure profiles, internal disruptions occur at B ~ 2% that lead to the flattening
of the pressure profile. A possible explanation of this phenomena is that as the
Heliotron-E plasma relaxes through a series of quasistatic, 3-D equilibria, magnetic
islands form and increase in size with beta. When low-order islands become
sufficiently large that they overlap with each other, magnetic stochasticity occurs and

the pressure relaxes to a flat profile. The computation suggests that this occurs at f >
2%.

5. SUPPRESSION OF MAGNETIC ISLANDS IN STELLARATOR
EQUILIBRIA WITH ENERGETIC IONS

An extension of the technique to suppress nonlinear tearing modes with
energetic ions can be used to control island sizes in stellarator equilibria as well [4].
For this problem, we consider island widths that satisfy the inequality Ix,| <w <a,

where a is the minor radius and the length Ix,] is introduced in Section 2. (For the limit
Ix,! > w, the physical picture given in Section 2 applies.) When w exceeds Ix,l, the

energetic ions near the rational surface are trapped in the magnetic island at the rational
surface. For this problem, Fig. 1a also represent constant density surfaces for the
energetic ion population. In this limit, the direction of the net ion current and the sign
of the shear determine whether the ions enhance or reduce the island size. If the islands

are injected parallel to the magnetic field, with ¥’ > 0, the ions produce a magnetic field

with the same helicity as the perturbation and the island size increases; however, if the
ions are injected antiparallel to the magnetic field, the magnetic island is suppressed.

In the detailed calculation, we assume that the source of the magnetic island is a
vacuum field error. In the presence of a plasma and the injected ions, the island half-
width is computed self-consistently. The island equation is given by

5t = %+'\/ 1‘2;-)2 +(5r)?, 9



where
k. Rf,j
s = 8EkRide (10)
cm B
S’cv is the vacuum magnetic island half-width, k, is a numerical factor of order unity, m
is the poloidal number of the rational surface, R is the major radius, f, is the electron

trapping fraction, x = sign(®”) and j, is the injected energetic ion current. The sign of S

is determined by the sign of jx, so that if j k < 0, the magnetic island width is smaller
in the presence of the energetic ions than in the vacuum configuration.
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Figure 1

Fig. 1. (a) The projection of the magnetic field in the x-y plane. (b) The projection of
the guiding-center velocity field for vy =v-b >0 and v <0. (c) The effect of the
energetic ions with Ix,] > w. The solid lines are the magnetic field lines, with the X's
representing constant-density contours for ions with v > 0 and O's the constant-
density contours for ions with v; < 0.
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Fig. 2. Magnetic island widths &%, for = 2% and pressure profile p = p,(1 - \p)z,

where  is the poloidal flux function. The abscissae is the rotational transform which
is used as a radial label. The Chirikov criterion for island overlap is also shown, and

represented by 8t,. The region 8t; > 8t is assumed stochastic.



Theoretical Stiudies of Nonlinear
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Abstract

Kinetic particle simulation of the system consisting of plasma, sheath, material, and
an external driving circuit is carried out. The nonlinear sheath dynamics on the plasma
‘ion implantation is studied in a series of simple simulations. Other similar applications
include the dec and rf glow discharges for electronic material processing such as etching
or doping. The unsteady acceleration and the polarity-dependent behaviors in the pulsed

. plasma accelerator are also studied in view of transient sheath dynamics.
I. Introduction

The plasma ion implantation!!) relies on the ion acceleration in the charge-nonneutral
sheath region to a necessary energy ( 10—50 keV ), é_lleviating the cumbersome system of
conventional ion implantor. The dynamic evolution of the sheath characteristics is highly
nonlinear and complex especially when the applied negative voltage at the target material
is modulated at a finite frequency to contain the sheath expansion to a manageable size. To
have enough informations about the ion flux and energy distribution, the undérstanding
of time-dependent sheath evolution is important. By using a kinetic particle code!? in
modest computing facilities, we calculate the average and peak currents together with the
sheath size and the implanted ion energy distribution.

Capacitive 1f discharges are widely used for matreial processing in the electronic in-
dustry. The discharges are usually asymmetric in the cylindrical and spherical shell ge-
ometries. The rf-powered electrode and the grounded electrode have different areas Ay
and A;, with Ay typically less than A;. This asymmetry determines the magnitude of the
self-bias voltage Vj at the powered electrode.

We also apply the nonlinear sheath dynamics to the pulsed piasma. accelerator, which

might be of use for the injector to the fusion machine and the space propulsion system. The



evolution of current sheets can be undersfood in terms of fluid dynamics. However, the
unsteady acceleration and the behavior of the current sheet which are strongly dependent

on the polarity of the electrode can not be explained by the fluid theory.
I1. Simulation Results

1) Plasma Ion Implantation

Most simulations are carried out with a collisionless nitrogen plasma whose gas pres-
sure is 0.1 mTorr. The typical parameters used in our simulation are given in Table 1.
The time varying sheath thickness can be determined by monitoring the temporal profiles
of electric field and potential. The ion matrix sheath extent as the function of applied volt-
age and plasma density, and the temporal evolution of the sheath potential at the specific
positions in the sheath are also calculated. All current densities at the target electrode are
measured by monitoring the accumulated wall charge of implanﬁed ions (Fig. 1(a)). These
results agree very well with two previous fluid calculations!. To determine the effective
total ion dose at the target we calculate the ion energy distribution (Fig. 1(b)), which is

one of the unique properties in the kinetic simulations.

Plasma density n=10%cm™?
Plasma temperature T, =3eV,T; ~0
Target bias voltage -V, =10 — 50V
Pulse length 10usec
Plasma frequency wpe = 1.8 x 10%sec™?
. wpi = 7.9 x 10%sec™?
Gas pressure 0.1mTorr

Table 1

2) Asymmetric de and rf Discharges

For capacitive discharges, almost all the applied f voltage is dropped across thin
sheaths, having thickness sp and s;. The sheath properties play an important role in
determining the self-bias voltage at the powered electrode. Typical discharge parameters
are pressure p = 10 — 300 mTorr, f = 13.56 MHz, voltage V = 50 — 1000 V and the
typical output is shown in Fig. 2. In a simple collisionless discharge model, the sheath
scaling for the dependence of the powered-to-grounded voltage ratio V5/V; on the area
ratio A; /A is given by Vo/Vi = (A;/4o)*. When we consider the additional effects of

secondary electron emission in the glow and local ionization near the sheath, the scaling



exponent can be varied between 1 and 4 [},

3) Pulsed Plasma Accelerator

- Many parallel plate or coaxial plasma accelerator experiments!¥! have shown that
the acceleration is unsteady, showing a pronounced tipping with a leading edge near the
positive electrode. These polarity dependent behaviors are strongly ‘dependent on the
radius ratio of electrodes and the mass of neutral gas material. Existing analyses on
the current sheet, mostly fluid model, mainly deal with the case where polarity of center
electrode is positive and no successful result has been obtained for the negative polarity.
Futhermore they fail to explain the tipping of current sheet!S], Thus the microscopic kinetic
approach is needed. It is the 'major goal of our study to provide the mechanism of the
tipping of current sheet near the positive electrode. From the profile of ‘sheath electric
field we estimate the additional E x B component of the sheet velocity, which may be the
cause of the tipping (Fig. 3). The expanded detailed study will be made in a near future.

IT1. Conclusion

Many of our simulation results agree with previous calculations. The important roles
of nonlinear sheath in the bounded plasma system are elucidated. We are in the progress
of including the effects of collision and secondary electron emission.

Since the pulsed plasma accelerator involves the self-generated magnetic field, it must
be considered as a fully electromagnetic problem, which makes the sheath dynamics more
complicated. The 2-dimensional sheath dynamics with a ﬁnite time-varying magnetic field

is an interesting subject of future study.
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Hydrodynamic Instabilities in Laser Driven Implosion

K. Mima, S. Kato, A. Nishiguchi and H. Takabe
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(Abstract)

Recently, high density plasmas with a density higher than 600 times solid
density have been produced by laser implosion. This compressed density agrees
reasonably well with one dimensional simulation. However, the neutron yield is
less than 102 ~ 103 times 1D simulation result for the high density compression.
These results indicate that the outside surface of the compressed plasma is stable, but
the internal hot dense plasma surface is not stable. | |

In this presentation, the instabilities driven by the internal temperature and
pressure gradiénts will be discussed. By using the quasi linear approximation we
estimated the saturation level of the fluctuations to determine the convective heat

flux. The self-consistent temperature profile is then found to evaluate the reduction

of neutron yield.

§1. Introduction _

In laser fusion, a hot dense plasma whose temperature is higher than 5 keV is
required to be formed at the center of the compressed DT plasmas, which is called 'hot
spark’. The hot spark is heated by both shock waves and the following adiabatic
compression, when a cold high density plasma layer stagnates as shown in Fig. 1. In
the recent CDT shell target compression experiments, the neutron yield is less than
102 ~ 10® times neutron yield which is predicted by the 1D implosion simulation,

although the compressed plasma density which is several hundred solid density



agrees fairly well with the simulation result. The main subject of this paper is to
investigate the mechanisms of the reduction of the neutron yield.

As shown in Fig. 1, the interface between cold and hot plasmas is unstable with
respect to the interchange mode. This Rayleigh-Bénard instability may cause mixing
of hot and cold plasmas. As a result, the hot spark temperature decreases due to the

convective heat flux and the neutron yield may be lowered.

§2. Instability and Cooling of a Hot Spark
We solve numerically the following quasi-linear equation for the Rayleigh-

Bénard modes.

v (r,9=T (v, (1,9 ,

at
and
B(T) J X d ()
dt  ox *NL @ x '
where
B+ X d-l( e
__FETR2 a'niij
I, (r,H=-"— k+lg i
and

Xpq, = [ T2k +D v, (0%} (4=

Here, \}k is a Fourier amplitude of velocity fluctuations at a radial position r, p and x
are the shear viscosity and the thermal diffusivity and g is the gravity. Note here that
a local dispersion relation is applied to evaluate the growth rate I',..

In the numerical integration, we assumed that the initial wavenumber
spectrum of v, is given by Fig. 2-(a). This initial wavenumber spectrum is evaluated

by using Fourier components of laser intensity irregularity. The amplitude is

normalized by the imploding shell velocity. We normalized the time by YR,/ g
where R;is the initial target radius. The plasma reaches the maximum compression
stateatt=t/ (R, / @2 =2.

The velocity fluctuation wavenumber spectrum at t=1.8 is shown in Fig. 2-(b).

The temporal evolution of the temperature profile is simultaneously determined as



shown in Figs. 3. Since the plasma density is the order of 100 g / cm?, the electron
mean free path is shorter than 0.1 um even for T, > 1 keV. Therefore, the classical
electron thermal conduction can be neglected when the temperature scale length 'L1.>
1 um and the stagnation time duration is less than 100 psec. The relaxation of the

temperature profile is due to the turbulent convection. At the maximum

compression, the hot spark temperature decreases to be half of the stable case.

§3. Summary

Because of the convective heat transport, the present irradiation nonuniformity
reduces the hot spark temperature to be half. The hot spark temperature of the 1D
simulation is about 1 keV. Therefore, the spark témperature will be less than 500 eV
in the experiment. Since the neutron yield is proportional to T~ T® in this
-temperature range, the neutron yield will reduce to be 1/20 ~ 1/40 of the 1D neutron
yield. This partially explains the experimental results. Further investigation of the

reduction mechanism is required.

f
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Fig. 1. (a) Radial motions of stagnating plasma layer, shock front and the contact surface.
(b} Density and temperature profiles.
(¢} Convective flows in the unstable layer.
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“Solitons and Chaos in Laser-FPlasma Interaction”

C.S. Liu, W. Shyu, P. Guzdar, H.H. Chen and Y.C. Lee
University of Maryland

Transitions from soliton to chaos in laser irradiated inhomogeneous plasmas are
studied for (1) Resonance absorption {2) Raman backscatiering. To model reso-
nance absorption, both driven nonlinear Schrodinger equation and Zakharov equa-
tions with inhomogenuity term added were solved to show that the final states of (a)
steady state of modified Airy function (b) periodic solutions -representing regular
soliton emission and (c) chaos through periodrdroubling, 2nd frequency appearance
(breather emissidnj and breaking of two-frequency torus through the generation
of broad bands of harmonic at nwy + mw,y. Conditions for these transitions were
oBtajned. |

In Raman scattering, we found that coupled scattered light soliton and Lang-
muir soliton adequately describe the saturation at low laser intensity just abéve the
inhomogeneity threshold. At higher laser intensity, transient, intermittent turbu-
lence results. At a critical laser intensity, the interval for the turbulent transient |
became infinite - transition to chaos by Crisis from a stable attractor to chaotic
attractor much like a phase transition. Thus these numeric.:al solutions of nonlinear
partial differential equations give two interesting routes to turbulence. Space-time

turbulence also will be discussed.



Nonlinear Evolution of 2d and 3d Rayleigh-Taylor Instability at Stagnation Phase in
Laser Implosion

Katsunobu Nishihara and Hitoshi Sakagami*

Institute of Laser Engineering, Osaka University
2-6, Yamada-oka, Suita, Osaka 565
* Institute for Supercomputing Research, Recruit Co. Ltd.
1-13-1, Kachidoki, Chuo-ku, Tokyo 104

Abstract :

Two and three dimensional Rayleigh-Taylor instabilities of the fuel-pusher contact surface in a
cylindrically or spherically stagnating system are investigated using of 2d and 3d fluid codes,
IMPACT-2D and 3D. Geometrical difference of the free-fall speeds following the saturation of the
exponential growth is studied for planer, cylindrical and spherical geometries. Nonlinear made

coupling of unstable surface waves is also investigated for a 2d planer geometry.

I. Introduction
~ In the stagnation phase of imploding targets in incrtial-copﬁnemcnt fusion, a perturbation at
~ the fuel-pusher contact surface is Rayleigh-Taylor unstable. It is important to investigate this
instability since thé R-T instability causes the pusher-fuel mixing' and thus reduces the fusion yield.
We have investigated the linear growth and the saturation of the linear growth of the R-T instability in
the cylindrically® and spherically’ stagnating systems. In this paper, the free-fall speeds following the
saturation of the exponential growth are studied for various geometries.
Since the short wavelength modes have large growth rates, high modes grow initially and

mode coupling of those modes may generates low modes. Nonlinear mode coupling of the unstable

surface waves is also studied for a 2d planer geometry.

I1. Geometrical Difference of Free-Fall Speeds

To study the R-T instability in the stagnation system, the pusher and ablator are initially
assumed to have constant velocity toward the center of a target, with the fuel atrest. The shock wave
then propagates through the fuel and is accelerated to the center of the target until it collides at the
origin. After the collision the shock wave is reflected and collides at the contact surface which is also
accelerated to the center and the stagnation phase begins at this time. A single-mode perturbation is
applied to the density profile near the contact surface at ihis time with a trigonometrical function for
the 2d cylindrical case and a spherical-harmonic function for the 3d spherical case. The details of the
simulation cbnditions are found in Ref. 2 and 3. In the fluid codes, IMPACT-2D and-3D, the basic
conservation equations are solved with an explicit total variation diminishing (TVD) scheme.



The saturation of the exponential linear growth is followed by the free-fall phase, in which the
time evolution of the amplitudes is described by 3=mgt>. The saturation amplitudes and free-fall
speeds for the spherical geometry are found to be, respectively, the largest and fastest among the
planer, cylindrical and spherical geomeiries as summarized in Table 1, in which the wavelength A _ is

defined as 2nr/n using the radius of the contact surface at the saturation and the polar mode number
for the cylindrical and spherical geometries. The free-fall coefficient of n=0.08 for the planer case
agrees quite well with the expriments.*

It is noted that the free-fall speed exceeds 1/2 for the spherical geometry. This fast speed is
due to the fact that in 3d spherical case bubbles are surrounded by spikes and strong vortex rings are
developed to feed the bubbles by blowing off the fuel into them, especially around the bases of
bubbles. The free-fall speeds have weak dependence on the polar and azimuthal mode numbers as
shown in Fig. 1. As increasing the polar mode number n and for the azimuthal mode number m ~
n/2,the size of the bubble bases becomes small and the strong vortex rings are formed and thus they
lead to fast free-fall speeds. On the other hand, the large bubble structures make this feeding

mechanism ambiguous and lead to slow free-fall speeds for such as small n and m ~ 0 or m ~n cases.

II. Mode Coupling of Unstable Surface Waves

In an incompressible fluid in a planer geometry, the linear growth rate of the R-T instability is

given by yk2=kgA, where k is the wave number, g the gravity and A the Atwood number, A=(py-

p)/(pytey), where py and p; are heavy and light fluid mass densities. The high modes have larger

growth rates and they may grow initially. The mode coupling of high modes generates low and high
modes due to the mode coupling. ‘We have developed a theory of the mode coupling by a

| perturbation method. The second order solution is found to be given as

7.t |k’|+|k—k1
E =8 * tY A 2 2 2 50kbok—k P [(Yir + Vo y)t]-
K (Yt Yex) — Yy

The first term represents the linear growth and the second term dose the nonlinear mode coupling
between the modes k' and k-k'.
As an example, 2-modes k, and k, are initially excited, the mode coupling of these two modes

excites the modes k,=ktk, with the exponents of v, .=V, ,+Y,,- Since v, ,+Y,, is proportional to
\/E +\/k—2, while y, _ proportional to \‘lkl-kzl, the excitation of the low modes by the mode coupling of

high modes can be important compared with the linear growth.
When the two modes of 20 and 30 are excited initially, the mode of 10 is found to grow with
the exponent of vy, +y,, as expected from the theory. When the single mode of 10 is excited inidally,



the higher harmonics of 20 and 30 also grow. The phases of the modes excited by the mode coupling
are locked to satisfy ¢,=¢,. +¢, .. The phase lock prevents the growth of the second harmonics

compared with the third harmonics, and thus it is observed in the simulation that the third hérmonics
becomes larger than the second harmonics.

The theory varied only for small amplitudes. The simulation results of the mode coupling
with the two modes of 20 and 30 excited initially are compared with the single mode 10 excited -
initially in Fig.2, at the time when their amplitudes become very large. In Fig.2, the horizontai scale
is reduced to 1/5. Itis clearly seen that the mode of 10 is excited by the mode coupling of the modes
20 and 30, especially in the spikes. The latter time, the mode of 10 in the bubbles also appears
clearly. In the bubble-spike structure for the case of the external gravity force, the spikes grow faster
than the bubbles. It is also noted that the mode coupling of the modes 20 and 30 generates larger
amplitude of the mode 10 than the case of the single mode 10 excited initially.

TV. Conclusion

Geometrical dependence of the free-fall speeds following the saturation of the exponential
growth is studied. The fast speeds 6f n ~1 in 3d spherical case is found to be due to the feeding
mechanism of the bubbles by strong vortex ring surrounding them. Low modes are excited very

rapidly by the mode coupling of high modes initially excited.
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(dim) saturations amplitude | free-fall coefficient
plane (2d) 7 ~0.08
cylinder (2d) - &~ 0.35 2, 7 ~02
sphere (3d) 8~ Ao | 7~1
Table.1 Geometrical dependence of saturation amplitudes of exponential linear growth

and free-fall coefficients following the saturation, where A =2nr/i and d=mgt’.
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MODELS OF COLLISIONNAL TRANSPORT ACROSSS A
MAGNETIC FIELD WITH DESTROYED SURFACES
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91128 Palaiseau Cedex, France

In this work, we study diffusion and heat transport of a
collisionnal plasma across a confinement magnetic field with
destroyed surfaces. We consider only the case where, at the
lowest order, the particles diffuse along the field lines, i.e. we
asssume that the mean free path is shorter than the field lines
length. It is well known that, in such conditions, theories
starting from linearized particle motions do not provide the
right answer. In this work we try another method by using
exactly soluble simple models in which the full non-linearized
motion is kept. ' _

In the first part, we introduce the field and collision models.
These models are not self-consistent and electric fields are
entirely neglected. The diffusion coefficient is obtained from a
variationnal form from which convergent approximate solutions
can be obttained. In the second part, we introduce self-
consistent electric fields and we estimate their effect on the
transport.

I-Field and collision models

We describe the electrons by a simple model which keeps the
main physical features of the coliisionnal diffusion. We assume
that electrons move along the field lines with constant and
opposite velocities *v and with densities respectively N, and
N_. The transition probability per unit time from one species to
the other is v/2 and models the effect of collision on the
parallel motion. Moreover both species diffuse across the field
lines with a diffusion coefficient yx;, . We assume that the unit

vector along the magnetic field _b) is divergence free and can be
written

—
b

(r)

— —
b=bg+



.
where bg is the unit vector along the average equilibrium

—_
field, b (r) Dbeing a small correction related to fluctuations.
Then we have :

oN,

v
5 tv(b V)N, -y A N,=~ 5 (NN
oN_ v
~r “V(BVIN_ -3 AN =~ = (N-N,)

It makes it possible to write D under the
variational form D=minW where

—

2 2
W=2<v¢ + X, (VL ) + g;gl(\'/'ln)2 >

the functions ¢ and n being related by the constraint

_’_’

V¢_XLAL¢+V(b' Vo+b)=0

where it has been assumed that the averaged density depends
only on x.

We consider a simple magnetic field model in which b, is

taken under the form :

bx= 9, g(y)L&z-nL)

where g(y) is a periodic function of y such that gly + L) =
a{y) and L is a constant.

Thus we choose, for 0 <y < Ly



| g(y)=2nf[y—g—”’]/Ly
For such a confinement field, the successive crossings of
magnetic field lines with planes z=nL define a sawtooth map.

The corresponding Lyapunof exponent is L/Ln() where A is a
solution of the equation: AM-A(K+2)+1=0 where K= KIIS—:}
For these models and for integer K, the diffusion coefficient

can be computed explicitely in terms of continued fractions. It
shows that the inhibition of the diffusion by collisions is
~strongly weakened by the amplification of the .collisionnal
transverse diffusion in the chaotic, field lines as predicted by
Rechester and Rosenbluth.

.However, this very precise computation of the diffusion
coefficient makes it possible to understand all the details of
this mechanism. It is fbund' that, at least in these simple
models, the amplification process is somewhat different from
the picture given by Rechester and Rosenbluth, leading to
dicrepancies in the values of the diffusion coefficients.

lI-Self consistent electric fields.

As a first attempt to introduce self-consistency, we take
into account the radial electric field which is necessary to
~inhibit the particle flux when ion diffusion can be considered as
negligible. Again in this case it is possible to write a heat
diffusion coefficient in terms of continued fractions. It is found
: fhat there is a parameter domain where the electric drift
velocity has a dominant effect on the transport and where the |

transverse collisionnal diffusion can be neglected.



Finally, we introduce a fluctuating potential which is chosen
to cancel the electron density fluctuations; it would correspond
to a case where the ions méy be considered as motionless.

Then it is argued that this fluctuating electric field
introduce an additionnal anomalous diffusion whicﬁ is itself
amplified by the stochastic diffusion of the field lines. The new

diffusion coefficient resulting from this process is estimated.



Issues in Direct Numerical Simulation of Plasma Turbulence
and Transport

A. Thyagaraja, W. Arter and F.A. Haas
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1. Introduction: The problem of direct numerical simulation of plasma turbulence in
magnetic confinement systems such as the tokamak is as formidable as it is important
in gaining a fundamental theoretical understanding of anomalous transport of particles,
energy, momentum and impurities in such systems. At Culham, we are engaged in de-
veloping two complementary but distinct approaches to this question. The present paper
will first outline the design philosophy and the basic numerical problems encountered
and solved in the construction of a two-fluid, three-dimensional, electro-magnetic, finite-
difference, time evolution code CUTIE. In particular, the importance of qualitative con-
sistency, time-reversal, conservation properties, “phase mixing”, and boundary conditions
will be illustrated in the context of both passive and active electrostatic turbulence.

A quite separate study has been undertaken to enhance the understanding of drift-wave
turbulence in tokamak plasmas. In this connection, we have written a three-dimensional,
time-dependent, electrostatic drift wave code called DRIFT. This has features which take
account of toroidicity, non-adiabaticity and magnetic shear. The resulting code is very
flexible, and has been used to solve the Hasegawa-Mima equation efficiently in 2-d. Results
from time-dependent, 3-d calculations run on a Cray-2 will be presented.

The ultimate aim of these studies is to obtain a proper physical understanding of
plasma turbulence in typical tokamak conditions by calculating the power spectra of the
turbulent fluctuations and their transport consequences. It is believed that this can only
be achieved by a step-by-step approach to the numerics, making sure that the calculated
effects represent genuine physics and are not mere artefacts of the numerical simulation.

2. CUTIE: In the first instance, we have made the following assumptions: (1) The code
solves two-fluid equations in the usual periodic cylindrical geometry. Effects of toroidal
geometry will be considered in later versions. (2) The quasi-neutral, low-3 approximation
will be used, with the usual low-frequency drift approximations. {4) Nonlinear, local equa-
tions of the Braginskii type are used with appropriate corrections for parallel coefficients?.
From the above equations, we get a system of coupled equations for 7 fields: n, T}, 7.,
vy, @), ®, and A). The last three variables are respectively the parallel vorticity, electro-
static potential and the parallel vector potential. All of these variables are functions of
position and time and all except & satisfy conservation equations of the same general form
derived from the equations of continuity, energy and momentum. The quasi-neutrality
condition {equivalently, Ampére’s law) relates ® and @) by an elliptic equation of the
Poisson type. The field @ is self-consistently time-evolved by solving this equation.



The code is required to meet the stringent conditions imposed by ‘qualitative consis-
tency’. Thus, whatever the grid sizes and time-steps, positive physical quantities must
always be maintained positive?. In addition, if the boundary conditions allow i, global
conservation of particles, energy and momentum must be ‘automatic’. The numerical
dissipation must be controlled in such a manner that in the absence of dissipation in the
conservation equations and the boundary conditions, ‘time-reversibility’ of the differential
equations must be mirrored by the numerical scheme. As spectral techniques are not effec-
tive in strongly nonlinear systems, especially as regards positivity preservation properties
(they are inevitably subject to the Gibbs phenomenon leading to overshoots and under-
shoots near the boundaries) a fully three-dimensional, explicit, finite-difference scheme
was chosen: Such a scheme has proved very effective in modelling very complex multi-
phase flows which occur in fission reactor safety analyses’>. The two-fluid Braginskii-like
equations in three spatial dimensions represent a formidable challenge to these techniques.
Provision is made for mesh resolutions 2%, =% to be such that p; ~ 0.1Ar. This cor-
responds to mode numbers m, n upto about 20. The time step is of order 1077 secs,
clearly sufficient to model frequencies upto 100 khz. The code runs both on the Cray-2
at Harwell and the ‘Hitech’ workstation in only three times the Cray cpu time.

The highlights of the code development so far will now be summarised. If F(r,0, z,1)
is any function satisfying the conservation equation,

8F

E-}'V.VF:SF - (1)

the problem is one of passive transport if the field v is prescribed together with the
source function. Choosing the source to be zero and suitable boundary conditions, we
have verified for a variety of ‘turbulent’ velocity fields expected in tokamaks that the
code evolves Eq.(1) in a consistent way. Thus, initially non-negative F’s are maintained
non-negative for all times. The integral [, Fdv is kept constant to sufficient accuracy
for time-scales long compared with typical variations of F. The numerical diffusivity of
the scheme in its primitive form is of order | v |, Ar. This is clearly smaller than
the ‘Bohm’ value, v;;0;. In fact, by a special device, the numerical diffusivity has been
lowered sufficiently for the finite-difference form of Eq.(1) to exhibit ‘reconstruction’ to
the initial state when the velocity field is reversed after a certain period of evolution
‘forward’ in time.

It has also been checked that the code leads to real transport losses of the expected size
when the boundaries are made ‘absorbing’ even though the equation is fully reversible.
This is an example of ‘dissipationless phase mixing’ in the confinement zone leading to
transport losses due to irreversible boundary conditions at the edge. Longitudinal sound
waves and drift waves have been found to be calculated in accordance with existing linear
theories. The treatment of sound waves showed that the energy equation should be
solved in the ‘entropy’ formulation to get the best results for the given level of finite-
difference approximation. At the moment, the code works with only electrostatic modes,
the electron physics being treated adiabatically. After exploring this regime somewhat
further nonlinearly, it is proposed to investigate the full electromagnetic capabilities of
the code. The ultimate aim is the direct simulation of the relatively long wavelength, low



frequency drift and tearing modes in cylindrical geometry. The resultant power spectra
and transport properties will be studied with realistic applications in mind.

3. DRIFT:
3.1 Choice of Scheme: Of the many drift wave turbulence models *, we have chosen the
system derived by Biskamp and Walter® for electrostatic drift waves in a sheared magnetic
field that also includes non-adiabatic effects. Accurate computation of this system in the
appropriate limit is known to be difficult, due to the appearance of small-scale features.

Previous authors have mostly used spectral schemes to study nonlinear drift wave
interactions. We should like to be able to study the effects of varying boundary conditions
which is not easy for any method which employs global basis functions. Moreover, such
functions are invariably smooth, and do not represent solutions with strong gradients
well. The work of Morton® provides an approximate theoretical argument for preferring
Lagrangian-coordinate-based methods. Their use when advection dominates is, in any
event, very compelling from a physical point-of-view.

We have chosen to employ the extended PIC or EPIC method proposed by Eastwood™.
In brief, the mass density p and the parallel canonical ion momentum g become attributes -
of particles distributed initially uniformly throughout the computational domain. These
particles move following the lines of constant electric potential &, where @ is calculated
from p by introducing a uniform mesh using the ‘dual basis’ method. The variables p and
g change due to the effects of diffusion, shear, etc.

3.2 Practicalities: Although the basic scheme is very elegant and simple, its actual
- implementation was a lengthy business. Preliminary investigations showed the impor-
tance of considering a difficult test case, where the coherent part of the numerical error
dominates the fluctuations. Early calculations supported the elementary inference that
accurate tracking of the particle trajectories is crucial. The trapezoidal rule was found to
be superior to schemes of the same formal accuracy because it has the property that, if
® is independent of the time t, particles remain on lines of constant ®. Although this is
technically an implicit scheme, if the dual basis consists of piece-wise linear (‘chapeau’)
functions, explicit formulas are easily obtained, at least within each computational cell.
The non-adiabatic drift wave equations take the form (Biskamp and Walter®):

%(@ — 7’ + b,y) = (b.V)y, o (2)
d'U" _

where, b = (6,y,0,1). The first test problem is in 2-D and sets v = 0, i.e, concerns the
diffusionless Charney-Hasegawa-Mima equation. We solve in the unit box with periodic
boundaries for §, = 100 and initial conditions ¢ = sin 107z sin 8xy.

Numerous runs indicate the importance of defining energy as £ = 13 pidp(xi),
where 1 is a particle index and P a mesh label. The inferiority of other schemes is then
plainer and the use of three time-levels in the particle integration is seen to be advanta-

. i e AR B A
geous. The energy error AE increases linearly with time at a rate && = 2o £l L
g3 3 : 39 (az)2npn



This formula was derived assurmng correlated fluctuations, at the level of truncation er-
ror enhanced by feed-back. Empirically @ ~ 7. The high power of At is unfortunate,
since it negates a possible asset of EPIC, namely no restriction on the Courant number c.
AE[t ~ 20 may seem large for ¢ = 3, Az = 3; and number of particles per node, n,, = 4,
but our results show that for the Lax-Wendroff-Taylor-Galerkin scheme (Lhner et al3),
the error is an order of magnitude larger at equivalent parameters and computational
cost. For EPIC at ¢ = %, AF is down at the fluctuation level.

We have also checked the growth rates for the sheared system in 3-D (§, = 100). The
linearized solution given by Biskamp and Walter® grows in energy at a rate v = 2%

a+k =
31.04, where £ = 2= is the wave number. Runs with b = 3, &= and & gave v = 48.0,
34.7 and 31.8 respectively. This rate of convergence appears slow because the problem is

driven by the boundary conditions.

4. Conclusions

In conclusion, CUTIE has been developed to the point where a number of interesting
electromagnetic turbulence investigations can be made. We have designed and written a
qualitatively consistent, stable, time-evolution code for the two-fluid equations in cylin-
drical tokamak geometry with suitable conservation properties. In parallel, fundamental
studies of drift wave turbulence are being made with DRIFT. Indeed, DRIFT is the first
large code to employ the EPIC scheme. EPIC’s good stability and accuracy properties
will be a considerable asset in the pianned investigation of electrostatic drift wave turbu-
lence. The two approaches are together expected to lead to a better understanding of the
difficult problems involved in the direct numerical simulation of tokamak turbulence.
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ANOMALOQOUS TRANSPORT DUE TO THE SKIN SIZE
ELECTROMAGNETIC DRIFT MODE IN TOKAMAKS

Akira Hirose

Department of Physics, University of Saskatchewan
Saskatoon, Saskatchewan S7N OW0, Canada

The presence of skin size (k = w_ /¢) elecfromagnetic turbulence in
tokamaks has originally been speculatga by Ohkawa (1) who has proposed the
well known formula for the anomalous electron thermal diffusivity given by

2
x, = (c/wpe) w__

Here, w_ = v_ /qR is the electron transit frequency. Subsequent attempts to
identifyclinegg electromagnetic instabilities in the region k. = w /c have
not been very successful.(2) The nonlinear down cascade of the eleBBrostatic
shorter wavelength n mode (3,4,5) is unlikely because a recent electro-
magnetic analysis of°the 7 mode {(6) has revealed that the critical B (or «,
the balloning parameter) 1§ not too much different from that of the ideal
MHD balloning mode.

In a low B tokamak discharge, the skin depth ¢/w_ and the ion Larmour
radius are comparable. Therefore, a fully kinetic (rBfher than adiabatic)
ion response should be employed for more satisfactory stability analysis in
the regime kiﬁ @ /Jc. Electron. dynamics should also be treated kinetically
incorporating kihétie resonances (magnetic drift and Landau resonances).

The ion response for modes having w >> @, {the ion bounce frequency) is

2 VH e
£ = - T Fgy ¥ Jo(Al){¢ N AH] TT Ei (1),

while the electron response for w < LA is approximately

ed 0=, 2 M e
e ‘
£, = T fHe - — Jo(Aej) [¢ T c Allau_'l] T fHe (2)
e - wDe - k"v 3 e

I uy

where j = U (untrapped electrons) is for IVHI >Ve v , j =T (trapped elec-

L

trons) for Iv"| < Ve v A _=q klvl/VE Qe, 5* is the energy dependent dia-

eT
magnetic frequency with a temperature gradient, and @_ is the velocity
dependent magnetic drift frequency. (Remaining notation is standard.) The

charge neutrality J(fl-fe)d3 = 0 and Ampere's law VEA" - —{4me/c) v"(fl-f )d3
(-3

yield the following dispersion relation

2 W 2 (4] \ 2
k+2[p°}F +2[L]F [F + F —l—r(l-—F)]
Cc ell2 C 12 el eTO io
mpe 2 ' 2
-2 [ C] [Fe01 + VIm/M Fn] (3)

where
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F - ([ ] IZ(A )> (4)
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Ti W+ W - k. v
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n® W e 2
¢Jn Vi w-w - k,v38 ° el /]
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with < > for averaging with a Maxwellian weighting. The norms of the
operators kl, ij’ k" for a strongly ballooning eigenfunction are (7)

<ki> - k;[l + (03 - 7.5)8° - 10sa/9 + 5a2/12] ' (6)
w > =260 (2/3 + 55/9 - 5a/12) | (7)
2 2 2
I 1 1+ (/3 - 0.5)s" - 8se/3 + 3a /4 8y -
3@y 1 + (n?/3 - 2.5)s° - 10sa/9 + Se2/12
where s = rdlngq/dr is the shear parameter, « = - qudB/dr is the ballooning

parameter, and < > here indicates the norm of an operator in the ballooning
space. '

Figure 1 shows the growth rate normalized by the ion transit frequency
k"vTi when 8 = 0.2 and 1%, T = 1, cn = 0,3, € = 0,25, ne =7 =2, 58=1,
q = 2. The growth rate peaks at ke ~ e/c relatively insensitive to 8,
which is weakly destabilizing. The max ifitm growth rate is of the order of
the acoustic transit frequency. Stabilization at short wavelengths is due to
the finite banana orbit of trapped electrons. The mode frequency is approx-
imately given by w = 2¢ v, . The instability persists even when trapped

s o n_*e A

electrons are artifically suppressed, although the growth rate is reduced.
In this case, the source of the instability is in the inverse Landau damping
of untrapped electrons, as for the electrostatic toroidal drift mode.

The quasilinear particle and electron thermal fluxes are given, respect-
ively, by

chke e¢k 2
r=- ): Im Fio eB [T} no (9)
k i
cT k ep |2
e B k .
Qc = Z Im eq eB [TJ noTe (10)
. k e
where
mvz © - ‘;*c 2 v"Des 2
B eq <ﬁ— — Jo (AcU) L- v_ F >
e ~w -kv Te el u
De e
e © 5* 2
e
+ <ﬁ E— JO(ACT)> {(11)
e W - W T
De .
with Des - FeUO + FeTO -1 -T(l - FiD) being the electrostatic dispersion

relation when equated to 0. Fig. 2 shows the imaginary part of F and F
for the mode shown in Fig, 1 (8 = 0.2%). Im F is predominantly ﬁositivg?
Therefore, I' is predominantly negative (anomalo&s pinch, ' < 0). Im F is
positive, indicating Qc > 0. e



Nonlinear saturation of the instability is a challenging theoretical
preblem. For a qualitative estimate of the electron thermal diffusivity,
we resort to the mixing length theory (8)

1 +7
e

2
x =L (1 +ad)
e 2

ko e
1

where the factor 1 + qu is to take into account a possible enhancement due

to the toroidal geometry, and the factor (1 + ne)/ne is due to the disparicty

between D and ¥ (D << x }. (9) Since ¥ = k,c¢ = ¢ /qR, and k, = w Jc, we
- e e | s i pe

obtain

(12)

c 2 cS 2 1+ ne
X, = [ar—] R (1 + Aq)
pe

(13)

e

This formula has been tested against the ¥ profiles deduced from JET dis-
charges. (10) Fig. 3 shows experimental ¥ ¢ profiles in (a) ohmic, (b) ohmic +
ICRH, (c) ohmic + NBI, and corresponding i with A = 2 in Eq. (13). Agree-
ments within a factor 2 can be seen. It is noted that the parameter A is the
only adjustable unknown. The formula has also been compared with the TFTIR
chmic data (11) by Hiroe (12) with a favorable agreement.

The thermal diffusivity given in Eq. (13) is proportional to

1+
e

(14)

A heavier ion mass is favorable (the isotope effect). A larger plasma current
also improves energy confinement. Both features have been observed experi-
mentally.

In summary, it is shown that a low B (below the MHD limit) tokamak
discharge 1s unstable against skin size electromagnetic "drift" mode with a
maximum growth rate of the order of the ion acoustic transit frequency. The
proposed anomalous electron thermal diffusivity satisfactorily recovers the x
profiles in three different types of JET discharges and that in TFTR ohmic
discharges.

This research has been sponsored by the Natural Sciences and Engineering
Research Council of Canada.
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Magnetohydrodynamical Formation of Astrophysical Jets
from Gravitationally Collapsing Objects

Yulaka ICHIDA
Departinent of Astronomy, University of Tokyo
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Abstract

1t is well known that there are jet-like phenomena in a wide variety of astronomical hierar-
chlen, ranging from substellar to galatic, with scales of 10* ¢ in Lhe case ol stellar spicule jots,
F0'%cin in the case of star-funnation Lipolar jets, and 10?3cw in the case of radio jots and lobes
from active galaclic nucleni and quasers. These are usually seen to he relaled with large scale
maghetic field in a characteristic way.

In the present paper, we Lake up the case of the hipolar jets in the star formation as an
example, and demonstrate that a magnetohydrodynamic mechanism proposed by the present
author by noting that the cenlral active objects are the gravitationally collapsing objects which
brought a part of the large scale magnetic lux with their mass. The ceutral object consisted of
the accreting disk with angular momentum rotating around the forming star at the center twists
np thal part of the magnetic field through the differential rotation in the disk. When the thus-
generated large amplitude torsional Alfven wavepackets relaxing Lhrough the atmospheric part
of the accretion disk into bipolar direclinus, the packets drive the atmospheric mass into helical
bipolar flows whose axis lie in the direction of the large scale magnetic field, “I'he production of
such nou-linear torsional Alfven wavepackets by the rotating disk causes a continnous draining
of the angular nomentun from the disk. Thia allows further accretion of the disk mass towards
the central object, liberatlng the gravilational energy from the iuner part of the disk, and the
magnetic field transports a part of this to hipolar directions through magnetic stresses,

The model predicts that the Jets will be spiuning inherent to Llie maguelic stress involved.
This *dynamically sweeping pinch’ character causing spitning jets makes a good contrast with
the nodlels proposed thus far: based on the *wind from the central object’ having a negligibly
small angular montentinn, the jets in the previous models will not show any spinning. Therelore,
recent delection of the spinning velocity field in some of the bipolar flows gave a strong support
to our magnetic model. '

The model has been extended to the case of large scale radio jets and emanated from the
central object of active galactic nuclei and quasars. [ this case, the central ohjecl we assume
is a giant blackliole at their center surronuded by a compact disk with high density and strong
nagnetic field, and the process physically similar to the star formation case hub with much
targer energy will be taking place. We report the detail of the model and the results of onr 2.5D
MITD simulatlions we have perforiued for these cases.



Computer Simulation of Solar Wind-Magnetosphere Interaction

K. Watanabe and T. Sato
National Institute for Fusion Science Nagoya, 464-01 Japan

A. Kageyama and A. Usadi _
Faculty of Science, Hiroshima Univ. Hiroshima, 730 Japan

A three-dimensional high accuracy magnetohydrodynamic ( MHD ) simulation code
was developed, in which the 4-th order Runge-Kutta-Gill method and the direct finite dif-
ferénce method were adopted. We have performed a global 3-D MHD simulation of the-
magnetosphere involving the distant tail { to 100 Rg ) using the new simulation code.

Initially, the geomagnetic field is given as the superposition of a dipole field placed at
the center of the earth and its mirror image dipole outside the solar boundary, so that the _
magnetic field has no component perpendicular to the solar boundary. As the solar wind
flows from the solar boundary into the simulation box, the initial dipole field is deformed
to the magnetosphere configuration, forming the bow shock, magnetopé,use, polar cusp,
plasma sheet, etc. within 1.5 hours. The features of the formed magnetosphere is shown
in the left top panel of the Figure 1, where magnetic field lines and solar wind streamlines
are drawn for the meridian cross section.

The magnetosphere formed in this simulation is not in a stationary state. The
plasma sheet in the region x = -15 to -30 Rg continues to thin and finally, at t = 1.62
hours, magnetic field reconnection occurs in the plasma sheet at x = -16 Rg in the equa-
torial plane ( the x axs is along the sun/earth line with the positive direction pointing
towards the sun ). As a result of this near-earth reconnection, a plasmoid is produced
and ejected tailward which is shown in Figure 1: Its size grows to more than 80 Rg and
its speed is about 80 ~ 100 km/sec. This plasmoid leaves the simulation box at t = 6.59
hours. After this plasmoid ejection, the width of the magnetosphere reduces by about
5 Rg. The ejecting plasmoid takes flux from the lobe field out the system with it, thus
causing this reduction in magnetosphere width. The ejection of the first plasmoid was
followed by a second feconnection and plasmoid ejection.

Though a small constant resistivity is assumed in the plasma sheet ( magnetic
Reynolds number 1000 ), no artificial methods are imposed to.trigger the reconnection.
Since the magnetic reconnection on the nightside is triggered by the cross tail current

in the plasma sheet, the reconnection is considered to occur at the place where the tail



current has its maximum value. In fact, the reconnection point is at x = -14 ~ -18 RE in
our simulations which is roughly at the demarcation region between the hard core of the
dipole-like field and the tail configuration. This is the most fragile region in the magneto-
sphere. The intensity of the tail current as well as the magnetic field lines in the meridian
plane are drawn in Figure 2, where the region of the strongest current is indicated in
white.

The neutral point in the plasma sheet is located at about x ~ -20 Rz throughout the
ejection processes of the plasmoid. The point on the surface of the earth that is connected
to the neutral point by a magnetic field line is at about 64.1 ° to 64.5 ° in latitude.

It can be easily ifnagined that the existence of the Interplanetary Magnetic Field (
IMF ) will enhance or suppress the reconnection rate on the nightside due to compression
or decompression of the plaéma, sheet. Next, we performed global simulations in which the
solar wind with a southward or northward IMF is injected into the simulation box after
the magnetosphere is almost completely formedA( about 1 hour after a nonmagnetized
solar wind is introduced ).

Figure 3 shows the time development of the magnetospheric structure when there
is a southward IMF. The IMF reconnects with the geomagnetic field on the dayside, thus
carrying it towards the nightside of the Earth. The IMF connected to the geomagnetic
field piles up on the nightside magnefosphere and compresses the plasma sheet, increasing
the temperature and pressure. In this case, the reconnection rate in the plasma sheet is
enhanced and the size of the resultant plasmoid becomes large in a time short compared
to the case without an IMF. The speed of the plasmoid is almost the same or a little
higher than the previous case. It is noticed that the reconnection point in the plasma
sheet is the same place as the case without an IMF. This fact suppoorts the above men-
tioned idea that the tail current peaking, hence reconnection, occurs at the demarcation
region between the hard core of dipole-like field and the tail configuration. The current
peaking at this point is seen more clearly than the case with no IMF. In this simulation
the nightside reconnection starts about 20 minutes after a southward IMF arrives at the
dayside geomagnetic field. This shows a good agreement with the fact that magneto-
spheric substorms are often observed tens of minutes after a southward turning of the
IMF. | ’

In Figure 4, the simulation results of the case with a northward IMF are shown. In
this case, the northward IMF reconnects not on the dayside closed field line region but
on the shoulder of the geomagnetic field lines which are blown off toward the tail by the

solar wind. Consequently, the reconnected shoulder geomagnetic field lines are stripped



off from the nigthtside magnetopause, decreasing the temperature and pressure. As can
be seen in Figure 4, reconnection in the plasma sheet does not occur and hence, no plas-
moids can be observed. It is interesting to note that as a result of the stripping of the
geomagnetic field, the structure of the geomagnetic field returns to its initial dipole-like
field.
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Rapid Acceleration of Protons in a Nonlinear Magnetosonic Wave
and Their Energy Spectrum

Y. OHSAVWA and Y. TERASHIMA

Plasma Science Center, Nagoya University, Nagoya 484-01, Japan

Abstract -

This paper describes the prompt proton acceleration to relativ-
istic energles in a large-amplitude magnetosonic wave which can take
place in a rather strong magnetic field such that the electron cyclotron
frequency is greater than the electron plasma frequency. The acceler-
ation time is of the order of the ‘ion cyclotron period. A fully
electromagnetic, relativistic particle simulation shows that the diff-
erential energy spectrum of those accelerated protons can be very hard;
it can have a truncated power-law form with the spectral index about
unity. Using these energy spectra of protons, the energy spectra of
gamma rays from the decay of neutral pions are calculated. These
results indicate that this mechanism can explaln the rapid proton
acceleration in solar flares. :

§1. Introduction ‘

It has been recently found (Nakajima et al. 1983; Forrest et al.
1983; Kane et al. 1988) that solar flares can accelerate particles to
relativistic energies very promptly (s$1-s). Among those flares, the
1982 June 3 flare was especially energetlc event and was studied by many
authors (McDonald and Van Hollebeke 1985; Forrest et al., 18986; Chupp
et al. 1987). McDonald and Hollebeke (1985) observed the interpla-
netary profon spectrum associated with this flare and found that the
proton differential energy spectrum for this event is a well-defined
power law over the energy range 3 MeV - 200 MeV with a spectral index
of 1.2, Observations of gamma rays and neutrons also showed that
relativistic protons with energies a few GeV are promptly produced in
this flare. (Gamma rays with energies greater than ~10 MeV are emitted
from the electron bremssstrahlung and/or the decay of pions, which are
generated from collisions of high-energy protons (2300 MeV) with
background ions.) The energy spectrum of gamma rays is so flat and can
be fit quite well if the parent ion spectrum has the same shape as the
interpalnetary proton spectrum. A stochastic acceleration model can
not explain either the prompt- acceleratlon or the hard energy spectrum
extending beyond t GeV.

On the other hand, it has been recently recognlzed (Ohsawa 1985;
Tokar et al. 1987) that a large-amplitude magnetosonic wave can
promptly accelerate some ions to high-energies through one or multiple
reflections of ions by the large potential jump in the wave front; the
acceleration time is of the order of the ion cyclotron period. In
particular, when the electron cyclotron frequency is greater than the
electron plasma frequency (wceRwpe), protons with relativistic energies
can be produced (Ohsawa 1986ab; Lembege and Dawson 1989). The condition
WeeRlpe Can be satisfied in some coronal magnetic loops. Therefore,
it is expected (Ohsawa and Sakai 1988) that relativistic protons can
be promptly produced in solar flares if large-amplitude magnetosonic



waves are excited in coronal magnetic loops in assocliation with solar
flares.

In this paper we briefly describe our theory and particle 51mula—
tion of a large-amplitude magnetosonic wave and associated proton
acceleration. We also discuss resultant energy spectra of protons and
gamma rays from the decay of neutral pions.

§2. Ton Acceleratlon and Spectrum

We may classify ion orbits in a perpendicular nonllnear magneto-
sonic wave into three basic patterns. In the first type, ions pass
through the wave without strong interactions. Most of ions belong to
this type. In the second type, ions are reflected only once by the wave
and gain.a great amount of energy; after the reflection, they return
to the wave front by the lorentz force and pass through the wave. The
final maximum speed of these ions is vzbha+(2xmh/m;)vz, where vy is
the Alfvén speed, M the Alfvén Mach number, ¢, the maximum value of
the potential; for a stationary solitary wave, it 1s given by
e¢h=2mnﬁ(ﬂ-l). In the third type, ions are reflected several times
by the wave front. The final max1mum ﬁ?QEd of this type of ions is
limited by the value u~up(mi/me)'/?(M-1)°

We show in Fig.1 the ion orbits of the second (Fig.la) and third
(Fig.1b) types. (We have carried out numerical calculation of single
particle orbits in stationary electric and magnetic fields of a sta-
tionary solitary wave.) The third type reflection can take place when
the wave propagation velocity and the ion velocity in the direction of
. the wave normal are very close in the wave front. When the gyration

speed 1s much smaller than the wave propagation speed, the third type
reflection does not occur. Hence, the second type reflection is
important when the Alfvén speed is much larger than the ion thermal
speed.

Next we show results of a relativistic electromagnetic particle
simulation of a perpendicular magnetosonic shock wave. The particle
simulation follows the evolution of the wave and particle motion in a
totally self-consistent manner. The plasma parameters in the simula-
tion were wee/wpe=3.0 in the far upstream region, the plasma beta value
B=0.02, and the electron inertial length c/wpe=4. The mass ratio was
mi/me=100. The Alfvén Mach number was 2.7. Figure 2 shows.ion phase
space plots (z,p:) and (z,p;). for this shock. A number of ions are
rapidly accelerated to relativistic energies in the shock front. We’
plot in Fig.3 ion energy spectra at wpet=0 and at w,t=408. It indicates
that a large-amplitude magnetosonic wave can produce flat energy spec-
trum such as observed in association with the 1982 June 3 flare.

In order to make more detailed comparisons with observations, we
are also studying gamma-ray spectra emittéd from the decay of pions.
Figure 4 shows energy spectra of gamma rays from the decay of neutral
pions which are generated from collisions of high-energy protons with
background protons. The power-law forms of the ion spectra produce much
harder photon energy-spectra than do the modified Bessel function forms
{(for more details, see Ohsawa and Terashima 1990). The calculation of
energy spectra of photons arising from charged pions is under way.
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Effect of Pressure on Mode Transition Point of Partially
Relaxed States with Peripheral Loss

Yoshiomi KONDOH

Department of Electronic Engineering, Gunma University,
Kiryu, Gunma 376, Japan

The well-known g = 0 Bessel function model configuration
(BFM) was given more fundamental significance by Taylor who used
it to explain the relaxation and the production of the reversed
field pinch (RFP) configuration.1:2 The mode transition point
"from the cylindrical state to the mixed helical one for the g = 0
BFM of the force-free equilibria, uo. J = A1 B, was studied by
Taylor with wuse of analytical solutions giving minimum magnetic
energy!' 2 and by Jensen and Chu with the use of an eigenvalue
analysis.? The deviation of the experimental data’% from the
theoretical result by the BFM is considered to be connected with
the deviation of the experimental profile of A from the constant
A profile in the theory by Taylér, because of the high plasma
resistivity near the wall by the plasma-wall interaction as was

pointed out by Taylor himself.2 The energy principle including
the effect of the peripheral 1loss has been developed by the
present author.5:6 The effect of the A profile on the mode

transition point has been investigated in detail in Refs.6 and 7.

The equilibrium equation of the partially relaxed state
plasma is given as follows in the orthogonal magnetic coordinate
system (- ,w ,§ ),*® '

5% AeA(p)IB/ uo + po(dP/dp )(VE / | VE | 2), (1)

where A o and pe are the current density ratio # o3/ B ) and
the pressure at the magnetic axis, respectively, and A (3 ) and
. P{yp ) denote respectively the normalized profiles of A and p by
" A ¢ and po. The relaxed states are characterized by having their
own unique profiles of A {y ) and P(y ). Using two different
processes of formulation, the energy integral for the nonideal
MHD plasma ( in the sence of the increment of the potential
energy & ?F in the second order. associated with the perturbed
vector potential and the perturbed current density ) is derived
in the following form, as was reported in ref.6, '

§2F = § voed A5 [J-(ABA puo)-(dp/dp )(V E 7| VE | 2)lav
. 4(1/ #e)(Z § 5 (5 AX S BIi-dS + § su(5 AX & B)-dS) > 0, (2)

where & A and § B are the variations of A and B, respectively.

Here, 8 [ ] in the integrand is the first variation of the quan-
tities in [ ], Sw is the boundary wall surface, Si is the sin-
gular surface where & B is singular, and § [ ):-dS denotes the
difference of surface integral between the inside and the outside

surface on the singular surface S; .% The energy integral
d 2F(& A,§ A) has the symmetric quadratic form with respect to
arbitrary & A that satisfies § 2F(d§ A*,§ A) = § *F(5 A, 8 Ax) .6

Reminimizing & 2F with respect to the variation of § A it-
self to find the most dangerous perturbation against stability,



we obtain the following three Euler equations for the reminimiza-
tion of & 2F,6 '

L J-{(AB uoe) - (dp/dp (VL 1 vE 12)] =0

{ inside the regions where & B has no singularity }. (3)

§js = [ n x&B ]It =0 ( at the singular surfaces S8; ). (4)

n X &B =0 ( at the wall surface. Sw ). {5)

Here, n is the unit normal vector defined by n = dS8/dS at S; or
at Sw. Since eq.(4) indicates that the marginally stable per-
turbations for singular mode, such as the tearing mode, must have
no singularity at 8i, the overall stability limit for ©both the
non-singular and the singular perturbations is determined by the
solutions of the Euler equation (3).% The mode transition

points of relaxed states are given by the eigenvalues of the fol-
lowing associated eigenvalue problem for the Euler equation (3),
as was shown in ref.6, ‘

TXVXSA - Aidl Alp )V XA i |
—popi ( A2P/dp 2)( SAise,/ | VE |2 ) = 0, (6)

with a given boundary condition at the wall, where A ; and pi are
the eigenvalues and the subscript i denotes the eigensolution,
d Aiy e, is the § component of § A;, and the relations of uoj =
VXVXA and §A =6y TVE+F ¢ Vw-6d wvV ¢ are used.s When
we use the ideally conducting wall, the boundary condition is
d A XdS = 0. The meode transition takes place at the point where

Ao = Ai, =and po = Dpi. (7

The mode transition points given by eq.(7) also represent the
bifurcation points of the equilibrium configuration determined by
the equilibrium equation (1), which is generally equivalent to
the Grad-Shafranov .equation for the axisymmetric toroidal equili-
bria with the relation of A (® ) = uxo dI{(yp )/dy , where I{yp ) is

the current flux function.?® In the case of the idealized model
for relaxation by Taylor without net loss of helicity,!s2 the
relaxed state, so called " the fully relaxed state ", is given by
A(yp ) = 1 and dP/dy = 0, and the associated eigenvalue
problem, eq.(6), is written as V X ¥ Xxai - 2:(9)Y xa; = 0,
where A i(©9) denotes the eigenvalue for the case of the fully
relaxed state. Following Jensen and Chu,? we note that the
eigenfunctions, a;, form a complete set. '

Since it is difficult to solve eq.{(6) directly, we have solved
it to the first-order approximation by the perturbation method
with the assumption of the ideally conducting wall, in the same
“way as was used in ref.6. We represent A (1 ) and dzP/dy 2 as
A{y) =1 - gE{yp ), and d*P/dyp t > ¢ d2P/dp 2, where & 1is an
artificial small parameter. We expand § A and A ;i as & A; =
A + £ 58 ALY + ... , and A = A:(9 + g A0y 3 ,
where & Ai{(92) and & Aif!l!)Y are the O0th and the 1st order solutions
respectively, and A (%) and A ;¢ are the 0Oth and the 1lst order
eigenvalues, respectively. Using the same procedure used in
ref.6, we obtain the following form of the smallest positive

_88..._..



eigenvalues A ; and p; in the 1lst order approximation,

A1 + & po.lell = ;{.1(0.) (1 + &Gy ), . (8)
where Gik = § {{(ai- vV X ax)E + (a3 ax-B/ | v & | )dE/dy ]Jdv, and
Hix = § (d2pP/dy ?2)(ai; ag;/’l v & ] z)dv.

Taking account of the experimental RFP plasma which has the
finite pressure gradient and satisfies the boundary condition
that the current density J = 0 at the wall, the present author
had introduced the partially relaxed state model { PRSM ) and
developed numerical codes for the RFP equilibria and for the mode
transition point of the relaxed state.8:9:6 In the PRSM, various
trial functions are used for the A {(p ) profile, and the pressure
profile is determined numerically by using the Suydam criterion
with the Suydam parameter S, where the stable region is S£ 1.8:°9
We use here one of the simplest trial functions for the A (y )
profile, which is given by .

Al ) = AcA () = Ao{l-{(yp - ax)/(¥ w-y ax}]In}o, (9)
where the subscripts ax and w denote the values at the magnetic
axis and the wall, respectively. Changing the four parameters of
S, s , m, and n, -  we obtain numerically various configurations
of the PRSM for the RFP equilibria which satisfy the Suydam cri-
terion. Using an iteration method, we obtain the mode transition

" point given by eq.(8). Numerical result of the pressure term in
eq.{8) for the case of 8 = 1 and n = 0 1s 3.72x 10-2/rw which is
quite small compared with A :(°) = 3.11/rw. This result indicates

that the effect of the pressure on the value of 1 : is not strong
for the Suydam stable pressure profiles. However, when we further
calculate the pinch parameter & at the mode transition point, we
notice the strong effect of the pressure on the mode +transition
point in the F-8 diagram. Figure 1 shows the typical numerical
results of the mode transition points ( @) in the F-¢@ diagram
for various values of S in the case of A = 1. The Taylor curve
and the mode transition point by Taylor (8 ~ 1.56 and F ~ -1.54 )
are also shown for comparison. It is recognized from Fig.l that
the transition points of mode deviate fairly far from the point
of @ ~1.56 on the Taylor curve, especially in the case of S = 1.
In Figs.2 and 3, we respectively show typical numerical results
of the A (p ) profile and those of the transition pecints of mode
for the case with n = 1, various values of m, and 8 = 0 { force-
free fields and hence Hi: = 0 in eq.(8)}. It is seen from Figs.?2
and 3 that the deviation of the A (% ) profile from A = 1 of
the - BFM leads to the move of the transition point.of mode in the
F-9 diagram. More detailed discussion on this force-free field
case was reported in ref.7. When we include the pressure effect
into the case of Fig.3, by using S = 1 ( the marginally Suydam
stable case ), we obtain numerical results of the mode transition
peint in the F-6# diagram as shown in Fig.4, where the Taylor
curve and the mode transition point for the BFM are also shown
for comparison. It is recognized from Fig.4 that the effect of
the pressure leads to fairly large shifts of the transition
peints of mode to the higher 8 region and makes them closer to
the experimental operating region reported so far.4
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[2] J.B. Taylor, Rev. Mod. Phys. 58 (1986) 741.



(3] T.H. Jensen, M.S. Chu, Phys. Fluids 27 (1984) 2881.

[4] H.-A.B. Bodin, A.A. Newton, Nucl. Fusion 20 (1980) 1255.

[53) Y. Kondeoh, J. Phys. Soc. Jpn. 54 (1985) 1813.

6] Y. Kondoh, J. Phys. Soc. Jpn. 58 (1989) 489. ‘
{71 Y. Kondoh, N.Takeuchi, et al., J.Phyvs.Soc.Jpn. 58 (1989) 887.
[8)] Y. Kondoh, Nucl. PFusion 21 (1981) 160T7T.

[9] Y. Kondoh, Nucl. Fusion 22 (1982) 1372.
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Relaxed state and entropy production
T. Kato and T. Furusawa

Department of Applied Physics, Waseda University, Tokyo,169

‘The relaxed states in RFP which are quiescent states and have been dis-
covered in the experimental results of the large toroidal device ZETA were
beautifully analysed by J.B.Taylor(1974). He assumed the single invariant
helicity K, in the derivation of the relaxed state. Although the assumption
on the invariance of the helicity integrated over the all magnetic field lines
seems to be reasonable, one can only verify the invariance of helicity inte-
grated along each line of magnetic flux. The validity of the ergodic property
of magentic field line necessitates the finite electnc resistivity of the MHD
fluid.

- To understand the relaxed states in RFP, We try introducing the ther-
modynamics of irreversible processes. Instead of the magnetic enery W =
J B%dt[(2u0) , we must use the entropy production in the plasma. The en-
tropy production due to the electric resistivity 7 of the plasma is expressed
by Ores = 3 [nJ%dr. The state of the minimum entropy production sub-
ject to the invariant K, is determined after the variational calculus with
respect to the vector potential A. The resultant differential equations which
determine the relaxed state are given by

VxVxVxB=+B (1)
with the following boundary condition on the surface

6A = 0and 6B-(J xB) = 0, (2)

where B = Vx A, ¥4 = 2\2/n and ) is Lagrange’s multlpher
Solutions of eqs.(1) sa,tlsfy the lower order differential eqs.

where w and «? denote the cube root of the unity. Eq.(3) with j=0 expresses
the force free condition and coincides with Taylor’s relaxed state. Although
the other two solutions of eq.(3) with j=1 and 2 also express formally the



force free conditioﬁ, their proportional constants yw and yw? are comple:{
numbers and the real and imaginary parts of these solutions do not satisfy
the force free condition, respectively.

The general solution of eq.(1) is gi\'ren by a linear combination of three
solutions of eq.(3) as

B = CoBo + C1B1 + C2B2. (4)

The ratio of three constsnts c; ’s are uniquely determined by the boundary

conditions (2) and magnitudes of ¢; and c¢; are found to be far smaller
than that of c¢q .

[ Cylindrical limit ] .

It is well known that the a.nalytlca.l solutions of eq.(3) with j=0 in cylin-
drical coordinates are given by the Bessel function Jo(yr) and Jy(yr)
.Obviously the solutions of the rest equations are expressed by the Bessel
function with complex argument ~w and yw?. The Kelvin function ber
and bei are the well known example of the functions. We define new real
functions L*(r) by the aid of the modified Bessel function I, (r)

) = Ro(FILGeN) £ Le0), ()

which can be evaluated by the numerical calculation by using the integral
representation of the modified Bessel function. _

The boundary condition (2) on the cylindrical suface of radius a is reduced
to the condition on the components of the current J as

Jo=J,, =0 onr=a. (6)

The resulting components of the magnetic field are expressed as

Be(?‘)_ = Jx(‘rr) — [1,B; — 1B} Bi(r) - {l1 B — LB\ B3 (M} /(v8), (7)

B.(r) = Jo(’rf“) {[41B; ~ JoB31Bi(r) — [11Bi — bBJBL(")}/(v2), (8)

where A = B;Bz — B'B; and By(r) = Lf(r) ,Bi(r) = Ly{r), Bi(r) =
L3(r) ,and Bi(r) = Ly(r). The values of the component of magnetic field
on the boundary surface are denoted by capital letters without argument.



The relation between the values of the helicity and energy W is given by
Taylor. We obtain the relation between the entropy production o,., and
helicity K, .

Ores — UnKg = /n'(BxJ—PAxVxJ)ds, _ (9)
The right hand side of eq.(9) can be evaluated when the model is specified.
[F—6 diagram]

Using these components of the magnetic field, we can draw F —8 diagram
whose coordinates are determined by the following formula

_ Be{wall) _ By(wall) :
9—<Bz> and F_<B,>’ (10) -
where
<B.>= I B (r, zgrdrdﬁ. - (11)

wa

Some of the numerical example are shown in figure 1. For small 7 |, the
F — 6 curve coincides with that of the Bessel function model. The curves
shift outwards and cross the 8 -axis at the points § > 1.2 as n increase and
finally shows erratic behaviors. '

[Viscosity]

From the view point of the thermodynamics of irreversible processes the
entropy production due to the viscosity and thermal conductivity of the
plasma are available for discussion of the relaxed state:in RFP. The problem
~ of the thermal conduction is substantially nonlinear and the present analysis
are greatly simplified by assuming uniform temperature distribution. The
enrtopy production due to the viscosity ( is given by,

aU, 31};; .
B 2./< sz 62:.) ar. (12)
The viscosity of plasma in a magnetic field depends on the angle between the

* velocity gradient and magnetic field. We consider the stress is parallel t.o the
magnetic field and 1ncompre551ble plasma.



The state of minimum entropy production subject to constant kinetic
energy is similarly discussed. In cylindrical coordinates, the resulting differ-
ential equations are reduced to

Viys + PBvg = 0and Viu, + %-Zv’ = 0. (13)
r .

It is assumed that the components of the velocity depend on r only and
v,(r) = 0. The magnetic field B and velocity v coulpe through the viscosity

coefficients . But analysis of the mutual relation through the viscosity
coeflicient is seemed to be difficult. Another coupling is possible through the
some invariants other than helicity.

[References] :
1)].B.Taylor:Phys.Rev.Lett.33,1139(1974), Rev.Mod.Phys.58,741,(1986)
2)R.N.Sudan:Phys.Rev.Lett.42,1277,(1977)

(a) - (b)
Fig.1 F — 6 Diagram : F — 8 curves of present theory shift outwards
comparing to B.F.M. , (a)k=0.5 and (b)x=0.8



SIMULATION STUDY OF MHD RELAXATION AND
RECONNECTION PROCESSES

Kanya KUSANO, Kaito KUNIMOTO, Mami KUMANO,
.Teruo TAMANO! and Tetsuya SATO?

Faculty of Science,.Hirashima University, Hiroshima 730, Japan
Y General Atomics, San Diego, California 92138-5608, U.5.A.
?National Institute for Fusion Science, Nagoya 464-01, Japan

We have studied several nonlinear processes in fusion plasmas through the use of 3D MHD
simulations. In particular, we have shed light on: 1) dynamo and self-sustainment in reversed-field
pinch (RFP}, 2) sawtooth activity in tokamak, and 3) the heating and acceleration in magnetic
reconnection process. _

dynamo and self-sustainment in RFP: First, we investigate the detail of the dynamo
mechanism in RFP. Although it-is widely believed that the m = 1 kink mode instabilities lead
to a dynamo process like self-reversal, the role of nonlinear coupling between different kink modes
in the dynamo is still in dispute [1,2]. The contributions of the kink (m = 1) mode (linearly
unstable) and of the m = 0 mode (driven by nonlinear coupling) to the dy namo are qualitatively
evaluated by observing the amount of dynamo electric field on the reversal surface. It is found that
the contribution of the m = 0 mode is affected by the amount of the free energy driving the linear
instability. If the free energy for kink instabilities is smaller than 7% of Taylor’s minimum energy,
the m = 0 modes, driven nonlinearly, play a more important role in the flux generation process
than the kink modes. If not, (i.e. there are extremely unstable kink modes), the contribution of
the m = 0 modes decreases. It suggests that in the experimental plasma, where the stored free
energy is at most several percent of Taylor’s minimum energy, the m = 0 modes actually play an
important role for dyramao. ‘

Secondly, numerical simulations of the self-sustainment process in a RFP are performed. It
is confirmed that the self-sustainment process is a coherent oscillating process composed of the
MHD relaxation and-the zesistive diffusion processes. The excess magnetic energy, which appears
as result of the resistive diffusion, is quickly released by the MHD relaxation process. As this
+ process is repeated, the RFP configuration stays in the neighborhood of Taylor’s minimum energy
~state. We find that the MHD relaxation is triggered when at least two ideal kink modes hecome
unstable. This is due to the fact that two unstable kink modes nonlinearly drive the m = 0 modes,
which can effectively generate dynamo electric field. Therefore, in order to trigger the relaxation
the unstable region in the toroidal waveléngth space must be so wide as to include two different
kink modes. The difference of the toroidal wave lengths between the nelghbormg kink modes is
given by a decreasing function of the major radius,

ANE An = Apgr = X027 R 4 A0)L.

Because the wider unstable region requires the larger free energy, it is predicted that the critical free
energy for the relaxation process decreases with the increase of the aspect ratio. This predictlion
is numerically confirmed. Figure 1(a) and (b) show the history of the free encrgy for the aspect
ratio R/a = 1.6 and 4.8, respectively.” We can see that the free energy just before the relaxations
in Fig.1(b) is smaller about 1 or 2% of Taylor’s minimum encrgy compared with thosc in Fig.1(a).
These results sl.rongly support the nonlinear reconnection model for the m = 0 mode (3).

Thirdly, phase locking of kink modes is numerically observed in simulations of sclf-reversal and
self-sustainment processes. It ltas.characteristics similar to the ‘slinky mode’ observed in the OUTE
experiment [4]. We have in detail considered a question of what detcrmines the location where the
phase locking takes place. Figure 2 shows the relation between two toroidal locations z,, and Z4)s
for the 27 different simulations, those have different phase distributions in the initial state. The
location zp;, is where the phase locking takes place, but the location Zn, fn 18 the location where the

g5



two kink modes, (m;n) = (1,n;) and (1, n,), initially have the same phase. We can see that there
is a good correlation between the locations z,; and z,;,. However, for the other modes except (1;4)
and (1;5) we can not observe a correlation with the z,,. In fact, the modes (1;4) and (1;5) are the
most unstable modes in the initial perturbation. These results mean that the most dominant two
kink modes rule the other modes through the nonlinear coupling between them, and introduce the
phase locking. We also confirm that if the most dominant mode (1;5) is excluded from the system,
the phase locking process becomes more obscure.

sawtooth activity in tokamak: Sawtooth activity in tokamak plasma is numerically investi-
gated. Although the employed numerical model is rather simple (cylindrical geometry, scalar heat
conductivity, and uniform density), we can find that two different types of sawtooth oscillations
appear depending on the amount of heat conductivity. One of them is similar to the conventional
Kadomtsev’s type sawtooth [5], where the internal disruption is triggered by the reconnection for
the resistive kink (m = n = 1) mode. On the other hand, the ancther type sawtooth does not
involve any reconnection processes. In whole sawtooth period, the g-value nowhere goes down to
less than unity. The fast crush of the central temperature is triggered by the growth of a pressure
driven instability. It is much similar to Wesson’s interchange model of sawtooth [6]. The quan-
titative relation of these sawteeth on the heat conductivity is investigated and it is {found that
the sawtooth mechanism is changed from the Kadomtsev’s type to the Wesson’s type as the heat

conductivity decreases. Figure 3 shows the typical sawtooth oscillation (the history of the central
temperature) of the latter case. '

heating and acceleration in magnetic reconnection: We investigate the magnetlc recon-
nection process as the heating and the acceleration mechanism of plasma. We find that reconnection
can accelerate plasma over an local magnetosonic speed under a certain condition. This is a result
of the fact that the magnetic field in the downstream area plays a similar role to de Laval nozzle,
if the direction of the eleciric current in the downstream area is opposite to the current at the
reconnection point. We also investigate the viscous heating of the super-magnetosonic plasma as a
possible mechanism of the effective ion heating, which is observed in many RFP experiments.

{1] K.Kusano and T.Sato, Nuclear Fuston 27 (1987) 821.
[2] R.A.Nebel, E.J.Caramana and D.D. Schnack, Phys. Fluids B 1 {1989) 1671.
[3] K.Kusano and T.Sato, Nuclear Fusion 30 No.11 or 12 (1990). B
[4] T.Tamanro, W.D.Bard, C.Chu, Y.Kondoh, R. J L. Ha,ve, P.5.Lee, M.Saito, M.J. Schaffer, and
P.L.Taylor, Phys. Rev. Lett. 59 (]987) 1444,
_ [5] B.B.Kadomtsev, Sov. J. Plasma Phys: 1 (1975) 389,

:[6] J.A.Wesson, Plasma Physics and Conirolled Fusion 28 (1986) 243.

FIG.1. Time History of the free ﬁlagnetic energy in the cases of (a) the small aspect ratio (1.6)

and of (b) the large aspect ratio (4.8). The free’ energy is normalized by a Taylor’s minimum
energy. :

FIG. 2. The phase locking pomts zp1, are plotted as a function of t]\e Iocatlon 2445 Where the modes
(m n) = (1;4) and (1 5) mmally have a same phase. The solid circles show the 27 different
simulation resuits, in which the diflerent phase distribution in the initial pcrt.uxba.tlon is
a.dopted respectively.

FIG. 3. Time history of the central temperature in the tokamak sawtooth similation.
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Finite § Equilibirum for A Pressure Configuration

Shinsaku Kajita
Department of Electronics and Computer Engineering
Faculty of Engineering, Gifu University
Yanagido, Gifu 500, Japan

Abstract .

The equilibrium on the toroidal plasma with a configuration of parabolically
increasing pressure is investigated. The critical pressure, affection of uniform
transverse field and flux surfaces are investigated and compared to the linearly
increasing one. '

1. Introductien

The value of 3 which the shift of plasma owing to the curvature gets infinite
is instructive ‘!’ but practically could not realize because if the pressure got
up the shift of the plasma would become very high. The pressure fluctuation
of the steady plasma causes the shift of the plasma surface. The pressure
increasing gets the plasma to shift outwards in the torus. The lowest shift of
the plasma surface owing to the pressure increasing will probably occur at the
-extreme slope on the curve for J§ vs the plasma shift on the plasma surface :
¢(a). The highest shift will occur at the moderate slope. The plasma shift §{(r)
is  concerned with the flux function which gives the pressure configuration,
the -rotational transform and the others through the following equation

BOI‘L; E(I‘)COSB=“IW:
where (V¥.: small flux function in 1« order. t;: the lowest order rotational
tranform of the helical field per unit length.
The ¢ order small flux function (¥, is obtained through the small-curvature
expansion,

In the present report we 1investigate the equilibrium of a pressure:
configuration parabolically increasing ; p* = (1-¥% (r)/V,(a))%. The linearly
increasing pressure and the free boundary case is reported in the previous
reference(l). The equilibrium of a parabolic configuration with r and a fixed
boqnd%gy case is chiefly reported about the toreoidal shift of the magnetic
axis.

2. Calculating Process ‘

The equation of the t order flux surface with the plasma confined through
the helical field in a torus of a small curvature is given. **’ The equation is
expanded through a small parameter t and the t order equation of the flux
surface is solved. The equation is reduced to a convenient form in numerical
work. '’ It has the usual singularity at the origin. We analytically solved the
equation near by the origin and obtained the exact solution at the origin. These
are as follows: ' .

-1 L Zg . -
0=y O T BT, {20y 2 (ze)™ 2o 7 (0)=0,

for our linear standard case.

_rte r_ Zo . -
(0 =G 20 T T, (7o) 2 (2007 270" t (=0,

for our parabolic standard case.



where

- _Zn __ _yYlirw - Zg L
TI_[Z‘5(1.6+ﬂ[z'(Zu)[z(Zu))] ' 12’[2'5(1'6+2312.(30)12(30))] /3'

zo=2ha,
a denotes the plasma radius,C is the integral constant.
also should be bounded. The other boundary condition is

£(0) should be bounded, C

9B, 5* B
to(a)(8%-a?)’

. _ lray " (a)-2:,(a), 28° .
£ (a) - E{ ’ tola) S*-a? Je(a) aB @

This equation 1is given in reference(l). We consider

where to(a)sts (a)+t. (a).
te=0. ) .

‘We prodceed to calculate from the origin for the various integral.constant C.
At the plasma boundary {' (a) should agree with the boundary value fixed through
substituting f(a) into the equation. This is our process of calculation. We
salve the equation for the various parameters as follows, (1) the helical field

itensity changes, (2) the location of the conducting boundary outside the plasma

changes, (3) the uniform transverse field changes. The case of linear pressure
configuration to compare with ‘the parabolic case is calculated on each case.
We calculate the plasma boundary Yott¥:= € concerning tY: properly small.

We solved the equation changing J# and C with the other fixed parameters. If
the calculated results are expressed through § vs. the shift of plasma ; ¢(a) on
the ptasma surface, we can obtain the critical value of §;3.. The curve for §
vs. £(a) is indirectly concerned with the instability.

3. Calculated Results

Fig. (1) shows the results for the various fields. H,=1 is standard for the
comparative field intensity. The critical value of § is approximately 0.44 for
the parabolic pressure configuration (P2?). Fig.(2) is for the linear one (P').
The latter has a critical § somewhat large compared to the former.

T T T T

H$

T

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -

e9B008
<]

He¢ -

0 L ) L 0 Lo 1

0000 g -

o~ wa
e s s e .

8800800

J

o 0.5 0 0.
Fota? £
Fig.! The griginal pressure curves vs. Lhe shifl of plasma Fig.2 The original pressure curves vs, the shift of plasma
on the plasma surface shoving a critical pressure.(p') on the plasex surfaco showing a critical pressure. (p')

Fig. (3) shows the shift of plasma; ¢(0) at the origin. These are of course
bounded. These for the linear one is also bounded. Fig.(4) shows the curves of §
vs. the shift of the plasma ; £{a) on the plasma surface for two different



locations of the conducting boundary. V=0 is the infinitely far location. The
location of the surface of plasma 1s unchanged. This shows that access to the
piama surface gets §. up. )

T T T T T T T T
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. Fig. 4 The pressure curves vs, the shift of plasea on the
plasna surface lor the different locations of the

conducling surface. (p?)

Fig.3 The curves of the shift of plassa at the origin vs,
the shift of plasma on the plasma surface. {p?)

Fig. (5) shows the curves of § v. {(a) for two small uniform transverse fields
applied. The curves shift towards the negative direction. It means that the
transverse field makes the plasma on the plasma surface move cutwards or inwards
in the torus. The linear case is shown in Fig. (6). 1t also shows the transverse
field makes the plasnma on the plasma surflace move outwards or inwards in the
torus. '

T ] ¥
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8 L « 0.04 9.

0

O
@

T I L) ' L) I L}
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L * 0.04 @
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[T} E(a)

Fig.§ The pressure curves vs. the shilt of plaswa on Lhe
plassa surface for the different unifors Lransverso

fields. (p')

Fig:5 The pressure curves vi. Lhe shift of plasma on the
plasma surface for Lthe different unilorm transverse
fields. (p?)

Fig.(?) shows the shift of the plasma boundary with a small transverse field.
The solid line shows the plasma boundary of the leading order and the dashed
line shows the plasma boundary considering the flux function of the r order.

It shows the outward shift of the plasma boundary occurring in the torus. The
linear case also shifts outwards for the same transverse field as shown in



Fig. (8).

A = 0.00596362 . . 8 =« 0.0050065
Bx/Bo s 0.005 Bx/Be = 0,005
H¢ = 0.700 Hé

Fig.7 The section of Lhe plasma surface fer a transverse Fig. 8 The SII?CliUﬂ ol the plasea surface for a transverse
fields. (p*) fields.(p') -
4, Summary

We solved the « order differential equation concerning the plsma shift:¢(r)
by obtaining §(0),¢ (0). Our main purpose motivated was to obtain the critical
} for the configuration of the parabolically increasing pressure. Howerever,
it seems that the critical pressure is not so much important to realize the
steady plasma. The plasma shift near §. 1s too high to keep the plasma steady.
There would be the low pressure to overcome before arriving near at the
critical pressure because the curves explain that the pressure at the starting
point getting it up takes the considerably high plasma shift on the surface of
the plasma (Fig(4)). :

Qur parabolic one is the similar characteristic as the linear one, though §.
of the former is smaller than the latter's. The critical value §. does not
change through changing the field intensity (Fig. (1), (2)), however, the location
of the conducting boundary changes f. (Fig.(4)). A small transverse field causes
the plasma surface to shift large enough (Fig. (5), (6)). It would seem useful
for not only the shift of the plasma surface but the realization of the
stability. However, first of all, 1t is necessary to be &table that § of the
plasma is smaller than §. as J.L.Johnson pointed out. "

References _

1) John M. Greene, John L. Johnson and Katherlne E. prmer Plasma Phys (J. Nucl
.Energy Part C) 8 (1966) 145. :

2} M. Wakatani, IEEE PS-9 (1981) 243.

3) John M.Greene and John L.Johnson, Phys. Fluids 4 (1961) 875.

4) John L.Jolinson, IPP 6/162 (1877).

— 101 —



Application of Mathematica to Energy Principle

_ T. Yamagishi
Fukui Institute of Techmology, Gakuen, Fukui 910 Japan

Magnetohydrodynamic (MHD) equilibrium and stability analysis need
laborious analytical works particuraly in nonlinear problems and in non-
symmetric systems. Most of such analytical works are substitutions of
equations, performing the dot and cross products, elimination of variables,
differentitations and integrations, which may be carried out by computer.

We here present applications of Mathematical)! to the derivation of
nonltinear perturbations and evaluation of the plasma energy.

Formal Theory

By applying Mathematjca, we first solve the system of MHD equations: the
equation of motion, induction equation, contimiity equation and equation of
state, respectively written as follows,

b5 B -p, (1)
%?:ﬂrot(v *B), o (2)
;—E+V.Vp=—pdiw ' (3)
g—%+v.Vp-—ypdiyv . (4)

where all notations are standard. We solve these equations order by order
by expanding in terms of the smallness parameter ¢ of the forms

B=B_,+eB +eB,+e'B;+-, (5)

vevitev tEV eV, {6}
The equilibrium gquantities which are expressed by the subscript o, are
assumed to be given. To have formal solution by Mathematica, the

mathematical operators grad, div and rot are defined notationally which do
not excecute anything.
The fluid velocity v is related to the plasma displacement £ by

v=2li b 0k, 7)
ot

Introducing eq. (6) into eq. (7), we have an iteration scheme v;. =¥, ,V}E,
where v; =0f; /ot with Ei+1=(5j_ _'V)E for i > 1. Introducing eqs. (5) and (6)
into eq. (2), and solving each order of equation, we have for the i-th order
magrnietic field in the form

B =mxot(§, xBy 1+ §; xBy,+ -+ §; xB,) . (8)

For i=l in particular, eq.(8) reduces to the familiar result:B,=-rxot{f, xB,) .
Corresponding to B;, the i-th order of plasma current is given' by
Jy ~rotB; . By the same manner, from eq.(4), we have the i-th order of plasma
pressure perturbation

n=-EVp_+ -+ EVDy +y(ppyAivEy + -+ oy divy)] {9)

In egs. (8) and (9), higher order guantities are determined iteratiely
making use of lower order quantities. By useing these perturbations, the i-
th order of plasma energy may be defined for i > 1 by

Wiu'_[d E T, 2By +T XBy -+ Ty xBy-Vp ). (10)
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Energy Principle
We now apply Mathematica to the derivation of the eigen mode equation by
executing mathematical operators, grad,div and rot in the cylindrical

coordinate system (r,&z)z). In the linear theory, i=1, eq. (10} reduces to
2 2
Wyw [@’r {B[ - €70 xB, + olaivE] + divE'Evp,) - (11)
We expand all perturbations in Fourier series of the form

By~ Y By (r)ei™ike (12)
k.o .
By Mathematica commands, the perturbed magnetic field B, is easily obtained
in term of { and B, by
| B, =Expand [Exp[-I m phi-I k zlCurl[o[{B,) ,Cylindricall

where o({B,] means the cross product { x B,. BAll perturbations are
expressed in terms of E==G£p£z). By imposing the incompressibility
condition div{ =0, one variable can be eliminated. Since Ep and £, appear
frequently in the fornxgp B,-§, B,, we expess all perturbations by £ and
A=;p By-E, Bp3). By solving simuiltaneous equations,divE =0 and A=§p B,-t; B_,
Ep and {, can also be expressed by { and A, which can easily be done by

Mathematica commands:
Solve[{div&mo,sz-zBp==A},{y.z}],
where v and z stand for E)and £z, regpectively.
Introducing B, and { which are expressed in terms of ¥ and A into
eq. (11), the energy is now the quadratic form with respect to £, £' and A.

The quantity A must be eliminated by an optimization condition of the
energy. By Mathematica commands, this is done by Solve([D[E,,A]l==0,A] in

which E, stands for the integrand of eq.(ll) and D([E,,A] means the partial
derivative of E; with respect to A. By introducing A thus determined into
E,, E; becomes a quadratic form of fand {'. After factorizations for each

coefficient of @.EP andE'2 by using the command Factor, the energy is
finally written in the familiar form

w,-fo’drfms-; +gatl]+ ((aB,) - @mB,)7) / 7+ (ka)?) , (13)
where the coefficients f; and g; are given as follows
£,r (nBy +krB,) 2/ (m?+ (kr) 2y |
O =(mBy+krB ) 2-2B, (xB)) ' /x+ (mB-kxB,) 2/ (m2+ (kr) 2) -
(((mBy) 2- (krB,) 2) / (m2+ (kx) 2) ) ¢
From eg. (13}, the Euler equation is derived in the form

(') *~ S fn = ©-

Nonlinear Theory .
We now proceed to derivation of higher order perturbations. For the sake
of simplicity, we neglect the nonlinearity due to the convection,i.e.,Ei=0

for i22. 1In this case, eq.{8) reduces to B; =rot(f, xB;.,}) for ixl. If we
apply the same A as obtained in the linear theory, the second order
magnetic field is given by the mode coupling form
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= ¥ kst v, E,,,,& tef G)
o +m 4 -m (14)

where the mode number k has been dropped. The vector coefficient vy

involves B,, mode numbers (k.m), (kl,ml) and shear (k.B,) ', which can be
determined by applying Mathematica. The third order magnetic field given
by B;=rotf *xB;) must have k=0 and n=0 mode number,i.e., the sum of mode
numbers of ¥, and B, must cancel. In this case, each comporment of B, is
written by By, =0, B3, =(8By,-§Byy)' and By =(r({,B, -8, )) "' /r.

The third order plasma energy W3 is given by

2
W, = ['da- ®'B,+B B +B,B,;+|aivE| w, + AivEE D) . (15)

For the case of incompressible force free plasma, the magnetic energy may
be written in the form

w,-_|' Ax EQum * & Qrm * £ Q) : (16)

wvhere Qin is the cuadratic form of Em.l, E,mz' and Em3",i.e., the mode
coupling of other perturbations with different mode nunbers. Combining
eqg. (13} and eq.(16), the Euler equation may be modified in the
inhomogeneous form
L] L 1 T ’ n
£.5) -g,,,E,,-E(Qm-Qm*meFO, (17)

where all nonlinear terms come from the mode coupling of other pertubations
with different mode munmbers.

Although the Buler equation can determine the profile of eigenfunctiom,
it does not determine the amplitude of eigen function. We introduce the

amplitude perameter A for the displacement: t-Af(x) . Then the i-th order of

s A
plasma energy may be written as W_=A1wi. If we consider up to third order
i .

of energy, the plasma energy may be written as Wp=?\2ﬁ2+)\3ﬁ3. In the linear
theory, the equilibium state Aa<0is stable when &2>0, otherwise the state is
unstable. When the third order energy is t§ken intoﬂaccou.nt, the stability
criterion changes. As seen in Fig.l, when W,>0 and W4<0, the energy Wp has
a peak at A-A*--zﬁz/{3ﬁ3) . The linearly stable state x=0 is nonlineariy
stable only when the kinetic energy Wy

is less than the 'potential barrior! W1:.\
. A
A-W (A7), othexwise (W;>A) the linearly ”
stable state becomes nonl:l.nearly unsta.ble. W4<0
On the other hand, when w2<o and W3>D {:,32)0 : !
the linealy unstable state A=) suffers I A H
transition to a nonlinearly stable state ! '
A A » TS w | S S
A=A"*  When W.<0 and W,<0 or W.,>0 and 0 o Mg !
2 3 2 AN Lo
ﬁ3>0,i.e., A*<0, the linear stability Wa<0 oy S
" deT
criterion does not change,i.e., the Wy>0
linearly stable (unstable) state is
nonlinearly stable(unstable). Fig.1l

In the above case, Wy is produced



by mode couplings of other perturbations with different mode numbers,
which may be possible when many modes exist. Let us now consider a
nonlinear problem due to single mode with the mode number (k,m). In this
case, the second order magnetic field becomes (0,0) mode, which is given
by eq.{14) with k=0 and m=0. The third order magnetic field B, in this
case has the same phase as B,, and the forth order field B, becomes {0,0)
mode. The thixd order energy W, vanishes on the volume integral. The

fourth order plasma energy can be written in the form
3 -, *, 2 » ° ] *
=rd r{B,B, +B B; +B B, +|B,| ~~|d:|.1.rE,[yp2+dw§l £ VD) (18)

Taking into account up to the fourth order, the plasma energy may be

A
expressed by Wp=mzﬁ2+k4w4. The change of stablllty criterion due to W, is
similar to the above mode coupling case. When W2>0 and w4<0 W, has a peak

+ , A .
at Aeh=ﬁwz/(2ﬁ4))l/2. The linearly stable state A=0 is nonlinearly stable

when Wy <A, othexwise (Wp>A), the state becomes nonlinearly unstable. On
the other hand, when ﬁ2<0 and ﬁ4>0, the linearly unstable state suffers

transition to a new equilibrium state at Aa=A".This transition may be

interpreted from the view point of synergetics4), i.e., the linearly

unstable mode may form a spatial pattern (self organization), and tends to

the nonlinearly stable state. When ﬂ2>0 and ﬁ4>0 or QZKO and ﬁ4<0, A

becomes imaginary, and the linearly stable {unstable) state is also
nonlinearly stable (unstable).

We can calculate Wy and W, by applying Mathematica. The analytical
expression becomes in general too long to write down even in the single
mode case. If we assume a particular simple mode structure, for example, the
=l kink mode with uniform displacement, {'= £''=0, near the plasma center
kx <<1, then W, becomes calculable form. -

In summary, Mathematica is useful both for nonlinear formal theory and
complicated analytical calculations.
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DIRECT ION HEATING IN MHD RELAXATION

Z. YOSHIDA

Department of Nuclear Engineering,
The University of Tokyo,
Hongo, Tokyo 113, JAPAN

Dissipative power depositions through MHD relaxation into electrons and ions
have been studied using classical resistivity and viscosity coefficients. In the recon-
nection process, pertrbation cumrents (elecoron flow) and perturbation vordcees (ion
flow) are dissipated by resistivity and viscosity, respectively. An excess of elec-
romagnetc energy is released through the MHD relaxation process. In this paper, we
show that the energy dissipation in the MHD relaxation process is dominawred by the
lon viscosity.

Assuming a slab plasma model and Braginskii’s viscosity, we obtain the rato of

the viscosity dissipation power PJ, and the resistivity dissipation power P¢;
PLIP = 0.3B; (my/m, ) {1+ 1) (Yoo, YWk )2,

where B; = 2m; T;1to/B ¢ is the ion beta ratio, @, is the Alfven frequency, and v is the
growth rate of the instability. Here we assumed hydrogen plasma, and used relations

B* ~ e(dB* /dx) - gj1g/q, ~ EAB .

where B* is the sheared component of magnedc field, A = pg/,/By, and j, is the
pamllﬁl cusrent of the mean field. To obtain numerical example, let us take T; = 100
eV, n, =n; = 10®° m™3, and By = 0.3 T. Then we have B, ~ 0.04, w; T ~ 2x10%,
Both A™! and ky'l are in the order of the minor radius a. For driven reconnections
(y/w, ) Is estimated to be typically in the order of 107!, Then we obtain P;f,!P‘ ~ 10~
We thus sec that MHD relaxation process driven by instabilities with a large growth

rate results in ion viscosity heating.
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Helical Field Effect in Solar/Stellar Wind
Haruichi Washimi

Solar-Terrestrial Environment Laboratory, Nagoya University, Toyokawa 442, ] apaﬂ

Summary. Structure of the solar/stellar wind plasma and the helical magnetic field By are
studied by means of MHD simulation in an axisymmetric system. It is shown that, when the
stellar rotation is much faster than the solar rotation, the magnetic pressure force — 7 Bfé works
and the interplanetary current is pinched along the rotation axis and the equatorial plane.

1. Introduction

Helical magnetic field By is formed in solar/stellar wind plasma due to the solar/stellar rotation.

" One of the important parameters in the study of the wind is the Alfven Mach number of the
flow, Ma(= V/V4), where V is the wind velocity in the meridional plane (poloidal component)
and V4 is the Alfven speed. Weber and Davis (1967) showed in their 1-dimensional model that
the total angular momentum, i.e., the summation of the magnetic torque and the plasma angular '
momentum, is given by the critical condition at M4 = 1. Their theory means that the line
M4 = 1 should be included in the simulation box for a multi-dimensional computer simulation.
In this paper an axisymmetric solar wind structure is studied by the method of MHD computer
simulation including the solar rotation effect.

Wind from a rapid rotating star provides quite an efficien process to extract the angular mo-
mentum from the central body. If the wind is driven centrifugally, the argular momentum is
transferred outwardly. It is shown that the magnetic pressure force — 7 Bg works on the wind
plasma and that the losses of the mass, energy and angular momentum are enhanced for rapid
rotating stars where the helical magnetic field By is large.

2. Method of Simulation

We assume that the solar/stellar wind plasma obeys the coupled MHD and Maxwell equations.
The energy equation is assumed to be described by a polytropic relation, and the polytropic index
is 1.05 in our simulation. The cylindrical coordinates (r, ¢, z) are used, and axial symmetry is
assumed. The plasma density N and the pressure P, at 1 R, (solar radius) {rom the sun, are taken
as Ng = 10% em~3 and Py = 3.8 x 10 2dyne -cm 2, tespectively. The temperature is 1.38 x 10¢ K
at 1R,. The sun is assumed to be rigidly rotating with the angular {requercy 2, = 2.902 x 1075
rad/s. Starting with an appropriate initial conditior, our aim is to obtain a steady or quasi-steady
solution. ¥or our initial condition of p, v,, v, and P, the spherically symmetric transonic solution
is adopted. ' . _ .

Our simulation box includes the lines M4 = 1 and M = 1, where M(= V/V,) is the Mach
number and V, the sound velocity. Under these initial and boundary conditions, the computation

_is performed to obtain a quasi-steady state using the two-step Lax-Wendroff scheme.
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3. Results and Discussion

The global structures of the solar wind are studied by numerical simulation for the case of the

dipole magnetic field configuration. The global pattern in the meridional plane is shown in Fig.
1, and the latitudinal dependences of the physical quantities are shown in Fig. 2. N is large
and V is slow in the closed field region (low latitudes), whereas N is small and V is large in the
open field region (high latitudes). The azimuthal velocity vg in the closed field region shows an
almost rigid corotation with the sun. But v, in the open field 1egion is almost free of corotation.
The azimuth magnetic field By in the closed region is found to be almost zero, which means the
plasma corotation creates no azimuth magnetic field. On the other hand, By becomes maximum
at the region just outside of the boundary and decreases again to zero at the rotation axis. This
latitudinal dependence of By is consitent with the inward poloidal current in the open region and
sharp outgoing curient just inside of the boundary shown in Fig. 1.

Sicnce magnetic pressure of the helical field has its maximum in middle latitudes for dipole field
configuration, the stellar wind is pressed to the equator as well as deflected toward the rotation
axis due to the magnetic pressure force — v Bﬁ when By is large (Fig. 3). As a result the
centrifugal acceleration takes place most efficiently in the middle latitudes, and the mass flux has
its peaks both onr the rotational axis ard on the equator. Loss rates of the mass, energy and
angular momentum are shown in Fig. 4. .

More detailed discussions have been given in papers { Washimi(1990), Washimi and Sakurai(1990),
Washimi and Shibata(1990)).

Fig. 1. Global patterns of the magnetic field lines and velocity vectors (a), equi-velocity contours

and poloidal current vectors (b), and equi-density contours {c), when the magnetic field has a
dipole configuration.
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Self-Similar Evolution of Nonlinear Magnetic
Buoyancy Instability

K. Shibata!, T. Tajima?, and R. Matsumoto®

! Department of Earth Sciences, Aichi University of Education, Kariya, Aichi 448, Japan
2 Institute for Fusion Studies, University of Texas, Austin, USA
® College of Arts and Sciences, Chiba University, Chiba 260, Japan

Abstract: A new type of self-similar solution of ideal magnetohydrodynamics in the
nonlinear stage of undular mode (k || B) of magnetic buoyancy instability (Parker instabil-
ity or ballooning instability) is found through MHD simulation and theory. The solution
has the characteristics of nonlinear instability in Lagrangian coordinates; the fluid velocity
and the Alfven speed on each magnetic loop increases exponentially with time, because the
loop is evacuated by the field aligned motion of matter due to gravitational acceleration. .

A plasma that is supported by a magnetic field under the gravitation is known to be
subject to the Kruskal-Schwartzschild (or magnetic Rayleigh-Taylor) instability. Similar
instability results in a gravitationally stratified plasma with non-uniform magnetic field,
called magnetic buoyancy instability. The magnetic curvature can play a role similar to
gravity. The undular mode (k || B) of the magnetic buoyancy instability, where k and
B are the wavenumber and magnetic field vectors, is believed to be important in various
physical phenomena ranging from astrophysical plasmas to fusion plasmas, because this
mode can be unstable even when the plasma layer is stable against the interchange mode
(k L B). For example, for an isothermal case the former is unstable when dB/dz < 0,
while the latter is unstable only whén d/dz{B/p) < 0, where p is the density and the
gravitation is in the negative z direction. Parker! applied the undular instability to the
disk of Galaxy. Hence, this instability is called the Parker instability in some astrophysical
literatures. The ballooning instability? in fusion plasmas has essentially the same physical
characteristics as that of the Parker instability with general orientation of k with respect to
B. In spite of many linear theory investigations, however, the physics of nonlinear stages of
this instability is much less known. Here, we report the discovery of a self-similar solution
in the nonlinear stage of the undular instability, which has a characteristics of the nonlinear
instability (exponential growth in time) in a Lagrangian frame. A full discussion of this
study is found in Ref. 3.

A self-similar sclution has been found by using nonlinear simulations,® which are carried
out with assumptions that (1) two-dimension %2D) [V, = B, = 8/3y = 0 in’Cartesian
coordinate (z,y,z)], (2) ideal magnetohydrodynamics, (3) a constant gravitational accel-
eration (¢) in the negative z-direction. A full set of compressible ideal MHD equations

—111 — =



with the adibatic index -y (=1.05) are solved by using modified Lax-Wendroff scheme with
artificial viscosity. The initial gas layer is in magneto-static equilibrium and consists of a
cold isothermal plasma layer, which is partly permeated by horizontal isolated magnetic
flux sheet with § = 11in 20 < z < 29+ D, and a hot isothermal, non-magnetized plasma
layer above the cold layer, where D = 4H. Hereafter, the units of length, velocity, and
time are H,C,, and H/C,, where H is the pressure scale height and C, is the sound speed
in the cold layer. We initially give the system small-amplitude perturbations having the
same spatial distributions as those of linear eigenfunctions in the most unstable mode with
A = 20H in the finite horizontal domain.

Fig. 1 shows the time evolution of magnetic lines of force, the velocity field, and the
“density distribution. As the magnetic loop rises, the gas slides down along the loop. Spikes
of dense regions are created on the valleys of the undulating field lines, whereas the rarefied
regions are produced around the top of magnetic loops. The most significant character
in the nonlinear stage (¢ > 40} is the approximate self-similar pattern of magnetic loop
expansion; the rise velocity of the magnetic loop and the velocity of downflow along the
loop increase with height as the loop expands and ascends. Fig. 2 shows some physical
quantities at z = X,,,,/2 (midpoint of the magnetic loops), indicating approximate self-
similar behavior as a function of height. We also find :

Vz = a1z, VA = 2%, (1)

where a, ~ 0.06C,/H ~ 0.5w; (for ¢t < 60), a; = 0.3C,/H, z is the height measured from -

zo{= 4), and w; is the linear growth rate. On the other hand, we find the density and -
magnetic field strength have the power-law distribution;

pox 27t Byoz7l (2)

We shall now look for a self-similar solution of the problem by analytical method. We

have the following relation from Eq. (1); 8V, /87 = 8V, /8t + V,8V,/8z = a,V,, where 7 is

the time in Lagrangian coordinates, while ¢ and z are the Eulerian coordinates. This leads

to
Vi(€, ) = a1 exp(ay7), ' (3)

where £ = zexpi;—al'r) is the Lagrangian coordinate. We assume the quasi one-dimension
(1D) for the problem, i.e. we consider only vertical (z) variation of the physical quantities
at the midpoint of the loop. Under this assumption, a particular self-similar solution, that
satisfies our empirical velocity functions (1) and (3) and quasi-1D MHD equations, is found;

p=ri€ texp(—4a,7) = ryz74 B, =b& Yexp(—ay7) = byz77, (4)

where r; and 6; are constants. This solution agrees very well with the numerical solution
2). :
( )Fig. 3 shows the time evolution of the Lagrangian displacement of a test particle at
the midpoint. of the loop in the simulation results. In the initial stage, the growth rate of
the perturbation amplitude agrees well with linear theoretical values (w, = 0.121). The
amplitude increases exponentially with time even in the nonlinear stage (¢ > 40); z
exp(wat) and w, = a; = 0.06 =~ w;/2.

It is known that the rise velocity V, of the bubble observed in the laboratory and in
the ionosphere tend to be steady in the Lagrangian {rame and is in proportion to the
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local Alfven speed VA, (c) the horizontal magnetic field (log B.), (d) the
density {logp) at z = Xmez/2 = 40. The numbers attached Lo the cu rvea
correspond to the following time (in unit of H/C,); (1) t= 42.1, (2) 4
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radius R, of the bubble; V, = a3R,, where a3 =~ (1/3 ~ 1/2) x (g/R;)*/* is of the order
of the linear growth rate of the Rayleigh-Taylor instability. This is similar to our results
that V, = a;z =~ a, R, where R is the curvature radius of the magnetic loop, a; =~ w;/2
and w; is the linear growth rate. However, the rise velocity of our magnetic loop is not
steady in the Lagrangian frame, but increases exponentially with time. This nonlinear
instability in the Lagrangian frame is also observed in the exact solution found by Ott* for
the Rayleigh-Taylor instability of a thin, cold gas layer, which is supported against gravity
by a hot gas, with a second hot gas above the thin layer. In this case, the growth rate
in the nonlinear stage is exactly the same as that in the linear stage. Physically, this is
because cold gas in the thin layer freely falls along the curved interface between two hot
gases, and mathematically, because the nonlinear basic equations become linear ones in the
Lagrangian frame. Although the nonlinear growth rate is not exactly equal to the linear
growth rate in our case, the involved physics is common between ours and Ott’s problem;
the exponential growth in the nonlinear stage is due to the gravitational free fall along
the magnetic loop. That is, the equation of motion along magnetic loop in our problem
is written as d6/dt? = (g/R)6, where § = z/R and z is the horizontal distance from the
midpoint of the loop.® This equation has the exponential solution with the growth rate
of (¢g/R)!/?. In addition to this character of nonlinear instability, our solution has the
self-simalar property, which is not in Ott’s solution.

! E. N. Parker, Astrophys. J. 145, 811 (1966).

2 B. Coppi and M. N. Rosenbluth, in Plasma Phys.and Cont. Nucl Fus. Res. wvol. 1,
(IAEA, Vienna, 1966), p. 617. '

? K. Shibata, T. Tajima, and R. Matsumoto, Phys. Fluids B, 2, 1989 (1990).
¢ E. Ott, Phys. Rev. Lett. 29, 1429 (1972).
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Fig. 3 The time evolution of Lagrangian displacement (Az,, = z,(t) —
zm(0); solid curve) of a test particle. The dashed line shows the linear
growth with w; = 0.121C,/H, and the dash-dotted line shows the nonlinear
growth with w, = 0.06C,/H.
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Turbulent Mixing due to Rayleigh-Taylor Instatability in Laser Driven Implosion
H. Takabe and A. Yamamoto

Institute of Laser Engineering Osaka University
2-6 Yamada-oka Suita, Osaka 565 Japan

A simple, nonlinear diffusion model is proposed to describe the turbulent mixing generated in-
the laser driven implosion through the Rayleigh-Taylor instability. The model is applied to simulate
the recent high density implosion experiment done at Osaka . It is demonstrated that the introduction

of mixing model into the implosion code can well reproduce the experimental results as for neutron
yields and maximum pR. '

I. Introduction

. Hydrodynamic stability is a key element for achieving inertial confinement fusion with a
realistic driven energy. The Rayleigh-Taylor and Richtmyer-Meshkov instabilities triggered by non-
uniformity in laser irradiation and target structure potentially degrade the performance in target
implosion. A variety of implosion experiments have been carried out and compared with implosion
codes."*” However, for example, the neutron yields can not be accurately predicted and in most of
cases the numerical yields are higher by two or three orders of magnitude than the experimental ones.
Two dimensional implosion codes have been used to explain the discrepancy by including relatively

longer wavelength nonuniformities [/<24 of Y,™ (6,¢)-modc]4. It is, however, difficult to reproduce

the reduction of 2~3 orders of magnitude in the neutron yields from the one dimensional simulation
with reasonable nonuniformity due to the finiteness in the number of beams. Therefore, our attention
is focused on the contribution of perturbations with relatively shorter wavelength. In dealing with
multi-mode, higher -mode phenomena, conventional two-dimensional codes are not useful and we

need to develop some theoretical model describing the dynamics of such turbulent mixing

phenomena.?

In the present note, we assume a weakly nonlinear stage for the multi-mode Rayleigh-Taylor
instability and the quasi-linear theory is used to describe the development of the turbulent mixing
layer. A diffusion model is introduced and is installed in the one-dimensional fluid code ILESTA as
an mixing model The recent 600LD (600 times solid density implosion done with deuterized
polyethylene shell target at Osaka’®) experiment is simulated with the code. It is demonstrated that the
turbulent mixing in the stagnation phase does not allow the formation of a spark region at the center
of compressed core which is always seen in the conventional one dimensional simulation without
such mixing model. As the result, the neutron yield as well as the compressed density measured in
the experiment can be reproduced.

~ II. Turbulent Mixing _ _ :

The turbulent mixing and inverse-cascading phenomena in the Rayleigh-Taylor instability
have been observed in a model experiment by Read.’ (Fig.1) In the experiment, no initial
perturbations are imposed. The instability grows from the natural noise with predominant growth of
shorter wavelength mode in the initial stage, while the longer wavelength modes (large size eddies)
are generated in the later time as the mixing layer grows.

Now, let as assume that £ represents the displacement due to the instability and f, 1s some
physical quantity in case of no perturbation. Then, the perturbation f| is roughly given to be

f =—EVE, "~
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The convection term in the O-th order is .given to be
qu=u°' Vfo+(u1Vf1). ’ (2)
where u is the flow velocity and u, and u, are its 0-th and 1-st order quantities. In Eq.(2), < > means

to take average over a macroscopic scale. Thcn the time variation of f;is governed by the form;
of , :

dt = VDVf, + (other source ‘terms). 3)

p={t. 8 ' @

In driving Eq.(3), we have assumed the incompressibility to the perturbed motion Vu,=0 and used

where

the relation g_ . If the displacement & is g1ven Eq.(3) can predict the evolution of the mixing layer
as a diffusion modcl

Let us briefly study the properties of the diffusion term. If f, varies in th x-direction in the
planner geometry, the diffusion distance Ax is roughly predicted in the form

Ax = (2Dt)/ 2

()

Since the diffusion is in x-direction, the diffusion coefficient is approximately given to be

(5)

/2

D=§,- &, (6)
where &, is the dlsplacement in the x- -direction. Inserting Eq.(6) into Eq.(5) yields the relation
= {8 | . 7)

Namely, the diffusion distance is almost equal to the amplitude of the dominant mode of the

instability. On the other hand Eq.(6) is rewritten to be D=Y£2 with the growth rate y and in the
diffused structure the growth rate of the Rayleigh-Taylor instability is given to be

T=(a,g / Ax)12 (8)
where o, the Atwood number. By the use of Eq.(8), Eq.(5) reduces to the form;

2
G0 =2(0 ) a2 ©
Eq.(9) is easily solved to reduce ‘

Ax=mo,gt2 (1o
whcre n=1/4. It should be noted that Eq.(10) explains qualitatively the scaling law to the mlxmg
layer observed experimentally by Read. Numerical constant 11=0.07 obtained by Read could be
reproduced with more detail calculation.

In applying the above idea to the mixing model coupled with a consistent implosion
dynamics, we have to determine the dynamics of the displacement & in space and time. for this
purpose, we developed a perturbation code and coupled it with the one-dimensional implosion code
ILESTA. In the penurbauon code, all the perturbations are expanded with the spherical harmonics,
for example,

§r,t) =38, (LY, (6,¢)
(11)

and time developments of the coefficients of the spherical harmonics are solved by the finite
difference method, simultaneously with the implosion code at each time step. Then the turbulent
diffusion coefficient
D=8 nbim
l,m (12)
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is used to solve the diffusion model in the implosion code.

1. Applicaton to Target Implosion by Gekko XII Laser System. _

For achieving high density, a hollow shell target made of deuterized polyethylene has been
used.” The density of 600 times solid density has been achieved by Gekko XII laser system.

A typical target the simulation of .which will be shown here is of the parameters: outer
diameter $=494um, thickness 8.71um, made of C(42.8%), D(53.5%), T(1.3%), and Si(2.4%) in
number fraction. The laser of 8.14k Joule in 0.53um wavelength is irradiated in the form of two
Gaussians with 1.3 and 1.0 nsec FHWM's with the separation of 760 psec from peak to peak. Since
the random phase plates are used, about 60% of the irradiated energy are focused on target.

In simulating the implosion, additional key points are (1) equation of state and (2) radiation
preheat due to silicon K-line radiation. A simple fitting formula for the equation of state of matter
described in Ref.6 has been used in the code. The radiation transport has been treated with the multi-
group flux-limitted model and a non LTE atomic model shown in Ref.7 has been used. The amount
of silicon K-line emission has been checked with a model experiment done in planer and spherical
targets.’ :

In Fig.2, the r-t diagram near the maximum compression is shown for the case without the
mixing. In this case, a hot spot of the radius about Spm with the density 100g/cc and temperature 2-
3keV is generated. The hot spot is surrounded by high density (~500g/cc, pR~0.3g/cm?) and low
temperature (~300eV) region. This is a typical structure seen in a hollow shell implosion without
mixing phenomena. The inclusion of the mixing model alters the structure drastically. The r-t
diagram for this case is shown in Fig.3. By comparing with Fig.2, it is clear that the mixing is not
help the stagnation of the high density part and this part collides directly near the center, consequently
no spark region being generated.

Both of the simulation results are compared with the experimental results. The resultant
neutron yields due to D-T reactions are Y, =6x107(w/o mixing) and §x10°(w/ mixing). The
experimental one is Y ,,=1x10% The pR values obtained in the experiment is 0.37~0.65 g/cm’, while
the simulation results are pR=0.33 (w/o mixing) and 0.6(w/mixing). The one-dimensional simulation
with the mixing model can predict the experimental result well, and it suggests that the hot-and cold
structure is not generated due to the mixing process in the stagnation phase. This is due to the
explosive growth of the Rayleigh-Taylor instability in the stagnation phase as already pointed out in
Refs.9.10.11.

IV. Conclusion _

The nonlinear mixing model has been introduced in the framework of the week turbulence
theory and applied to the simulation of the recent high density compression with hollow CD shell
targets. It is demonstrated that the turbulent mixing in the stagnation phase do not allow the
formation of a speak region at the center of the compressed core, which is always seen in the
conventional 1-D code without any mixing model. As the results, the neutron yield is reduced by
roughly two orders of magnitude than that in the case without the mixing. It is found that the
resultant neutron yield and maximum pR well coincide with the experimental ones.
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Figure Captions

Fig.l Turbulent mixing observed in a tank accelerated by a rocket. The experiment has been done
by K. L. Read (Ref.5). The contact surface is unstable to the Rayleigh-Taylor instability.

Fig.2 Detail 1-t diagram of an implosion of a hollow shell target. The turbulent mixing is not treated
in the simulation.

Fig.3 The same as Fig.2 but the turbulent mixing is treated in the one dimension simulation.
No spork formation is seen.
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Electrostatic Particle Simulations of Density and Temperature Driven
‘ Modes 1n a Toroidal Plasma

M. J. LeBrun
JAERI

G. Furnish, T. Tajima
Institute for Fusion Studies
The University of Texas at Austin

Simulation runs of the toroidal plasma in the presence of density
and temperature profiles have been performed with the toroidal particle
code [1] (TPC) developed at the IFS. These calculations are fully self-
consistent (electrostatic) and nonlinear, using drift dynamics electrons
and full dynamics ions in a toroidal metric. We present results from. runs
with 7; = 0,1 using kinetic electrons, which show strong (marginally
stable or unstable) modes with frequencies well below w,. In the case of
n; = 1, substantial particle and heat transport for both species is seen. By
contrast, the cylindrical geometry (control) run shows a weak response
and negligible transport. Runs with #»; = 1,4 using a Bolzmann elec-
tron response are also performed, and these are compared to the kinetic
electron runs. '

By pursuing kinetic simulation, we seek a fundamental description of
the plasma confinement, with the hopes of unraveling the long-standing
problem of anomalous transport. We use a coordinate system well-suited
for confinement studies — with the radial coordinate everywhere perpen-
dicular to the magnetic field. Thus the rapid variation across field lines
may be resolved more easily than with codes that employ e.g. a rect-
angular cross section approximation. Further, a modular programming
style in a structured programming language (MPPL, a preprocessor to
Fortran) is used to enable “drop-in” replacement of various components
such as field solvers, dynamics types, graphics, and so on.

The simulation runs considered here generally utilized a single toroidal
Fourier harmonic (n = 9) and multiple poloidal harmonics (m = 5-15)

—119—



in a tokamak magnetic field. The rationale for this choice is that toroidal
coupling between modes at neighboring rational surfaces gives rise to the
formation of marginally stable or unstable radially extended, ballooning-
type modes[2]. An actual plasma supports these “quasimodes” for each
toroidal mode number n, each linearly independent of the others; infor-
mation gained through study of a single mode may thus shed much light
on overall transport.

The first run with 7, = n; = 0 shows instability in the vicinity of the
m = 7-9 rational surfaces with growth rate v/w* ~ 0.12, close to the
theoretical value [3]. This was accompanied by weak profile flattening in
the same radial region, which diminished after saturation of the mode.
The waveforms of the active modes were found to display the oscillatory,
radially-exténded character expected of a ballooning-type mode. Direct
evidence of ballooning (primarily to the outside, in one or two lobes)
was also seen. A similar run in a cylindrical metric, by contrast, showed
sharp localization of the wave function around the rational surface and
no evidence of ballooning, as expected.

The real frequency response was seen to be dominated by relatively ac-
tive vs inactive “bands”. The lowest frequency band occured at roughly
w/w* = 0.4, in good agreement with theory[4]. Note that the theory
eliminates the radial variation through the assumption of translational
invariance, and is thus only partly applicable to the situation in a realistic
plasma, even when nonlinearities are mild. We show several diagnostics
on the frequency response in Fig. 1. In 1(a) is the spatially averaged
spectral density as a function of frequency. Note the rather broad spec-
trum similar to that observed in confined plasmas, although the peaks
from the linear mode spectrum are still apparent. The spectrum decays
as S(w) ~ w™l. In 1(b) we plot maximum power as a function of w/Q;
for the m = 7 mode, and in 1(c) we plot w/€; as a function of radius
for the m = 7 through m = 11 poloidal modes (the arrows mark the
rational surfaces). This diagnostic eliminates the spectral widths in or-
der to see the linear physics aspects more clearly. We see a preference
for certain discrete frequencies, as one would expect for strongly cou-
pled toroidal modes. Some variation of the dominant frequency between
different mode numbers occurs due to nonlinear splitting.

For this parameter regime, the diamagnetic frequency for a given
poloidal mode is constant with radius, varying only with m. However, the
diamagnetic frequency for the mode ensemble increases as wj o< ng(r).
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This effect can be seen in the spectrum as an increase in frequency with
radius, with transitions occuring from one frequency to the next. Not
shown is a higher frequency mode which appears at r/a 2 0.5 for the
higher mode numbers (m = 12-15).

The next run employs temperature profiles with n; = . = 1, other
parameters were the same as previously. A strong, low frequency mode
(w/w* ~ 0.4) is observed, spanning an appreciable radial extent (0.2 <
r/a < 0.6). Here the toroidal coupling induces the formation of a single
frequency mode. In this case the temperature gradient causes a strong
variation of the diamagnetic frequency with radius for a given m, with
w*/Q; = 0.0031 m exp(—0.5(3.168 r/a)?) which tends to localize individ-
ual m modes much more than in the n = 0 case. However, the ensemble
value of w* (obtained by replacing m by n ¢(r) in the above expression) is
roughly constant with radius, promoting strong coupling between modes
and consistent with the observed mode strength.

In spite of the observed mode strength, there were no modes which
were clearly growing in this case, as expected since at marginal stability
Nevertheless strong ion heat transport was observed, as well as significant
electron heat transport, primarily in the tail region (r £ 0.5a). Substan-
tial particle transport occured, in the 0.1 S r/a < 0.6 region, which
coincides with the region of greatest mode activity. A run in cylindrical
geometry, on the other hand, showed no similar spectral feature (with
power a factor of 3-5 less) and negligible transport.

Additional runs were made using Boltzmann electrons. For n; = 1, the
absence of the kinetic electron drive results in a much weaker response
at positive frequency (electron diamagnetic direction) than previously,
and little transport. Otherwise, the plasma response is similar to that of
the kinetic electron case, having rougly the same radial extent (0.05 S
r/a S 0.55), but somewhat higher in frequency (w/w* ~ 0.7). A relatively
strong ion feature appears for small r (r/a ~ 0.15), this appeared in the
previous run but was weak compared to the electron feature. For the
n; = 4 Boltzmann electron run, both particle and heat transport were
observed, much higher than » = 1 Boltzmann electron run. The heat -
transport still less than that observed in n = 1 kinetic electron run.

To summarize, the simulation runs performed thus far with TPC ap-
pear to agree well with the theoretical predictions in regimes where the
linear effects dominate and the radial inhomogeneities not too severe. In
other regimes (where the physics is much less well understood), we see
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evidence of the importance of mode strength and the presence of a kinetic
electron drive in determining overall transport. Several improvements to
the algorithm are currently underway (e.g. gyrokinetic or §f). These
will improve the applicability of simulation runs to different parameter
regimes, as well as enabling direct comparison between models.
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"Internal Kink Mode Simulatiop by 3-D Gyrokinetic Code

H. Naitou and 0. Fukumasa
Yamaguchi University
R.D. Sydora
University of California, Los Angeles
W.HW. Lee
Plasma Physics Laboratory, Princeton University

3-D ideal MHD simulations with kinetic modifications are now possible
by the use of the 3-D gyrokinetic particle code which follows a self-
consistent and energy <conserving set of nonlinear gyrokinetic equations
given by Hahm et al.[1]. Nonlinear evolutions of internal kink modes in
a straight tokamak were simulated by this code. An outline of the code
1s as follows,. The model we used is a rebtangular tokamak (L.XL,XL,)
being periodic in the z-direction and surrounded by a perfectly
conducting wall. Strong and uniform ( toroidal ) magnetic field is
assumed in the z-direction. Poloidal magnetic field ( B, and B, ) is
produced by the electron drift current in the z-direction. Compressional
cdmponent of the magnetic field ( perturbed B, ) is neglected in the
low beta approximation. Electron and 1ion dynamics parallel to the
magnetic field are followed as well as the EXB drifts perpendicular to
the magnetic field. Generally electron gyroradius is assumed to be zero
( drift kinetic ) whereas 1ion finite gyroradius effects are properly
included ( gyrokinetic ). For saving of CPU time, ion gyroradius can be
set to be zero at will. The electrostatic potential is calculated from
a gyrokinetic Poisson equation which includes ion polarization shielding
effects. The z-component of the vector potential ( A, ) is calculated by
Ampere’s law. Because a formulation using a canonical momentum ( p. } is
used, inductive electric field is not appear explicitly in the code.

The moment equations of the gyrokinetic equations reduce to the
Strauss’'s two fluid model {2] in the longwavelength 1limit when the
electron inertia and pressure terms are neglected [3]. Therefore, in
order to excite a internal kink mode, elongation effects of the plasma
cross-section ( L./ L, = 2 ) was employed. If the equilibrium safety
factor at the magnetic axis ( go )is less than unity, unstable internal
kink mode was observed. The qo dependence of the growth rate, nonlinear
evolutions of current, electrostatic potential, and A. profiles were
examined and compared with the results of the reduced MHD simulation in
Ref.[2]. ‘

[1] T.S. Hahm, et al., Phys. Fluids 31 (1988} 1940.
[2] H.R. Strauss, Phys. Flurds 19 (1976) 134.
[3] W.W. Lee, "Gyrokinetic particle simulation of MHD modes”
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Particle Simulation Study on the Tilt Stabilization of the FRC Plasma

Ritoku Horiuchi and Tetsuya Sato

National Institute for Fusion Science, Nagoya 464-01, Japan

Abstrac‘t

Ion kinetic stabilization of the FRC tilt disruption is investigated by means of three
dimensional particle simulation. The growth rate of the tilting instability decreases as the
parameter 5 decreases and the instability is completely suppressed when 5 =~ 1, where §
measures the number of ion gyroradii between the magnetic separatrix line and the field-
null line. It is found that this kinetic stabilization is attributed to the characteristics of
the meandering ions which execute an oscillatory motion with a large amplitude around

the field-null point and carry most of the ion toroidal current.

1. Introduction

The field-reversed configuration (FRC) is an attractive device because of the character
that a high-beta plasma is confined by a simple magnetic geometry with no toroidal field.
A field-null point appears in the plasma center due to the strong diamagnetic field. The
existence of a field-null makes a particle motion in the FRC complex, i.e., a particle does
not gyrate but executes a meandering motion in the vicinity of the field-null point [1].
Since the ion Larmor radius becomes infinite there, we define the useful parameter 5 as

;= /"rdr/(r,,\,-), | (1)

Ta

where r, i1s the separatrix radius, r, is the radius of the field-null, and A; is-the local ion
gyroradius. The value of 3 is around a unit in the currently existing devices. This means
that the plasma in the FRC device is fairly kinetic.

The magnetohydrodynamic(MHD) theory [2,3] predicts that the FRC plasma is unsta-
ble against the tilting instability, while no experimental evidence has so far been reported
on the tilt disruption. The discrepancy between the MHD theory and the experiment
is thought to be explained by taking into account the stabilization effect due to the ion
finite-Larmor radius (FLR) because the plasma confinement scale is comparable to the
ion Larmor radius in the currently exsisting device ( § = 1 ). Barnes et al. [4] derived
the linear growth rate from the Vlasov-fluid dispersion equations by assuming that an ion

is a large orbit, nonrotating Vlasov plasma and an electron is a cold, masstess fluid.
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The purpose of this paper is to investigate the FLR stabilization effect against the
tilting instability by making use of a macro-scale particle simulation code that can de-

scribe both the electron and ion FLR effects and the global behavior over the device scale
simultaneously [1,5].

2. Simulation model

Let us consider the FRC plasma in a cylindrical conducting vessel in which plasma is
confined by a uniform external field. In order to investigate the kinetic effect we solve the
equations of motion and the Maxwell equations in the cylindrical coordinates (r, ¢,z). A
two-fluild MHD equilibrium is adopted as an initial condition. The boundary condition
is such that the physical quantities are periodic at two axial edges of the c¢ylindrical ves-
sel and a particle is completely elastically reflected on the conducting wall. Numerical
scheme used for the three-dimensional particle simulation relies on a semi-implicit method
in which both ions and electrons are treated as p‘articles [1,5]. The time step At and the
grid separation Az are assigned to satisfy the relations At = 2/w,, and Az > Apeye,

where w,, is the electron plasma frequency and Ape. is the ion Debye radius. Four

P
simulation runs with different values of § are carried out by using a hundred thousand
particles. The simulation runs are terminated after one Alfven transit time ¢, where ¢4
is defined by ro/v, ; ro and v, are the device radius and the average Alfven velocity in

the plasma region.

3. Simulation results

For 5 =~ 1 most of ions move on an orbit with a large amplitude and no sélf-
intersection around the filed-null line, as is seen in Figure 1. This motion is called a
meandering motion. The average drift direction of the meandering ions is the same as that
of the diamagnetic drift. The number of meandering ions decreases and the oscillation
amplitude of meandering motion becomes smaller as 5 increases. Figure 2 shows the
profile of the ion distribution in the (vg4, v.)-plane (right) and in the (v, v,}-plane (left)
for the case of § = 1. A meandering motion has larger oscillation amplitudes along
the z direction and nonzero average velocity along the ¢ direction in the prolate FRC
plasma. The anisotropy of the meandering motion directly leads to an anisotropic ion
temperature of T, > T, and 7, > T,. On the other hand, the electron distribution is
almost isotropic because the number of meandering electrons is very small. The degree

of the anisotropy decreases as the number of meandering ions decreases.



Figure 3 shows the 3-dependence of the average growth rate of the tilt mode, where
the open circle represents the value obtained by the simulation, and the closed triangles
show the results of a linear theory [4]. The evolution of the tilt mode is completely
suppressed when § = 1. As § increases, the tilt mode tends to be more unstable and
the growth rate approaches the MHD value. The behavior of the kinetic growth rate is
in good agreement with the result of a linear theory. It can be concluded therefore that
the stabilization effect due to the finiteness of the ion Larmor radius is very efficient for

the FRC tilt mode.

4. Discussion

By carrying out the macroscale particle simulation we have derived the important
result that the FRC tilt disruption can be stabilized for the kinetic plasma of 5 = 1. In
this section we give the stabilization mechanism of the FRC tilt disruption in connection
with the characteristic of a meandering motion. For the kinetic plasma of 5 = 1 most of
ions are free from the constraint of the magnetic field and oscillate around the field-null
point with a large amplitude [1]. If a perturbation of the tilt mode is added to the veloc-
ity field of the meandering ions in a two-dimensional {axially symmetric) equilibrium, the
oscillation amplitude and the oscillation period change dependent on the phase difference
between the meandering oscillation and the perturbation. However, the oscillation center
of a new orbit remains the same. When the orbit is é,vera,ged over one oscillation period,
the tilt modification of the current profile does not appear in the toroidal current carried
by the meandering ions in the average. In other words, the ion executing a meandering
motion does not contribute to the growth of the perturbation of the tilt mode. We thus
conclude that the ion with a meandering orbit plays a key role in keeping the system sta-
ble against the tilting instability, and that the evolution of tilt mode can be completely

suppressed when most of the ions move on the stable meandering orbits, i.e., when § =~ 1.
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Fig. 1. Top view of the orbits of one hundred ions for the cases of 5 = 1 (left )
and § = 5 (right ). :

Fig. 2. The jon distribution in the (vg, vz )-plane (right) and in the (v,,v.)-plane
(left) for the case of § = 1.
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3-D Electromagnetic Macroscale Particle Simulation
of Inhomogeneous, Magnetized Plasmas

Motohiko Tanaka
National Institute for Fusion Science, Nagoya 464-01, Japan

1. Introduction

For the study of kinetic transport in "macro” (MHD)-scale plasinas, there are sev-
eral requirements to be satisfied by a simulation code. First, the time and spatial scales
are not microscopic, i.e.,w,. At > 1 and Az > ¢/w,.. Second, confinement plasmas
are highly inhomogeneous in density and magnetic field. Moreover, the diamagnetic
current must be included for finite temperature plasmas. This leads to an inevitable
use of the drift approximation for the electron perpendicular motion since the relation
Wee ~ Wpe holds for magnetic fusion plasmas.

For the above purpose, an electromagnetic "kinetic-MHD” simulation technique -
Macroscale Particle Code (MACROS) - has been developed'. The macroscale particle
code is essentially an-implicit particle code. The characteristics of the MACROS code
is summarized in Table 1. Important feature here is that the MACROS code properly
treats Jow frequency electromagnetic (electrostatic, of course) waves and structures
with wAf < 1. Hence Landau and cyclotron resonances are retained on top of the par-
ticle orbit effects. Moreover, the code is numerically stable in nonlinear regimes and
energy conservation is acceptably good. These characteristics make this code suitable
for the study of large-scale kinetic plasma problems. A

Table 1. Characteristics of Macroscale Particle Simulation Code.

o Large time and spatial scales:
WOt > 1, w AL > 1, and Az/(c/wy) 21 (however, wiAt < 0.4).
o Fully electromagnetic.
¢ Multi-dimensions in any geometry {Cartesian, cylinder, torus).
¢ Inhomogeneous density profile and magnetic field used.
¢ [ully kinetic:
ions: 3-D motion :
electrons: parallel direction — 1-D motion with (—xVyB) force.
perpendicular direction — guiding-center approximation
(E x B, B x VB drifts )
Resonance effects {Landau, cyclotron resonances)
Orbit effects: finite Larmor radius effects
— diamagnetic current included.
banana orbit...
Longitudinal particle transport
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2. Algorithm of Macroscale Particle Code

The foregoing characteristics of the MACROS code have been achieved by intro-
ducing a slightly backward time-differencing method both into the Maxwell equations
and the equations of motion of particles’. The Maxwell equations with time level
suffices are,

1 (oE\"/? ta AT,
hall Ediond — nta __ 2% engy
c (c")t) vV xB ¢4 (1)
1 {aB\ "t/
c
v En+l — 47rpn+1, (3)
V.-B™! = o (4)
The equations of motion for ions are,
dvlr.x-'}-ljz e; e V1}+1/2 )
L = S Eree) + D By )
n41f2
dxj — v7}+ll2 (6)
dt 7
and the equations of motion for electrons are,
dide gl ] IJ' nT+a
—Iz,t— = ?EnJr (x;) — ;;*VIIB e, (7}
Vi = ), | (®)
n ExB,, MC, s - " "
VI = ) - 5 B BT X VB, (9)
dxf_l‘fl}'? . )
T = G v, | (10)

The parameters o and -y are the implicitness parameters that are slightly larger than
5. The decentering of the time level for the curl terms in Eqs.(1)(2) results in damping
of the high frequency light wave and that for the current density results in damping
of high frequency plasma waves. Damping of high frequency electrostatic waves with
w ~ wy, is caused by the decentering of the field in the equations of motion. It should
be noted that the guiding-center approximation is used just for the "perpendicular”
motion of the electrons to eliminate the electron time scale w,.. By contrast, the ion and
electron parallel motions are exactly traced as particles, making this code suitable for
the study of kinetic plasma transport in fusion plasmas (w,, ~ Wye > wy). It is also a
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natural extension of this MACROS code to introduce the guiding center approximation
to the ions which enables us simulations with yet a larger time scale w At > 1.

The technique that makes the implicit algorithm practical is the following: The
Maxwell equations in the finite-difference form assume

Er*l — B" = cAtV x B — 4xAt Y, (11)
B™! — B" = —cAtV x E*te (12)

To avoid the Courant condition which severely restricts the size of the time step At,
we eliminate B**! from Eqgs.(11)(12} using the linear interpolation to the non-integer
time level:

B = oE™ 4 (1-a)E", | (13)
to yield an equation governing the electric field

(14 (@cAt)’V x Vx JE™ = [1- ol —a)(cAt)?V x Vx | E".

4+ cAtV x B® — 4rxAt j~t. (14)

Since the implicitness parameters are so chosen as a,vy > %, the current density in

the above equation must be predicted by some ways. This is done by expressing the
current density in terms of the electromagnetic field,

*r(x) = ):; e;vitIS(x — K2*7) | | (15)
= Z iv; +~/At {E"+"( ) | (16)

r.1+1[2 ‘
L X BE))] S(x - 1) (17)

b (- )[{v.mm(( Do) - Ly b ()

(-

+v1+"(5c}‘+")] S(x —xIH). (19)

Substitution of this expression into Eq.(14) with Eqs.(5){10) and (12) forms a closed
set of the Courant-condition-free, implicit equations which are named "field-particle-
coupled (FPC)” equations. :

3. Applications of Macroscale Particle Code

Physical accuracy of the MACROS code is demonstrated in Fig.1 where the ki-
netic Alfven wave (KAW) of a finite amplitude is initially loaded in a two-dimensional
bi-periodic magnetized plasma'. The KAW has both the MHD and kinetic natures
accompanied by the density perturbation since its perpendicular wavelength is compa-
rable to the ion gyroradius. It is seen that the wave pattern is fairly well preserved as
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it propagates obliquely to the ambient magnetic field £y > k. The amplitude of this
wave is found to decrease in time. The phase speed and the damping rate of this wave
agree very well with the linear theory of the kinetic Alfven wave. As a result of the
wave damping, heating of electrons along the ambient magnetic field is observed. The
flattening occurs at the resonance velocity v 2 w/k) which is an evidence of occurrence
of the Landau resonance with the wave.

The intermediate version of MACROS code was completed by 1986. This adopts the
predictor-corrector method to obtain the current density term in Eq.(14). This version
of the code has been applied to variety of plasmas including a current generation /kink
. instability? and excitation of the kinetic Alfven wave /plasma heating®. These studies
are virtually the first works that have ever done by kinetic-MHD simulation code of
general purposes. A simulation of m/n=1/1 kink instability is shown in Fig.2. For this
simulation a drag term is included in the equations of motion. The current carrying
beam is seen to be helically distorted by the kink instability. As the result of this
instability, the safety factor before the instability ¢{0) < 1 is found to pop up to g > 2
after the instability.

References _
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Fig.1 Propagation of the kinetic Alfven wave in a bi-periodic magnetized plasma.

Fig.2 Occurrence of m/n= 1/1 helical kink instability in a three-dimensional
magnetized plasma.



Study of kink instability and current relaxation

by three dimensional macroscale particle simulation

H. Takamaru !,
Faculty of Science, Hiroshima Univ., Japan
M. Tanaka and T. Sato,
Theory and Computer Simulation Center

National Institute for Fusion Science, Japan

Abstract

Using the macroscale particle simulation code ( MACROS code ), we have been
able to study nonlinear particle transport on the MHD ( large time and space )
scales. We apply a semi-implicit version of the MACROS code to problems with a
change in the magnetic field structure. We first study qualitatively and quantita-
tively a pure MHD phenomenon, an ideal kink instability ( m/n =1/1}. A simple
tokamak system with no toroidal effect is used to simulate the time evolution of the
instability starting from a typical initial configuration. We observe an occurrence
of the kink instability whose growth rate ymacros given by the MACROS code
takes a value up to, but not greater than twice the lirear-analytical value of Yineqr-
Secondly, we study a current relaxation process from an initial non-equilibrium to
a force-free like equilibrium configuration. We have found that kinetic effects may

contribute to the relaxation process of the magnetic field - current system.

1. Introduction

Particle transport is a new and old problem in plasma confinement. Though it is a
fundamental problem, its mechanism has never been solved self-consistently. The leading
{actor which has made it hard to solve this pi'oblem is the fact that one must deal simul-
taneously with nonlinear interactions between MHD ( large time and space) scale field
fluctuations and microscale field-particle nonlinear couplings. The macroscale particle
simulation code (MACROS code) has been developed to overcome this difficulty.

We show two applications in this paper. First, in order to demonstrate the applica-
bility of this code to problems with a change in the magnetic field structure, we study

qualitatively and quantitatively a pure MHD instability, that is an ideal kink instability

tCurrent address is National Institute for Fusion Science, Japan
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(m = 1/n = 1), starting from unstable equilibrium state to stable equilibrium state. Sec-
ond, we apply the MACROS code to the current relaxation process in tokamak plasmas
starting from an initial non-equilibrium state to an equilibrium state.

We consider a simple tokamak system with no toroidal effects and make a simula-
tion using a semi-implicit ( predictor-corrector scheme ) version of the MACROS code.
The simulation box is rectangular with the longitudinal axis and square cross section
corresponding to the toroidal axis and a poloidal cross section, respectively. The initial

temperature profile and external magnetic field are homogeneous.

2. Kink Instability _

The initial configuration is such that the plasma is in the MHD ( Grad-Shafranov )
equilibrium including a vacuum region between the plasma and the wall. An initial
perturbation is given by thermal noise. Initial q ( safety factor ) and plasma density
profiles are shown in Fig.1, where the on-axis q value is 0.56.

Three dimensional scatter plots of Fig.2 shows the appearance of thé m/n = 1/1 kink
mode. Figure a) and b) correspond to t = 0 and t = 127p,, where 75, is a poloidal
Alfvén time. The points in the figures show plasma particles ( ions and electrons ) within
a region inside the q=1 surface at the initial state.

A time-history of the kink instability is shown in Fig.3 where the plasma column is
found to shift radially (£). This result shows that the growth rate (rpacros)™ given by
the simulation takes a value up to, but not greater than twice the linear-analytical value
of (ngma,)'l. Here the MHD analytical value is calculated in cylinder coordinates under

an incompressible approximation.

3. Current Relaxation Process

The initial configuration of the tokamak plasma consists of an external toroidal mé,g—
netic field, induced toroidal current, and poloidal magnetic field which is induced by the
toroidal current. This initial non-equilibrium configuration may change to the state close
to a force-free like equilibrium state (J x B = 0) where plasma current runs parallel
with magnetic field. It is difficult to measure or theoretically analyze this relaxation pro-
cess toward the force-free like configuration. The purpose of the present research is to
investigate whether this current configuration can be realized or not, and to clarify th1s

mechanism using a three dimensional particle simulation.
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Fig.4 shows the time evolution of pitch angle between the current and the magnetic
field line from 0 to 20 7p4. The small panel in the figure shows an enlargement of the
time evolution from 0 to 7 7p4. This pitch angle decreases in the time scale (7,¢1,2) that
is longer than a small vibration near the MHD equilibrium point (~1/27p,) and shorter
than a resistive diffusion time scale. The poloidal current grows from 0 to some finite value
in certain time scale (~1/27p4 or 17p,) and is maintained in the time scale (7,e1,-) as in
Fig.5. These results show occurrence of a current relaxation process in tokamak plasmas.
This current relaxation process has the time scale (,u4.) and seems to be caused by a
kinetic effect rather than MHD effects. However we have not yet found the mechanism for
this process, since we simulated in the region (V gi5uen ~ Ve(therma) > Vitthermany) due to
the limit of the computer performance. Thus we can not distinguish MHD from kinetic

phenomena.

4. Conclusion

1) Simulation results for the kink instability are :
i} We have observed the occurrence of the m=1/n=1 ideal kink mode using a three
dimensional particle simulation.
ii) The growth rate of the kink mode takes a value up to, but not greater than
twice the MHD, linear-analytical value.
2) Simulation results for the current relaxation process are :
i) We have observed the relaxation of the magnetic field - current system from the
initial non-equilibrium to the “force-free like” equilibrium state.

ii) Although a conclusive description of this relaxation process has not been ob-
tained yeﬁ, we have found that kinetic eflects may act as the relaxation mecha-

nism.

References
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Nonadiabatic behavior of the magnetic moment of

a charged particle in a dipole magnetic field!

S. Murakami*® _
Faculty of Science, Hiroshima University, Hiroshima 730
T. Sato
National Institute for Fusion Science, Nagoya 464-01
A. Hasegawa | '
ATET Bell Laboratories, Murray Hill, New Jersey 07974, USA

ABSTRACT

- Non-adiabatic behavior of the magnetic moment of a charged particle in a dipole mag-
netic field is studied both numerically and analytically in the presence of a low frequency
electrostatic wave with azimuthal component. We obtained numerically two characteris-
tic conditions for the breakdown of y; one is independent of the wave frequency, and the
other forms a spike-like structure in the wave frequency-particle energy space. We showed
analytically that the former is caused by the direct interaction between the particle and
the electrostatic wave during the gyromotion and that the latter is caused by two kinds
of resonances, i.e., the bounce-E x B drift resonance and the wave-drift resonance. The
unstable conditions obtained by theoretical consideration showed good agreements with

those of numerical results.

*Present address: National Institute for Fusion Science, Nagoya 464-01
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The motion of particles which are trapped in a dipole magnetic field consists basically
of three periodicities?. One is the gyromotion caused by the Lorentz force. The second is
the bounce motion along the magnetic field line and the third is the drift motion in the
azimuthal direction. We can then define three adiabatic invariants®* as actions associated
with these three periodic motions: the mégnetic moment u related to the gyromotion, the
action integral J of the bounce motion along the magnetic field line, and the magnetic flux
¥ penetrating the area surrounded by the drift orbit of the particle. We study the motion
of a single particle in a dipole magnetic field in the presence of an electrostatic wave
which has an azimuthal filed component. The frequency of the ambient electrostatic wave
is comparable to the drift frequencies. In the presence of an azimuthal electrostatic wave,
the resonances between the particle motion and the wave or the E x B drift oscillation
can violate the adiabaticity. We show two kinds of resonances by which the adiabaticity
of the magnetic moment is broken and give the critical condition for magnetic moment
conservation in the resonant and nonresonant cases.

First, we numerically study the dynamic behavior of the magnetic moment in the
absence of the electrostatic wave. In this case the nonlinear resonance betwen the bounce
motion and the gyromotion®® can be a cause of the violation of the adiabaticity of the
invariants. The numerical calculations are obtained for various initial velocities and pitch

angles. As a result, we found the critical condition for the u conservation,
7 =¢"sinfy + ¢, (1)

where v and f are the particle velocity and pitch angle, respectively.

Next, we numerically study the case in the presence of a wave. Since the propagating
direction of the wave depends on the sign of the wave frequency, two different cases are
considered, i.e. , the case where the wave propagates in the direction of the particle drift
motion and the case in the opposite direction. We made numerical calculations under
various particle and wave conditions for the two cases. The results are shown in Fig. 1.
Open circles show the condition where i is conserved, while filled circles show the condition
where u is not conserved. In both cases, we obtained two characteristic conditions for
the 1 non-conservation caused by the electrostatic wave. One is independent of the wave
frequency, and the other forms a spike-like structure in the wave frequency-particle energy
space. Particularly, when the wave propagates in the particle drift direction the spike-like

structure is larger than that in the oppositely propagating case.
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Figure 1: A comparison of the analytical results with the numerical ones for the case where
the wave propagates in the direction opposite to the particle drifi(a) and in the direction

of particle drift motion(b). The shaded region shows the analytical results.

In order to study the critical condition of the adiabaticity of the magnetic moment
in the presence of an electrostatic wave, we make the following conjecture. When the
wave frequency is comparable to the drift frequency, the p-breaking mechanism can still
be independent of the existence of the wave. Hence the critical condition for the u
conservation in the absence of a wave, Eq. (1), is also applicable to the case where a low
frequency wave is present. The critical condition may be satisfied with the modification
of the perpendicular velocity in the nonresonant case, and with the modification of the
parallel velocity in the resonant case. Thus we analytically study the velocity change due
to the electrostatic wave for two cases; the direct interaction case and the resonant cases.

In the direct interaction case, we estimate the decrease of the ‘perpendicular velocity
due to the electrostatic wave during the particle gyromotion. Assuming that the electric
field is constant during the gyromotion, we obtain the maximum change of the perpendic-
ular velocity. In the resonant case, we estimate the increases of the parallel velocity due

to the resonances between the wave and particle motions. By means of the Hamiltonian
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for the guiding center, we found that the parallel velocity is maximized by two types
of resonance, i.e., the bounce-E x B drift resonance and the wave-drift resonance. The
bounce-E x Bdrift resonance is a resonance between particle bounce motion and E x B
drift motion, and the wave-drift resonance is a resonance between the wave motion and
the particle VB drift motion.

Substituting the perpendicular velocity change and the parallel velocity change into
the critical condition in Eq. (1), we can obtain the non-adiabatic condition in the presence
of an electrostatic wave. We compare the numerical results with the analytical ones for
the case where the wave propagates in the direction opposite to the particle drift and
in the direction of particle drift motion (Fig. 1). The unstable conditions obtained by
theoretical consideration showed good agreements with those of numerical results in both
cases. Consequently, it is concluded that the frequency independent characteristic con-
dition is caused by the direct interaction between the particle and the electrostatic wave
during the gyromotion and that the frequency dependent one is caused by two kinds of

resonances, i.e., the bounce-E x B drift resonance and the wave-drift resonance.
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NUMERICAL STUDY OF ION TEMPERATURE
GRADIENT MODES IN A TOKAMAK

M. Yagi and M. Azumi

Japan Atomic Energy Research Institute
Muko-yama, Naka-machi, Naka-gun, Ibaraki-ken, Japan 311-01

Understanding of anomalous transport processes in a tokamak is
the key issue for improving the energy confinement and realizing a
fusion reactor. From this point of view, the microturbulence caused
by ion temperature gradient modes (n; modes) has been
extensively studied as a possible candidate for degrading the ion
energy confinement. Some recent experimental results, however,
show that the energy confinement time does not differ from the
standard one even when njbecomes much greater than the
threshold value; that is, the ni mode is linearly unstable. These
results suggest that , when we employ the quasilinear expression of
ion thermal flux as qi=[e¢/Ti]2F(ne,Ti, ....)(ni-nicrit)1/2, the numerical
factors such as the saturation level and the value of function F may
change, depending on the change of plasma parameters. We are
now studying the three different regimes of nj modes, based on
the fluid model by Horton. The first regime is the normal density
profile case ( positive nj modes), which is related with the standard
|.-mode confinement. The second regime is the flat density profile
case ( weak density gradient nj modes), which is related with the H-
mode confinement. The third regime is the inverted density gradient
case { negative n; modes), which is considered to be related with
E_henomena observed in H -mode discharges in D-HI-D. By the

inetic theory based on the weak turbulent approximation, Harm
and his coworkers found that the saturation level of the negative n;

mode does not show the strong dependence on the nj parameter.
We are now checking their resuits in the framework of the fluid
model. We will also discuss the relationship between the result of
nonlinear fluid simulations and the tokamak transport analysis.
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Nonlinear Behavior and Transport Property
of Multiple-Helicity Resistive Interchange Modes
near Marginally Stable States

H. Sugama

National Institute for Fusion Science
Nagoya 464-01, Japan

MODEL EQUATIONS AND THEIR SYMMETRY PROPERTY
Resistive interchange modes are described by the following reduced MHD model in the
electrostatic limit, which consists of the following equations:

Pm 4 2 ¢ . : 2 By rap
Pmc (2 _ = : = 2vig-qf
B, (& uVJ_+Bsz¢v V)Vﬁﬁ o 19— 3y (1)
0 c _,0¢
v? _ X — __Pl_
(5’1‘ Vit Boz xVe V)P By "ay 2

where ¢ is the electrostatic potential, p the pressure fluctuation, By the component of the static
magnetic field along the z-axis, p, the average mass density, c the light velocity in the vacuum,
n the resistivity, v the kinematic viscosity, x the pressure diffusivity, Py = dP,/dz (< 0) the
average pressure gradient and €' = d3/dz (> 0) the average curvature of the magnetic field
line. Vi = 82 + 87 denotes the two-dimensional Laplacian. The gradient along the the
static sheared magnetic field line is given by Vy = 8, + (z/L,)8,. Here By, L,, pm, 1, v,
X, Fp and Q' are assumed to be constant since we treat a local transport problem. The
electrostatic approximation is used in Eqs.(1) and (2) since we consider the low beta plasma
in the peripheral region and futhermore we are most concerned with the transport of the
stationary state, in which the time variation of the magnetic field vanishes as well as those of
the other physical variables. ‘
Choosing the units:

[t] = (-P/pm)™? [z)=[y]= ch”’(—meéQ’)”‘/Bo
[2] = L, [x] = [2)*/[t] = *n(—R)Y'L?/ BE - (3)
[¢] = en(=POYQVL2 /By [p] = cL, 2 pl4 (= P3)SIsQ 4/ B,

we obtain model equations in non-dimensional variables from Eqs.(1) and (2) as follows
OVi$+[$,Vig] = —Vie-0,p+xPVig (4)
Op+[d,p) = —0,¢-+ XVJ_ ()

where V = 8, + z0,, [f, 9] = (0:)(8y9) — (8:9)(8,f) and P, = v/x(the Prandtl number).
Let us expand the electrostatic potential ¢ and the pressure fluctuation p into the Fourier
series with respect to y and z as

#lz,y,2) | = ¢0n(a:).sinknAz Pmn(z)sink(my + nAz) \.
( 'p(:L‘, Y, Z) ) B r;) ( po"("‘t)COSknAz ) * mz—l n—z-co ( Prmn I)COSk(my + nAz) ) ‘ (6)

where A = (k;)min/(ky)min denotes the interval between the neighboring m = 1 mode ratinal
surfaces.



We consider the following transformation T:

v (@)~ () =Gt =s) o

Equations (4) and (5) are invariant with the transformation T. We should note that not only
Eqgs.(4) and (5) but also other reduced fluid model equations based on the local sheared slab
geometry with constant magnetic shear are invariant under the transformation T.

PERTURBATION THEORY OF MULTIPLE-HELICITY RESISTIVE
INTERCHANGE MODES _

Here the perturbation theory of the single-helicity nonlinear problem near marginally
stable states by Hamaguchi and Nakajima [1-3] is extended to the multiple-helicity case and
applied to the resistive interchange modes. Equations (4) and (5) have the trivial equilibrium
solution ¢ = p = 0. Solving the linearized equation gives the spectrum of the eigenvalue or
the linear growth rate -y for the perturbaton which varies in the form exp -+t and vanishes as
1 — ®oo. When k and P, are given, a critical diffusivity x. exists such that all the Fourier
modes in Eq.(6) are linearly stable for x > x., only one of the eigenvalues of the m = 1
modes becomes 4 = 0 for x = x. and the system is linearly unstable for ¥ < x.. Since the
neighborhood of the marginally stable states ¥ = ¥, is considered, the magnitudes and the
temporal variations of ¢(z,y,z) and p(z,y, z) are small and therefore we make the following
_perturbation expansion with the parameter A

(2) = (B )ew( 2]

8 8 .,
Et.. = A_é}.;._i_,\.é.g_*_
X = X+ )(X1+)\2X2+ """ . - (8)

Substituting Eq.(8) into Eqs.(4} and (5) yields in O(})

b1 ) ( ~Vig1 + x. Vi  —9,m )
L = = 0. 9

( P1 0y 1 ~XxVips ©)
Equation (9) is just the linear equation for the marginally stable state. We find that the
solution of Eq.(9) consists of the linear combination of the m = 1 modes

( b, ) _ i AL ( é1(z + nA)sink(y + nAz) ) ‘ (10)

n = pi{z + nA)cosk(y + nAz)

Here we used the fact that since the linear equation (9) is also invariant with the transforma-

tion T, we can produce the linear solutions from one set of eigenfunctions (¢,(z) sin ky, p;(z) cos ky)7
by operating T successively

o $i(z)sinky \ [ éi(z — nA)sink(y —nAz) N
* ( pi(z)cos ky ) - ( n(z —nd) coslk(y ~ nAz) ) (n=0,£1,%2,--). (11)

Thus the marginally stable state is degenerate with the m=1 mode eigenfunctions (11). Here
we employ the boundary condition that ¢,(z) — 0 as z — Foco. The eigenfunction ¢,(z)
has a peak at z = 0 so that the m=1 modes (11) are localized around the mode rational
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surfaces z = nA (n = 0,%1,42,---). In Eq.(10) A, is a real-valued function of the time
A, = Ay (1,72, ). '

From the solvability condition of the O(A?) equation, we can assume that x; = 8, 4, = 0.
The sovability condition of O(A?) equation gives

DﬁaﬂAI"l + X2D1An + Z Dn—n;,n—nlAn—ni-{-ngAn]Aﬂg = 0. (12)

Ty,

Réwriting AAp — An, 72 — A% and Mys — (X — Xxc) we obtain

DﬂatAn + (X _ Xc)DlAﬂ + E Dn-—-ng,n—nl An—nl +nqAn1An; =0 (13)

where o
Do= [~ dallouds(a)? + K3(z) + Fi()] (14)
Dy= [ da[R|(82 ~ £)1(a)” + 10:m1 (@) + K7p3(o)] (15)

Z Dn—m,n—nzAn-m-l-nzAmAna -~ / [ ¢1($+T’IA){[¢1,V ¢2]1n [¢2,v qf’l]ln}

i +p1(z + n8){[$1, p2lin + (2, Pa]1n}]. (16)

Equation (13) determines the behavior of the amplitude A, in the solution of the leading
order (10) near the marginally stable state.

COMPARISON BETWEEN THEORY AND NUMERICAL SIMULATIONS OF
SYMMETRIC SOLUTION

In this section the results of the perturbation theory in the previous section are compared
with those of the numerical simulations of Eqs.(4) and (5). Here we consider the symmetric
solutions which are invariant under the transformation T: T® = &. Then it follows that
A, =A (n=0,£1,%2,---) and Eq.(13) reduces to the Landau equation:

The solution of the Landau equation is easily obtained and written as
A= A2 J[1+ (42,142 — 1) exp(201) (18)

where Ay = A(t = 0), 0 = (xc — x) D1/ Do and A% = (x. — x)D1/Ds. Equations (14) and
(15) show that Dy > 0 and D3 > 0. We find that if x > x. then ¢ < 0 and A ~ Agexp(at),
i.e., the linear theory holds as ¢ — oo for sufficiently small Ay. As will be found in the
detailed calculations, D is positive in the cases treated here. When x < x., we have o > 0
and A ~ Apexp(ot) as t — —oo for sufficiently small A,. In this case, A = A, ast —
for arbitrary magnitudes of Ay. The volume-averaged convective flux {pv.) in the stationary
state, in which the contributions from the m = 1 modes are dominant, is O(A?) and given by

kA2 s

NI4T =00

(pve) = _(pay¢)=

!CAg 5] k‘ D
= —2—A— _md$p1($)¢l($)=_(xc QADl./ dzp1 ‘;61( ) (19)
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Figures 1 show the electrostatic potential in the saturated state of the multiple-helicity
resistive interchange mode obtained from the numerical simulation of Eqs.(4) and (5). Here
weput Bb=1, k=7 A=3 x=5x 1072 (x. = 7.79 x 1072) and included the modes with
0 < m < 6. Figure 1(a) shows the contours of the electrostatic potential. In this case the
m = 1 mode structures appear dominantly, the profiles of which are shown in Fig.1(b). The
m = 1 mode structures are similar to those of the linear eigenfunctions obtained from Eq.(9)
except that the former is somewhat broader than the latter due {o the nonlinear interaction
through the overlapping of the neighboring m=1 modes.

Figure 2 shows the dependence of the convective flux (pv:) in the saturated state on the
diffusivity x obtained from the theoretical expression Eq.(19) and the simulations of Eqgs.(4)
and (5). Here P, = 1, k = = and A = 10. The theoretical results are in good agreement
with the simulation results. For small x the convective flux obtained from the simulations is
smaller than that obtained from the theory due to the higher order nonlinear corrections.

Figure 3 shows the dependence of the saturated convective flux {(pv;) multiplied by A
on A”!. Here P, = 1, k = m and x = 7 x 1072, As seen from Eq.(19), (pu.)A =
—1kA? [, dzpy(z)¢1(z) denotes the convection of a single m = 1 mode integrated over -
—oo < T < oo. Since the values of k£ and x are fixed here, the linear mode structures remain
unchanged and therefore A~! represents the measure for the ratio of the width of the m =1
mode structure to the interval between the neighboring m = 1 mode rational surfaces (or
the extent to which the neighboring m = 1 modes overlap). Here the results of the theory
[Eq(19)] and the simulations of Eqs.(4) and (5) are shown. The simulation results are well
described by the theoretical predictions but for larger A~! the former shows the more rapid
increase of {(pv.)A than the latter. Thus we see that the higher order nonlinear corrections
enhance the saturation amplitude for larger A~™! while they lower that for smaller x as seen
from Fig.2. '

[1] S. Hamaguchi, Phys. Fluids B 1, 1416(1989). P FIG.2
[2] N. Nakajima, Phys. Fluids B 2, 1170(1990). _
(3] N. Nakajima and S. Hamaguchi, | 1 x 10-! THEORY
Phys. Fluids B 2, 1184(1990). /
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Abstract: A new treatment for nonlinear analysis for back-
ward wave oscillator is developed. A new scheme, Higher or-
der Implicit Difference Method (HIDM) to solve partial dif-
ferential equation is applied to study the propagation of
electfomagnetic wave in a corrugated wave guide and its cou-
pling with relativistic electron beam. The computational re-
sults is compared with the linear dispersion relation and

good agreement is obtained.

High-power microwave sources driven by intense relativis-
tic electron beam have been studied extensively in U.S. and
U.S. S.R. in last two decade[1]. Backward oscillators (BWOS)
are an example of such devices.

‘A few years ago, significant enhancement of radiation from
a plasma filled backward oscillators were observed at the
University of Maryland[2,3]. Recently, Lin and Chen[4] have
reported a numerical simulation of Maryland Flasma BWO, and
they attributed the_mechanism of enhanced efficiency to be'a
decrease in the phase velocity of most unstable mode which
traps the beam electrons. They concluded that beam- backward

plasma wave instability was unlikely to be the major reason
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of the improved oscillation. They used, however, an artifi-
cial periodic boundary condition along the axial direction
which did not correspond to the experiments(2,3]. In real ex-
periments, the length of thé interaction region of BWOs are
finite, and the end condition of the structure for reflec-
tion of radiation are believed to affect seriously the
oscillation. A

We here try to analyze numerically the nonlinear behavior
of a plasma BWO with finite length. Relativistic fluid equa-
tion of motion and Maxwell equations are solved numerically
in cylindrical coordinates assuming axisymmetric electromag-
netic TMO1 mode and an infinitely strong external axial mag-
netic field. We consider a waveguide whose wall radius var-
ies with the axial coordinate z according to a(z) as shown
in Fig. 1. The set of the nonlinear partial differential equa-
tions includes three independent variables, (r,z,t). In
order to make the equations tractable, we try to reduce 2D
(r.,z,t) boundary value problem to 1D (z,t) problem. We de-
vice a power expansion method, which is one of the Galerkin
method. All physical quantities are expanded in power series

in r;

Er(r,z,t)=Erl(z.t)r (1)

Ez(r,z,t)zEzo(z,t) + EZZ(;,t)r2 +: (2)

Slow Wave Structure

REBW

50c¢cm

I ]
Fig.1 Size of the plasma Backward wave Oscillator -

and model circuit for microwave absorber
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(3)

where notations are standard.

Putting eqgs. (1)~(5) into the Maxwell and fluid equations,
.we find a hierarchy system of equations in which EzQ(Z‘t)
has to be known to solve Ezo(z.t). The hierarchy can bhe
closed and equations become solvable, if we impose the bound-

ary conditions at surface of the waveguide,

E (r.z t)+a' (z2)E_(r,z, t) -0, (6)
Z r r=a(z)

1. €.,
B, oz, t) 4 a(z)ZEZZ(z.t) +a'(z)-a(z)E (z.1) = 0 . (7

Hatched terms in eqs. (1)~(5) are neglected as higher order
parts in the lowest order approximation. The final form of

the equation is given by

2 2 2
8 E a E 4c g{n..v. ) an.
.——EEQ - c2 220 + 5 EZO+ z 4ne.[ 40 Jz0 + 02——49
at 3z a J Jlat 3z
2 . [0E
_ 2c a 20 _ v ame.n..| =0 . ' _ (8)
& oz J Ja0

In order to check the validity eq. (8), we consider Lhe
simplest case of TMOl mode in a straight cylinder (a’'=0)
without the beam and plasma. From eq. (8) one can gets
dispersion relation m2 = 02k2+(20/a)2 which means the cutoflf
frequency to be 2c¢/a. As is well known, the ‘exact cutoff
value is 2. 4048-xc/a. This means sﬁggests that our (8) may
be correct within an error of 20%. It must be emphasized

that our scheme does not include any artificial assumptions
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contradictory to physical processes, and that accuracy can
be improved, if we pick up more higher order terms in
expansion in eqgs. (1}~(3).

The reduced iD equations are solved numerically by newly
-developed algorithm of Higher order Implicit Difference
Method (HIDM) which is a generalized scheme to solve system

of equations with wide applicability, high accuracy and

(a) Contour map

L]
e
a
)
b
S 15 15+ /
B
v Lo 10r
z
[a]
E; . 5 LTHOL mode
]
o
Z, 0 0 ¥4
—4 -2 0 2 4 -4 -9 0 2 4

WAVENUMBER (cm ') WAVENUMBER (cm )

Fig.2 (a) Spatial and temporal evolution of a localized ini-

tial disturbance for the slow wave structure shown in Fig. |
without beam and plasma. (b) Fourier spectrum obtained from
{(a) at a period of wbot:20—60. (¢) the same as (b) for mbot:

100-140.
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strong numerical stability.

The sizes of the plasma BWO used in the analvsis are
shown in Fig.1l, which has identical size to those in the
experiments {2, 3]. The beam of 630 keV{(v=0.9¢c) and density
nbozleollcm-3 is incidents from the left. At right end, a
microwave absorber, expressed by appropriate C and R, mini-
mize the reflection of output radiation. The beam and plasma
densities can be assumed to change in radial direction, but
in our scheme only the values on the axis are included in
the computation asrshown in {8). The beam is cold and the
plasma temperature is 100eV. In real computation, terms with
a small amount of viscosity are introduced to damp out the
modes with short wavelength.

First, linear dispersion relation is checked in the case
without beam and plasma. A highly localized Gaussian type
disturbance of EZ is initially imposed at the exit of the
slow wave structure, and spatial and temporal evolution of
the fields are followed as shown in Fig.2(a). Contour map of
Fourier spectrum in frequency and wavenumber space is
depicted in Fig.2(b) for @b0t=20—60 and (c) for wbot:IOO—
140, respectively, in corrugated region. In these Figures,
TM01 and TMO2 modes are linear dispersion relations[6],
when, in the latter, the average radius 1.445 cm is multi-
plied by a factor 1.202. It is shown in (b), that the
contour lines coincideé mainly with a linear dispersion
relation of TMOl mode with negative group velocity. This
results correspond to the early stage of propagation of
disturbances exited at exit region (right hand side) of
corrugation. In the later periods of (¢), only components
with small grbup velocity remain in the structure.

Figure 3 shows structure and time development of
electromagnetic field exited by injected beam in backward
wave oscillator. We found that in early stage, Fourier
spectrum of exited wave is in good agreement with linear
.dispersion. When oscillation amplitude become large,
sideband in frequency appear. Plasma electrons are gathercd
in nodal parts of corrugation of waveguide by ponderomotive
force of exited electromagnetic wave. We found efficiency of

BWO is large if injected beam is cold. When plasma electron
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f

inject

density become large,
coupling between

Gould mode appear.
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MODE CONVERSION OF ALFVEN WAVES INDUCED BY
QUADRUPOLE MAGNETIC FIELD MODULATION
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Plasma Research Center, University of Tsukuba
Tsukuba 305. Japan

Abstract
A new type of the mode conversion of Alfvén waves in ICRF is presented,
which is induced by the spatial modulation of a quadrupocle magnetic field.
It is shown that the physical mechanism is analogous to a resonant
paramétric mode coupling and the coupling coefficient depends on the
ellipticity of the cross section of {flux swfate and vanishes when the
magnetic field is axisymmetric.

Mode conversion of waves in a plasma is a important elementary process
on plasma heating by waves. Recently a large number of theoretical studies
on mode conversion have heen done in the ion cyclotron range of frequency
(ICRF} and in the electron cyclotron resonance heating (ECRH}.

In this paper we present a new type of the mode conversion of Alfvén
waves in ICRF[1]. We show here that one Alfvén mode can convert to another
Alfvén mode due to the spatial modulation of a quadrupole magnetic field.
We obtain coupled mode equations beiween two Alfvén waves via the spatial
quadrupole field modulation. if we suppose the quadrupole magnetic field
modulation as a ‘virtual’ mode, we can see that the conversion prcess is
analogous 10 a resonant parametric mode coupling among two Alfvéen and the
virtual modes. The solutions of the coupled mode equations show that the
efficient mode conversion takes place when a resonant condition with respect
to an axial wavenumber among these modes is satisfied.

We now study the mode conversion of Alfven waves propagating in a
quadrupole magnetic field geometry. The basic equation to be analyzed is
Maxwell's wave quation given by '

VXVXE - (w/c)?eE = 0, (1)

where &£ is the dielectric tensor of plasma. which is calculated from a cold
plasma model. If we use the flux coordinates (4 .6 ,z), where the magnetic



field is defined by B=Bb= ¥V $ X V 0 and the wave eleciric field E is
expressed in the covariant form as E=E.,V ¢ + E.V & + E.,b, we obtain

ad iVIb|2 3E¢+(VIJ)'V5) 2 Es Ba aEe_aEa

39z B az B 3z 30 3y aeo

AN (V- Vo) :
Vel E,+(—w)2[(5—1)—w8-——iD]Es=0 . {2)
C

W
+ (—)2(5—-1)
C

3 |V6|2 aEs (VIIJVQ) aEw a aEa aEa
+ 1+8B -

3z B dz B a3z aw av a6

|2 w - VY-V
Eo+ (~——)2[ (S5 1)T+ iDIEs=0 , (3}
C .

w |V 8

)E(S-1)

+
[

where S and D are given by

et ct 1
S=1- = =1+ .
ie wi—w.t VaZ - (w/wei)? (4)
W ¢ wpz ct . 1
D= = = -
i.e 0w w?i—w,.? Va2 1= (w/wei)?

w . being the cyclotron frequency, w, the plasma frequency and V. the
Alfvén velocity. E. is neglected as E.{{ E.. Es.

We express the magnetic field line by x{z)= o (z)xo and y(z)= 1 (2)ys.
where (%o.¥o) denotes the radial position at z= 2z, with a circular cross
section of flux surface. The %, and yo are given by xo= (2% /Bo) ' %cos®
and yo= (2% /Bo) '“%sinf , respectively, and satisfy xo?+ yo2=roe?= =29 /Bo,

where Bo = B(zo). Then |V ¢ |2, |V 812 and {V ¢ -V 0 ) are expressed as

V2= (29 Bo)[h{z})+ a (2)cos2 8 ]
|V 8 |2=(Be/2% }[h(z)— a (z)cos28 ] , (5)
(Vi -V8O)=—-—Boax {z)sin2 8

with
hiz)=(1/2)(1/62+1/72%) . ~alz)=(1/2)1/02—1/T2).

We can see that the mode coupling with respect to the azimuthal mode number
arises in Eqgs.(2) and (3) due to the @ — dependence of |V |2, |V 6 |? and
(Vi -V ). That is, a mode with mode number m couples to modes with m+ 2
through the guadrupole field component with mode =+ 2.

We here restrict to study one-dimensional wave propagation along the
field line. If we define X» and Yo by
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Xo=Ee(m) ~ 2i$ Ee(m) ,  Yo= —Eo(m) - 2i9 Es(m), (6)

where E.(m) and Es(m) are the Fourier components of E. and E,. respeciively,
¥ and Y. describe left-hand and right-hand circularly polarized wave
compoments, respectively and are governed by

d d d d
—[(p—Xultks®¥at+ —[28=Yns2]+28Bk1?Yn..=0 . {(7)
dz dz dz dz

d d d d
—[p—Yn)+ke® Yo+ —{28 —Xa-21+28k:%Xn-.=0 ., (8
dz dz dz dz

with ©@ = v /0 and

p (z)=h(2)[Be/B(z)]=(® +1/0)/2 ,

28 (z)= a (z)[Bu/B(z)]=(O®-1/0)/2 ,
sP=(w/NVa)?(ptw/we i M1 {w/wei)?] . {(9)
ke?=(w/Va)2ip—-w/w ) /1 —(w/w.:i)?]
k'rz=((.:)/VA)z/[1‘"(w/wci)z] .

Equations (7) and (8) are coupled mode equations between X. and Yaee
(or, Xe-z and VYa). If the magnetic field is axisymmetric, the coupling
coefficient @, which depends on the ellipticity of the cross section of
flux surface, vanishes since ® =1(o = 7 ) and then X» and Ye.. decouple
each  other. _

As a model of the magnetic field, we consider a periodic quadrupole
field mirrer described by o (z)=1- € cos(koz) and t (2)= 1+ & cos(kez) with
e{{1 and ko being a wavenumber characterizing the spatial modulation of
the quadrupole magnetic field. We see that the slow wave of m= ~ 1 being
left-hand polarized is described by X-,(=X) and the fast wave of m= + 1
being right-hand polarized by Y. (=Y). In this case, Egs.(7) and (8) with
Eq.(3) are reduced to

¢ d dy
[—+ks?]X+2¢e {—[cos{koz)—]+kr?cos{koz)Y}=0 . (10)
dz? dz dz
2

d d dX
[—+ke2]Y+2¢ {—[cos(koz)—]1+krZcos(koz)X)}
dz*? dz dz

0. : (11)

These equations are analogous to parametric ocoupled mode equations[2],
if we suppose the spatial modulation of the quadrupole magnetic field as
a ‘'virtual’ wave with zero frequency and axial wavenumber ko .
Fourier-analyzing FEgs.(10) and (11) and also assuming the resonant
~condition given by ko=ks— ke, we obtain approximately the propagating
coupled solutions as follows : '
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Y=Yocos{Az)expliksz) , : - (12)

X= (ke/Ks)Yosin{Az)exp(iksz)} , (13)
with '

A= e (ke —keks)'/2/2(keks) 7% (14)

where Y, is the wave amplitude of the fast wave in the absence of the slow
wave. The slow(fast) wave amplitude increases when the fast(slow) wave
amplitude decreases. Then we can see that these solutions express the mode
conversion between the fast and slow waves, satisfying the following
conservation relation :

kelYol®=kelY|®2+ks|X]|® , ' {15)

which is analogous to the Manley-Rowe relation.

We have observed the polarization reversal of Alfvén waves in the recent
GAMMA 10 experiment[3]. In the experiment, the fast wave with m= + 1, which
is observed to be right-hand polarized in a core region, is excited in the
axisymmetric central ceil. The wave field observed in the anchor cell with
a quadrupole magnetic field is left-hand polarized in the core region and
heating of the anchor-cell ions is also observed, which is due to the ion
cyclotron resonance. Therefore, the wave observed in the anchor cell is
considered to be the slow wave with m= — 1. '

As another interesting case, we briefly discuss the case of ko= ks+ k.
In this case, we find that the eigenvalue the of axial wavenumber obtained
from Egs.(10) and (11) becomes complex. This shows that the Alfvén wave can
not propagate in the duadrupole mirror Tield with the spatial modulation of
ko= ks+ kr. The complex eigenvalue of the wavenumber just corresponds to
the exsistence of a forbidden energy band in solid state physics.

In conclusion, we presented a new type of Alfvén mode conversion due to
the spatial modulation of the quadrupole field in ICRF. The mechanism of
the mode conversion is analogous to the resonant parametric mode coupling.
The present model of the mode conversion can resonably explains the
experiment results on the polarization reversal of Alfvéen waves in GAMMA 10.
" This work was partially supported by a ~Grant-in-Aid for Scientific
Rescarch from the Ministry of Education. Science and Culture.
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NUMERICAL SIMULATION OF POTENTIAL-DRIVEN
ION CYCLOTRON OSCILLATION

~ §. Ishiguro, K. Nakagawa and N. Sato
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Abstract

Using two-dimensional electrostatic particle simulation code, we study the ion
_cyclotron oscillation driven by applying a positive potential to a small electrode in a
magnetized plasma. It is confirmed that a direct plasma response to a two-dimensional
potential structure is essential.

Electrostatic ion cyclotron oscillations are typically observed in magnetized plas-
mas in both space and laboratory. D’Angelo and Motly!) reported the first clear-cut
observation of electrostatic ion cyclotron oscillations in a laboratory plasma. The os-
cillations are induced by applying a positive potential to the small electrode immersed
in a single ended Q-machine with uniform magnetic field. An electric current is gener-
ated along the mgnetic field under this configuration and the oscillations are therefore
considered to be caused by the current driven electrostatic ion cyclotron instability
predicted by Drummond and Rosenbluth.?)

On the other hand, Hatakeyama ef al%) made mesurements on the ion cyclotron
oscillation in nonuniform magnetic fields under the similar expermental configuration to
that of ref. 1. The oscillation frequency observed is around the ion cyclotron frequency
defined by a local magnetic field at the position of the electrode biased positively
to drive the oscilation. This result is not consistent with the current driven model.
Hatakeyama and Sato pointed out that the two-dimensional potential structure near
the electrode could be essential in the generation of the oscillations and they poposed
the mechanism of 'two-dimensional potential driven oscillations’ on the basis of further
detailed mesurements.*®) In this paper we present the numerical simulation of the
electrosatic ion cyclotron oscillation driven by applying a positive potential to the
small electrode in a magnetized plasma.

A two-dimensional magnetized electrostatic particle simulation code is employed.
The simulation model is schematically shown in Fig. 1. A uniform external magnetic
field B is pointing in the positive x-direction. We assume that a plasma reservoir
are placed z > L, and plasma particles are continuously injected from the region
z = L, and 0.2L, < y < 0.8L, intc the simulation system with half Maxwellian in
v, and full-Maxwellian in v, and v,. At y =0, y = L, and 2z = L, electric potential
#z,y = 0) = ¢(z,y = L;) = 0 and ¢(z = L,,y) = 0. Initially the potential of the
collecter which is placed at z = 0 is set negalive ¢ = ¢ = —2.3Tp/e < 0. After
plasma particles fill the simulation system, a positive potential ¢, = 40Ty /e is started
io be applied in the center of the collector with width L, = 64A. The parameters
of simulation are following: a 256 x 256 spatial grid, the ion to electron mass ratio -
m;[/m, = 100, w../wp.a = 0.5 where w,, is the electron gyrofrequency, w.. = le|B/m.c
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and wp.o is the plasma reservoir electron plasma frequency, w,.o = (4xnge?/m.)V/2,
the ion Larmor radius rz; = 20A where A is the grid size. The Debye length of the
plasma reservoir Ap.g is taken equal to the grid size.

At first we present the time development of the potential siructure about one-cycle
of the oscillation in Fig. 2(a}. It is observed that the electric potential in front of the
electrode oscillates. The potential at z ~ 25A and y ~ 128A = L, /2 increases from
wpeot = 9000 to 9300, decreases from 9300 to 9500, and increases from 9400 to 9700.
It is interestingly observed that the potential dip is created at wy. gt = 9500. As shown
in Fig. 2(b), the electric current oscillation is synchronized with the variation of the
potential profile. Next, let us see the time variation of the potential structure in detail
with the model of the potential driven ion-cyclotron oscillation?) in mind. We show a _
cut at z = 64A in Fig. 3(a) and the cut through the center of the system at y = 128A
in Fig. 3(b). Potential slopes in the y-direction from the center of the system to the
edge are observed from wy.of = 9100 to w,.ot = 9300. The magnitude of the potential
peak is about 3Tp/e and the width of the slope is about 15A. Since the gyroradius
of the ions is larger than the scale length of the transverse E, field, they can move
across the magnetic field lines. Thus the ions in front of the electrode are accelerated
in the y-direction away from the center of the system. An electron rich region thereby
is formed. As a result, a negative potential dip is created, as observed at w,.of = 9500
in Fig. 3(b). Its depth is about 2Tp/e. It limits the electron flow along the magnetic
field, and thus the electric current is decreased. The ions return to the central region
after the ion cyclotron period. The negative potential region thereby disappers. The
electron flow along the magnetic field increases, and the current channel is formed.
This results in the increase of the potential {here. '

Finally we show the macroscopic ion flow pattern at wy.f = 9300 and w,,cgt = 9500
in Fig. 4. Flows of ions in the y-direction away from the central region are observed
at wpeof = 9300. On the contrary flows of ions in the y-direction into the center of
the system are observed at wp.ot = 9500. These results is consistent with previous
explanation of the oscillation.

In conclusion, the potential driven oscillation with frequency around the ion cy-
clotron frequency is driven by applying a large positive potential to the electrode. The
ion motion across the magnetic field is synchronized with the electron motmn along
the magnetic field through the two-dimensional potential structure.
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DYNAMICS OF INTERFACES WITH INTERNAL STRUCTURES
Toshihiro Kawakatsu and Kyozi Kawasaki

Department of Physics, Kyushu University 33, Fukuoka 812, Japan.

ABSTRACT We develop computer simulation methods dealing with dynamical
models for interfaces (or discontinuities) having internal structures, where
for instance, other particles are attracted to the discontinuities.

It is well known that topological defects, such as interfaces, play an
important role in the dynamics of nonlinear systems [1,2]. For example, let
us consider the so-called time dependent Ginzburg-Landau (TDGL) equation,
which 1s a simple model to describe the temporal evolution of phase
separation processes in binary fluid mixtures. In the late stage of the
- phase separation process, the system becomes to be divided into many domains
separated by interfaces. At this stage, the time evolution of the system is
practically dominated by the motion of these interfaces. In the last
decade, there have Dbeen extensive investigations on the dynamics of such
topological defects, which have brought us to considerable understanding of
many nonlinear phenomena. Compared to these successful understandings of
the simple model for the phase separation processes, little is known about
more complex systems, where the topological defects have internal
structures. In this report, we consider the dynamics of such complex
topological defects [3].

As an example, we investigate the dynamics of interfaces between two
immiscible phases, onto which other particles are adsorbed [4-6]. Particles
which can easily be adsorbed to interfaces, are generally called as
surfactants. We can easily find examples of surfactants in the biochemical -
and the engineering fields. Although we cannot find a direct counterpart of
the surfactant in the field of plasma physics at present, it should be
important to investigate mathematical aspects of surfactants in order to
understand the nature of interfaces 1in nonlinear systems. The most
important character of the surfactants is its amphiphilic nature. Let us
consider surfactant particles in an AB immiscible binary fluid mixture. The
amphiphilic nature of the surfactant originates from the fact that the
surfactant = particle has two distinct parts, one part likes A phase and the
other part likes B phase, and therefore the surfactant particles are easily
adsorbed onto interfaces bhetween these two phases. Such an internal
structure of the surfactant particle is similar to an electric dipole, and
therefore it can be regarded as a particle with spin.

We have proposed a mathematical model of surfactant particles in a
binary fluid mixture, which retains essential features of the surfactant.
OQur model is a combination of a continuous scalar field and discrete
particles with spins. The former describes the Immiscible binary fiuid
mixture and the latter corresponds to surfactant particles. Our model is,
therefore, a hybrid model. We assume TDGL equation for the temporal
evolution of the scalar field and also assume purely dissipative equations
of motion (Aristotle’'s equations of motion) for the surfactant particles.
. We solve this set of equations of motion numerically with the use of the
finite-difference method and the molecular dynamics method. Our method Is,
therefore, similar to the technique of particle-particle particle-mesh
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(PPPM) method, which is a well-known technique for computer simulations of
dense plasmas [7].

Computer simulations on the phase separation processes of a binary
fluid mixture containing surfactant particles have been performed. It has
been proved by these simulations that the dynamics of phase separation
processes 1s changed considerably. In Fig.1l, we show a typical example of
the phase separation processes. By comparing the case without surfactant
particles, we have observed a quick phase separation in the early stage and
a slowing down of the coarsening in the late stage [5,6]. Both of these two
. features can qualitatively be explained by a simple theoretical analysis,
which shows that these features are common to all the systems containing
surfactant particles.

In summary, we presented a model, which is convenient to study the
dynamics of systems containing surfactant particles both analytically and
numerically. We have shown that the surfactant particles have an important
role in the phase separation processes. Such features should be utilized in
controlling the phase separation processes in immiscible fluids.

\j

Fig.1 An example of the phase separation processes is shown. Shaded
regions and white regions show A-domains and B-domains, respectively, and
the small particles show surfactant particles.
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Nonlinear equations for weakly unstable modes
N.Nakajima, National Institute for Fusion Science

For some interesting nonlinear systems, the eigenvalue in the linearized system is
degenerate, i.e, there are a number of eigenfunctions for a single eigenvalue. For a
nondegenerate case, two types of nonlinear equations are derived by applying the
perturbation theory to weakly unstable modes near the marginally stable states
together with the multiple-time-scale expansion'2. This method is extended to
degenerate cases. '

Consider the following nonlinear system of equations:
Lii+ N(&,@) =0, (1)

- - ’ ‘
where £ and N (&, #f) are a linear and a nonlinear operator, respectively.
Introducing an ordering parameter A we expand @ and a characteristic parameter

in the system p as follows:
i = Y v, @)
=1
p = p.x N, (3)

where 4; is a real function and we assume that p, corresponds to the marginally
stable state. The marginally stable state is defined as the situation where the
imaginally part of the eigenvalue w ( frequency of the linear mode ) vanishes, i.e.,
Im( w, ) = 0. When p is specified so that p indicates the situation of the system to
be considered the ordering parameter A is determined from Eq.(3). |

Using the multiple-time-expansion

= A, Ty = A%, T = ML

G, d d 0

A SIS VATt ST

ot 67‘0 + aT] + 67'2 + (4)
and expanding the linear term Aal(i%,p; z) = E/\?Il, we have the following

“expanded form :

- .. 0
1\951(35,}9;3)



= Ay (we, Pe; T)
a -
+2/\23——¢1 (wc;pc; $)
1 a2 0% - 8 -

3{__¢1(wc: Pe I) 3 12 82 (ﬁ}(wc:pc; 3) + %gsl(wcapc;z)}
+---. (5)
Substitution of Eqgs.(2) and (5) into Eq.(1) gives the following equations for each
order of A :

A - order
[,(wc, P m)'E‘El("“’a:.: P;;; I) = 0: . (6)
A2 - order
B, pi )i + 5 e, )i i 7))
81’0 1 Pey T U2 26 Wey Pe; T)Ua\We, P T
- +N(ﬁl (Ucapc; .'!:), Uy (‘-‘-’c: Pe; 3)) =0, (7) -
A3 - order

= d
E(a_apc; )u3+16 3 { ( :pc: )u2}

W
0 18 82 «
+2 6__{£(wcspc: z)dy (we, Pe; )} — 231’12 ng{ﬁ( We, Pe; 7)1 (We, Pe; 2) }

i‘a_p{'c(wcxpc; I)al(wc:pc; I)}
4N (& (we, pe; 2), Ta) + f-\}(fiz,ﬁ'l(wc,pc; z)) = 0. (8)

As p. is determined to correspond to the marginally stable state, the linear
equation (6) gives the eigenfunction at the marginally stable state. Also, the

linearized system is degenerate so that the eigenfunction &, is written as follows:

dy =) S 9) .

Introducing the complex eigenfunction @, and the complex coeficient A,, we put

i1, as follows:
Ui = An(,b'n + ;9_0';) E‘En(wc:pc; 1:) = 0: An = AH(T1|T2) " '); (10)

where complex eigenfunction ¢, has the same eigenvalue w, not depending on n

and we assume complex coefficient A, is dependent on the multiple-time scale.



From the solvability condition of the A? - order equation, following conditions on

the coefficients A, are obtained :

6An. . a s . - . =1
aTl =0 for < B {JC(WC,Pc, I)‘Pn(wc,Pc; m)}!(lon ># O:

0A,
31’1

And the solution of the second order equation is given by
ﬂ? = Z ﬁ?m

Uop = Z A,-A;.,.jﬁazo,j,n.;.j + C.C. + Z A,-A,,_J-gb‘z;,.j'n_j +C.C.

2 7

a = - -
#0 for < o={L(we,pe; 2)Pn(we, pe; T}, P >= 0.

(11)
(12)

(13)

(14)

Using above results and the solvability condition of the A? - order equation, we

have the two types of nonlinear equations as follows:
CASE 1)

OA, :
dO a + d’lAn 4 Z E d3lmnAlA:nAm~—l+n =0

™ i m

for < %{E(wc,pc;m)én(wc, pe;z)}, @1 ># 0, where
dy = i< A (e )l )}, B i 2)) >,
dy = < %{Z(wc,m;z)@n(wmpc; )}, &L (we, pe; 2)} >,
datmn = < ﬁ(‘-ﬁn B0, mm—itn) T ﬁ(‘fém; Boot,m—itn)
+ ﬁ(fﬁ;o,m,m_una @) + N(G—ézz,z,m-z-i-m‘?"m):QL(WC,PC;Q?)} >

Note that @! is the adjoint solution. Using the original variables :
2= Azﬁ, A, = AA, Eq.(15) becomes

dA.

do di + (p - pc)dl'Aﬂ + z ZdBImnA!A:n-Am—l+n = 0.
i m . '

If the eigenvalue of the linear equation is nondegenerate, Eq.(20) reduces to
dA
dgE+(p—pc)d1A+d3{A PA=0

This is 2 Landau equation well known in fluid dynamics. This situation
corresponds to global resistive MHD modes ( nondegenerate ) and to

micro-instabilities ( nondegenerate or degenerate ).
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(16)
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(18)
(19)
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CASE 2)

PA, ‘
Co aflz :b C]_An + ; E CslmﬂA‘AmAm—I-{-n = 0 (22)

for < Z{L(we, pe; ) (we, pe; )}, @, >= 0, where

., 162 = - -
g = 1< Eﬂ{ﬁ(t‘-’c; Pe; z)ﬁon(wc,pc; 3)}) @L(wm Pe; 3)} >, (23)
o = - -
cg = < a_p{E(wc’ Pe; 2)Pn(We, pe; ) }, (P:ta(wc:Pc; z)} >, (24)
Ciumn = < N((ﬁh ga;o,m,m—l-f-n) + N((I-D‘m) ‘1322,1,m—l+n) . (25)

+ N((—p‘so,m,m—f+nl ‘151) + N(¢22,!,m—f+n) (l_ém)) @L(wc;pc; ‘7"')} > (26)

Using the original variables % = )‘aaTlx A, = AA, Eq.(22) becomes

dA, A )
cow +(p— pc)erAa + Z E Catmn At A, Am—tzn =0 (27)
: I m

If the eigenvalue of the linear equation is nondegenerate, Eq.(27) reduces to

Co% +(p—p)arA+c| A ?A=0. (28)
This situation corresponds to ideal nonresonant MHD modes ( nondegenerate ).
The condition (11) corresponds to the fact that the eigenvalue w has a single
root, so that the obtained nonlinear .equation has the first order time derivative.
Contrastively, the condition {12) corresponds to the case that the eigenvalue w has
a double root. In this case the obtained nonlinear equation has the second order

time derivative.
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Hole Dynamics of One-Dimensional Plasma

K. Kitahara, N, Iszhibashi and K, Tanno
Department of Applied Physics
Tokyo Institute of Technology
Tokyo 152

Although steady state solutions of the Vlasov equation are known as
BGK solutions, the stability of these solutions is not fully investigated. So,
wa performed an exact particle simulation in order to see the dynamics of
holeg in phase space. Dawson's model of eleciron sheets in the uniform
positive back ground is transformed into an 2N-dimensional discrete-time
mapping, which can be treated numerically exactly. The formation and
porsistence of a big hole from two-stream instability is analyzed.



Shock and Soliton Structures
Induced by Poloidal Flow in Tokamaks

, T.Taniuti
Department of Engineering, Natural Science Mathematics, Chubu University
K.Watanabe, Y.lshii and M.Wakatani
Plasma Physics Laboratory, Kyoto University

When poloidal flow velocity, Up, becomes close to ¢Cs in tokamaks, fluid motion inside
the flux surface is governed by forced KdV equation in the small dissipation limit, where ¢
is an inverse aspect ratio and Cs is a sound velocity. This implies that a stationary soliton
structure appears at the inside region of toroidal plasma or § ~ m, where @ is a poloidal
angle.

In the limit of large dissipation a forced Burgers equation is more appropriate. This
case corresponds to an appearance of shock structure. When an averaged poloidal flow
velocity is very close to €Cg, a shock may be seen in the outer region of toroidal plasma
or 8 = 0. With the increase of | Up — ¢C, | the shock position moves from § ~ 0 to § ~ =.

Recent tokamak experiments show the ‘existence of poloidal flow with Up = ¢Cs in
the transition phase from the I mode to the H mode. Implication of our results in the
experiment will be discussed. '
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Soliton Phenomena in Electiron Beam Plasma

Tetsu Yajima
Department of Applied Physics, Faculty of Engineering, Untversity of Tokyo,
Hongo 7-3-1, Bunkyo-ku, Tokyo 1183, Japan.

Abstract

As a model equation for an electron beam plasma system, the unstable nonlinear Schrédinger {(UNS) equation,
ig. +qu + 2|lg)?g = 0, is proposed. Recent works on this equation are reported. The UNS equation is a canonical
equation which describes nonlinear modulations of wave amplitude in unstable media. In the electron beam
plasma system, near the critical wave number, the wave amplitude obeys the UNS equation. Results derived

_ by investigating this equation show that solitons can be caused in the system. In addition, the roles of solitons
in unstable media is clarified.

It is well known that soliton phenomena occur as a result of competition between dispersion and

nonlinearity. We shall make some considerations on systems where instability and nonlineariiy coexist,

and shall study the properties and the roles of localized solitary wave mode (soliton) in such systems.
The model equation is the unstable nonlinear Schrodinger (UNS) equation :

igs + que + 2g}%g = 0. (1)

Let us consider the derivation of (1). There are two systems; one is a plasma system where an electron
beam is injected under high frequency electric field (electron beam plasma)[1,2], and the other is the
Rayleigh-Taylor (RT) system[3]. Here the former case is considered, and those who are interested in
the RT problem are recomended to refer to the Ref.[3].

The basic equation is the continuum relation and the Bernoulli equation for electrons in plasma.
Denoting the density and the velosity of electrons as n and u, and using subscript p and b for plasma
and beam electrons, we have

on du e T,

—a-‘!" + V.(npup) = 0, a_: + (u,AV)up = —;E(h) - m—;anP ) (2&)
aﬁ + V(npuy) =0 a—-ub- + (u;,-V)u;, = —iE(h) . (Zb)
at ! H m .

Here E™ is the high {requency electric field, 7, the temperature of electrons, m the electron mass and
~¢ the eleciron charge. The term including the temperature for electron beam is neglected since the
beam velosity is sufficiently large. Equations for ion are left out because ions are too heavy to undergo
high frequency motion. We shall devide the densities into three parts: the average, the high frequency
fluctuation and the low frequency parts. The low frequency parts for velocities will be neglected.
These will be distinguished by the superscripts 0, 4, and .

Higher order terms of high frequency parts are considered to be small, so eliminating u, and w,,

and using Gauss’s law for electric field, V-E® = —4xe(n®” + 2™} in (2), we have

a? T, a) a? T A
Vi(z ;PVQ +wi(1+ ﬁ))E(h) =3z~ ;Pvz)‘*"“z(s ), (32)
p
ad ny  ow? a2® .
('3—; + 'UQ'V)Ini ) = 4Tgv.(1 + .n_:'o.)_)E( ), (3b)

b

where o = 2 /2(®, w, = are?n(” fm. We call o beam constant and w, electric plasma frequency, and
g is the avarage velocity of the beam. We introduce complex variables F and s instead of E® and
ngh), such as E®) = (E + E*)/2. The frequency of electric field can be approximated as w,, so F and p
are writlen as products of e~*** and slowly varying function in time. And we think p as a travelling
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wave with long wavelength. Therefore, the hlght‘l order derivatives can be neglected. Then from (3),
we have a set of equations:

9 T. t...r,lEI2 !, a
v. —w, + —E-V?_ E=--—p, — +uy-V)?p = aw?V-E. 4
(i3 8t 2muw, 32‘]’11;0)21}) 2’ (af oVYe ¢ ®
In deriving (4), we take into consideration the ponderomotive force n,(,') /n,(,°) = -|E?/ 161rn,(,°)T,. Here-

after, we shall consider one dimensional problem. Let us take the direction of the beam volisity u,
and the wave propagation as parallel to z-axis. We think longitudinal mode for p then the non-zero
element of E is E;. Integrating (4), we have

3 3 '
_ 2yf = _ 2,—f.
( 14+ E’Hfl ) = ——r’g, (31'+V3£)g f (5)
Setting N = 1fay/327ni T, we have defined the variables as

. :d
(= 2muw, T, . Tt=uwd, f=aNE,, g=/ Npdz, V = ugy/m/T,, & = 270/8.
(6)
The dispersion relation of the linearized (5) yields a cubic equation for w

w—4x327(w — kV)? =1 + K*/2. (n

The unstable mode is realized when w is complex. When V2 < 2(1+«), there always exist complex solu-
tions. When V2 > 2(1+«x), complex w’s exist only for the & satysfying k < £k, = V{(1—/1 — 2(1 + x)/V?2).
We investigate the region near the critical wave number k.. We define critical frequency as w, =
k. V —2r/3. We express the solutions of (5) as

f=brexpilkl —wer),  g=daexpi(kl —wer). (8)

Around the critical point where the wave number and the frequency are near k. and w., the emvelopes
¢, and ¢ are slowly varying functions of ¢ and +. Using this approximation in the second equation of
(5), we have

_ L m a-ma v ol pylys
Then, we obtain
;) 9 3
~iV =2 ;61 +4—-5-?.‘,l+|¢1|2¢l = 0. (w0

Finally, a suitable transformation of variables in (10), gives the UNS equation (1). To summarize,
under the conditions that the beam velocity is sufficiently large and that the system is one dimensional,
the envelope of the high frequency electric field near the critical wave number %, obeys the UNS
equation.

Before solving the initial value problem of (1}, let us consider a perturbation analysis of time
development of small disturbance caused in the system. When the amplitude of g(z,1) is small, we
have a linearized equation:

1o,z + gou = 0. (11)

Substitution of go(x,f) = Aexp (ikz — iwt) into (11) yields a dispersion relation w? + k¥ = 0. Therefore, a
small disturbance with positive k will exponentially grow. Then we set k = 4n?, w = 2in, ( 5 > 0) and
go(z,1) = A exp(4in’z + 2nt). We expand g(z,1) as

gz, 1) = MTHALT 4 £ B (1) + £2By(2) + -+ ). (12)

The constant £ denotes a “smallness” parameter for a perturbative calculation which expresses mag-
nitude of nonlinear effect and finally we take ¢ = 1. Substituling this-into eq.(1), we have a set of

— 171 —



differential equations, which can be solved iteratively. Upon summing up contributions from all orders
and setting e = 1, we get
2in clin*z+is

g(z,1) = et ot A(l + E("' L Te2) ") =~ cosh (2nt + p)’

16y 2 (13)
where, in terms of real constants p and ¢, we have set A = —4iner*¢. This shows that the instability
will not grow forever. The exponential growth in the linear regime is suppressed by the nonlinearity
and the system returns to the unstable equilibrinm state. This behavior is reasonable since the UNS
equation {1) is invariant under the time reversal t —+ —{.

Let us consider this stabilizing mechanism. The system is unstable in a sense of that the zero-field
configuration is not at the minimum energy state. When a disturbance is caused, it will grow because
of the instability of the system. The fact that the disturbance does not grow forever shows that there
are some mechanism to carry away the surplus energy. We recall solitary localized wave mode (soliton)
as such a nonlinear exitation that can carry energy in an effective way.

The UNS equation can be solved by the inverse scattering method, and as a result, we have N—
soliton solution of the system[1]. Owing to a limited space, we shall only give the gist on the inverse
scattering. We introduce a set of auxiliary linear equations:

dv ilg|® — 2i¢? iqe + 2(q ) du ( —-i{ gq ) (vl)

— =1 . . , . ' —_—= . - = . 14

oz ( igy — 2(q —ilgf* + 2i¢? v at —-g i e Y vz (14)
The spectral parameter { = ¢ + in is generally a complex constant corresponding to the eigenvalue.
We assume a boundary condition g(z,¢) — 0 for }z| — co.

For a while, we shall fix ¢ and consider the eigenvalue problem of the first equation of (14). For
real ¢ = ¢, we mtroduce the Jost {functions, with the following asymptotic forms:

I ) I (T
¥(z, &) — (62:‘2’:) ' .#’7(::,5) — (8-2;,1) Tz - oo

In conplex (-plane, ¢ and ¥ can be analitically continued into the regions which satisfy Im(¢?) > o,
and ¢ and ¢ into Im(¢?) < 0. We define Wronskian as W[f,g] = figz — f2g:. For Jost functions which
belong to the same eigenvalue, W[$, 4] and W[y, ] are not equal to zero, so each of the sets {¢, }
and {¥, ¥} consists a fundamental system of solutions. Then the following relations holds:

$(z,€) = a(OH(z ) +HOW(=.€),  $(=.€) = —a(¢)Y(=,€) + b(£)¥(=, €)- (16)

The coefficients a(¢), a(¢), b(¢) b(¢) corresponds to scattering amplitudes and they do not depend on

space variable z. We enumerate some important properties of these amplitudes.

(1) These amplitudes can be expressed in terms of Wronskians of Jost functions: a(¢) = W[é, ¥,
a(¢) = W[¢!ﬂ! b(¢) = —-W(¢, d’]v (f) W[¢n ¥].

(2) From the analytic continuation of Jost functions, the amplitude a(¢) (&(¢)) can be analytically
continued into Im¢? > 0 (Im¢? < 0) in the complex ¢-plane. On the other hand, b(¢) and ¥(¢) are
generally defined on the real and imaginary axes.

(3) At zeroes of e(() in the region {5 > 0, ¢, (j = 1,2,---, N), the functions ¢(z,¢) and ¥(z,¢) become
linearly independent so it is thought that a bound state occurs. At { = ¢;, é(z,¢;)} = b;j#(=,¢;). A
set of quantities {a(¢), 5(¢), b;,(;} is called scattering data.

{(4) The scattering data except (;’s depend not only on ¢ but also on t. This time dependences give
the time dipendence of the solution.

In this analysis, we assume that the N zeroes of a(¢), {;, 5 =1,2,--+, NV are simple. The scattering
data are derived from the initial conditions for ¢(z,) and g:(x, ). After a straightforward but lengthy
calculatoins[1], we have the solution for the UNS equation as

(15)

glz) = -x 2‘7:8-2'4* gz, ) — = /°° dé (bgl)‘(f) - %/_ (2).(’?) (17)

k=1 —oe
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where v = b,, /a'(¢x), ¥a(z, () is the second component of the Jost function ¥(z,¢) and the functions
& and ¢, are the second components of the vector functions defined as

©O= 1§ ORI A a9
) V@ e s <0 a(tn Yz in)e™ T <0

Soliton solutions are derived under the condition 5({) = 0. From (17) and (18), we have

. =2i%s

N
N(e ()6 = - B i@ ), () = Z i 1#1(3, a)  (19)
k=1 =1
Then, from (17), we find that g(z, ) is given by

N .
a(z,1) = =20 Y (re(t) oz, o )e?i)y. (20)

k=1

For example, one soliton solution is obtained when a(¢) has one simple zero. Denoting this zero by
¢ = ¢ + iy, we obtain
._exp{—4i(£% ~ n®)z — 2i€1 + i¢)

‘ t)= —

#(=1) 2 cosh{8nz + 2nt + p)
where ¢ = —2arg(u(t = 0)), p = log(2|n|/|u(t = 0)[?). This solution, when z and ¢ are interchanged, is
the same as that of the stable (conventional) nonlinear Schrédinger equation[4). We see that (13)is a
special case of the one soliton solution (21) given by taking £ — 0.

Properties of this soliton solutions is very interesting, but for the details we refer to the Ref.[1].
Let us think an initial value problem:

, {21)

q(z,0) = A exp [i{kz — 2A2‘tanh:r)]/ cosh z, 7:(2,0) =0, A,k : constants. (22)

This corresponds to a situation that an disturbance is caused in the system. Similar to the procedure
given for the conventional nonlinear Schrodinger equation[5], we can express the Jost functions by the
Gauss’s hypergeometric functions, and the scattering coefficients by Gamma functions[1]. The number.
of zeroes of a{¢) at £n > 0 (the number of solitons) is not zero only for k < 0 and it is expressed as

N =25, 1 <n< AN/20k +1/2.

The number of solitons increases as A?. This fact seems to has a close relation to that the system is
unstable, and corresponds to a situation that solitons carry the energy of disturbance proportinal to
the initial amplitude. It is interesting that a pure sech-type potential does not evelve into solitons.
Analyses of other initial conditions are in progress.

In conclusion, we emphasize that solitons can be caused in the unstable system, and they play.
important roles in stabilizing the unstable media.
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Point vortex description of a modon solution
" Chahiro Matsuoka and Kazuhiro Nozalka

Department of Physics,
Nagoya University, 464-01, Japan

Abstract. Using the point vortex approximation, an exact solution corre-
sponding to a modon solution in the Hasegawa-Mima equation is obtained. The

stability of this solution is discussed.

The basic equation adopted in our study is the Hasegawa-Mima equation

[1](2]:

8 N ’ -6¢._
(+2x98v)@e-9)+o3E=0, 1

where v* is the constant drift velocity and % is the unit vector in the z direction.
This equation describes an electrostatic two-dimensional drift wave in inhomoge-
neous plasmas and has a dipole solution, called a modon, which propagates with
a constant speed in the y direction.

We seek a discrete vortex solution to eq.(1), which is rewritten as

9 v o k2d) - (k2 — (ﬂ _‘5’_) _
(0t+ XV¢V)(A¢ @) +( 1) 0t+u8y ¢ =0, (2)
where u = N;’:l and x 1s a constant. Let we set
N
Ap— K¢ =) 7(t)8(r — r;(t)), < (3)
i=1

where v;(t), the strength of the vortex and is a constant for the special case of

the modon, and r = (2, y), then we have

N
4= i 4 =~y Ko(slr—x;). 4)
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Equation (4) gives a solution {o eq.(2) when the following equations are salisfied

‘fii;=sxv(zj¢h) . (5)
r=ry '

hi#i
and
0 0 -
(a + ua—y) ¢; =0, (6)
From eq.(6), we have
(zj,9;) = (2;,ut + §), (M

where Z; and §; are constants.

Now we consider the following equation:

Ag =, ‘ (8)
where
‘=(mivase )y fu=(uu,.w),
and
0 Kl(nflj) Ki(rdu\r)
K "Kl(ﬂlzl) ' 0 eva K]_(Klgn)
A= — . ] '
2 : : . :
—Ki(klny) —Ki(slys) ... 0

Lin = 125 — 24),

The configuration is shown in Fig.1.

N oeeveenn y .
— 1,,,—«—%-— = o 1.14 )'x

Fig. I  Configuration.

For odd N, there are no solutions to eq.(8). In the simplest case, N = 2, we
obtain an exact dipole solution corresponding to a modon [3][4]. For ¥ = 2n(n >

2), there exist also solutions which propagate uniformly in the y direction.
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The strength of a vortex v;(t) is given as

. 1 '
Yi = Yo+ 8 [vie — 5= E (rh — DKo(rilr; —rx]) |, (9)
Atj |

k45 ki=12

where 8(§ << 1) and v;j0 are constants.

Applying the linear stability theory to eqs.(5) and {9), we can examine the
stability of a modon(, which corresponds to v = —y; = vy and &, = x; = &).
Then we get the result that the system is marginaly stable for £ > 1. The phase
~velocity v, in the original system is given as

v‘
ST
where k is the wave number. Therefore, we see that the system is stable when

the velocity of the modon has the opposite sigﬁ to the phase velocity.
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Structures of Magnetic Field Lines In the
Helical Torus

T. Hatori and T. Watanabe
National Institute for Fusion Science
Nagoya 464-01, Japan

" ABSTRACT

Equation of magnetic field line can be written in the form of Hamilionian equation.
An explicit form for the Hamiltonian applicable to the first order of p/ R is obtained
,where p and R are minor and major radii.

Breakdown of magnetic surface in the periphery of helical torus is the typical
phenomenon in the Hamilton dynamics with two degrees of freedom that the
nested KAM forii are limited by the chaotic region in phase space. It is well
known that the helically symmetric field constitutes the magnetic surface near the
magnetic axis and the separatrix in the outer region. Since the symmetry breaking
perturbations increase in the outer area for the toroidal field, the separatrix and
the neighbouring surface disapear and become chaotic. The structure of transition
regime from the regular surface to chaos is analogous to the critical phenomena
and worth examining.

There have been a number of calculations for the rearlistic helical toroidal
magnetic field. All of them are large and expensive, which include the calculation
of magnetic field through the Biot-Savart law {rom a realistic coil, construction
of magnetic field by the data of a MHD code, and so on. To study the detailed
structure near the outermost magnetic surface, however, we need to develope an
analytic model which enable us to track many field lines long enough to obtain
precise statistical properties. The stochastic magnetic field is a typical chaos
in the conservative dynamical system, so that retainment of the symplecticity
(divB = 0) is crutial to develope a simple model. To this end, we adopt a
canonical formalism for the magnetic field and obtain an explicit expression for
the Hamiltonian describing the helical toroidal magnetic field.

The general magnetic field can be expressed in a canonical form

B =V¥ x VO -VV¥, x Vo, (1)

where © is-the geometrical toroidal angle, (©, ¥) are generalization of (4, v), and
¥, is the counterpart of 4. In the new coordinate system (¥, 0, ), the equation
of the field line becames the following canonical form, '

d 0

R _ n
d(,OlI! aG\IlP(‘II:el(p): ‘ ("’)
d 0

EG = ﬁ\I’P(\P,O,go)t (3)
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Clearly ¥,(¥,0, ¢) plays a role of Hamiltonian, (¥, ©) are action and angle vari-
ables. The left- hand sides of eqs.(2) and (3) are

d B.VVY

—¥ = 4
d(p B . v(p! ( )
d B VO _

The present ploblem is to obtain Hamiltonian ¥, on the right-hand sides of eqs. (2)
and (3) from the left-hand sides given by eqgs.(4 ) and (5). The ordinary dynamical
problem is to obtain ¥ and © {fromi the right-hand sides of egs. (2) and (3), where
it is usually easy to write explicitly Hamiltonian. Thus the presnt task is to solve
the inverse problem.

We know much information about the helical toroidal magnetic field in the
ordinary coordinate system. The well-known analytical model for the vacuum
helical toroidal field is given in Refs.1 and 2. When § value of plasma is negligi-
ble,the vacuum field, B = V®,is a good approximation. The scalar potential @
has to be a harmonic function, AP = 0, which is a direct result from divB = 0.
A solution for the scalar potential is

I
& = ByRep+ \/7-*-{1 ne Ysinnf + fi(p)sin[(n + 1)x — niy)
+f-(p)sin[(n — 1) —nlcp]}—i— (6)
and the functions fi(p) are solutions of the following inhomogeneous equations,

LL,d _ntl [y, o 00 )

Here the coordinate system is illustrated in the figure, the helical angle is defined
by 8 = x — lp, and I, is the modified Bessel function. Note that f. is of the
order of (22)°I,(22). In case of LHD, periodicity in ¢ is 27/10, so I should be
5 when n =.2. Divide the solution (6) into two parts ;the unperturbed plus the
perturbed, as & = ®© + 6@, where ‘

Rb_  nlp

I (=E
(5

¥ = BoRp + ~

)sinnf. - (8)

The unperturbed B9 is given by B® = VO3 where V() = (3/Rdyp,
8/pdx, 0/9p).
After some analysis, we finally get an explicit expression for Hamiltonian ¥,
correct to the first order of p/R,
U,(7,0,0) = $(¥)}+
e S {G(W)sin[(2n + 1)0 + lg] + GP(T)sin[(2n + 1)O — L] +

GO (W) sin[(2n + 1)) cos Lo + G T cos[(2n + 1)Q]sin lp}. (9)
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Here G(T)(i = 1,...4) are increasing elementary functions of ¥ and satisfy

GU)(0) = 0 .The smallnes parameter ¢ is the inverse aspect ratio, and b/ By is the
ratio of the typical poloidal field to the toroidal field. The unperiuebed Hamil-
~ tonian ¥(¥) cannot be written explicitly ,but its derivative,the unperturbed fre-

quency w , is given by

L .
-w(q;)_ilk__ﬂ‘/l+ql+25° (10)

Tdy 2 K(m)

where m is defined in eq.(21), and. K'(m) is the elliptic integral

T dé
I" el —_—— |
{(m) /0 Py | (11)
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REGULAR MOTION AND SYMMETRY IN THE RELATIVISTIC STANDARD MAP'’

| Y. Nomura and Y. H. Ichikawa
National Institute for Fusion Science, Nagova 464-01, Japan
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EXTENDED SUMMARY

In nonlinear dynamical systems, area-preserving maps have been
investigated extensively as useful method for characterizing the
non-integrable Hamiltonian systems. BEspecially. the nonrelativistic
acceleration of charged particles by an infinite sequence of
constant amplitude longitudinal waves with equally spaced phase
velocities is represented by the standard map. This map exhibits
regular and chaotic motion and has been studied in various fields of
physics. The central problem of the standard map is a transport
process under the coexistance of regular motion and chaos.
Recently, Chernikov et al.?’ introduced the relativistic
generalization of the standard map. They have found that the
chaotic motion is restricted to the vicinity of the fixed points
and the breakup of last KAM torus occurs at higher wave amplitude
than that for the standard map.

The purpose of this work is to clarify the relativistic effects
on the nonlinear motion of particles by varving the wave phase
velocity in a wide range and to discuss properties of the regular
motion by constructing the families of symmetry lines.

1. REGULAR MOTION AND CHAOS IN THE RELATIVISTIC STANDARD MAP

Relativistic motion of charged particles in an infinite
sequence of electrostatic waves with constant amplitude and equally
spaced phase velocities is described by the relativistic standard
map'- 2’ in the normalized form :

Pn+l = Pn + F( Xa )v Xn+l = Xn + G( Pn+1)u V (1)
F(X) = - (K/2x)sin(2x XD, GP) =P/Y1 + B*% P*

where K 1s the stochastic parameter which corresponds to the wave
amplitude and the relativistic parameter 8 is defined as the ratio
of phase velocity vo of the slowest wave to the speed of light ¢,
B= vo/c. In the limiting case of A — 0, the map (1) is reduced
to the usuvual standard map. Fundamental properties of the
relativistic standard map such as the stability of fixed points or
the Poincare-Birkhoff period-p/q multifurcation condxtlon have been
derived in Ref. 1).

Particle trajectories in the relativistic standard map are
shown in Fig. 1 for various values of B at K = 1.3. In these
figures, particles are initially distributed uniformly at P = Q0 and
advanced according to the map (1) till T = 5000. For weekliy
relativistic case A<, diffusion of particles at low momentum



region is qualitatively the same as that in the standard map. ' The
stochastic region, however, is bounded by an invariant KAM surface
at high momentum and global chaos is suppressed. - As the parameter
B increases, the maximum attainable momentum decreases rapidly and
the particle diffusion is restricted to a thin layer.

In the yltra-relativistic case, B >1. particle trajectory
becomes quite regular. Secondary island chains with very high
period are formed inside the separatrix KAM surface and the
stochastic layer in the peripheral region of island chains is
observed. In order to characterize this regular structure of the
phase space, it is useful to analyze symmetry property of the map
introduced by Birkhoff.® In the next section, we identify the
periodic orbits by means of symmetry analysis.

2. SYMMETRY OF THE RELATIVISTIC STANDARD MAP

We consider a 2D area-preserving map T of the form given by Bqg.
(1). A map T is called reversible®’ if there exists an involution
Io which satisfies the relation

T.'Iu‘T=[o. Io‘]o=Id. (2)

This relation indicates that the reversible map can be expressed as
the product of two involutions:

T= TI,+1o, eIy = 1d. h=T-1, (3)
and the imverse transformation T™' is given by

s 1 1 | (@
If we define I; as the jth iteration of the map T on the involution
lo, 15 = T +1,, we inmediately confirm that I; is also an

involution. Ensemble of I; and T* for arbitrary integers j and %
forms a discrete infinite group with the relationships:

Iy « Iy = TiI°%, TV o« Te = Tiex, I; = T = 1,2 - (9)

It can be shown that the fixed points of the involution {; form
2 line T"; which is called as its symmetry line,

Py : (RI I,R=R). | (6)

Therefore, the first equation of (5) defines that the intersection
of T"; and T « determines periodic points of T. whose period N

divides | j - k |. Prom the second and the third equations of (5),
we can deduce that the syometry lines are transformed by T into
other symmetry lines : T¥ + Ty = I'ans+; . This relation enables
us to facilitate the construction of symmetry lines of arbitrary
order.

Since the transformation function P is anti-symmetric with
respect to the space inversion, R(-X) = - P(X), the map (1) is

expressed as the composition of the following involutions :

- 181 —



[o : PP =P +F(X), - X =-X
I, ¢+ PP =P, ' =-X+G6(P
Symmetry lines of these two involutions are given by
Ty: oX-=0, Ty : 25 -G(P) =0 (8)

A factorization of the map into two involutions is not unigue.
Anti-symmetricity of the function G with respect to momentum

inversion, G(-P) = - G(P), gives rise to another involution
decomposition T = Jy = Jo,
Jo PP =-pP, " =X - G(P)
(9}
J,. ¢+ P =-P+F[X-G(P)],
¥ = X-6G6(P) -6G[P- F{X-6(M} ]

This type of factorization defines momentum inversion symmetry as
Yo : P=0, 1 : 2P - FIX-G(P] =0

Figure 2 shows superposition of families of symmetry lines on the
~phase portrait of the map (1) for K = 1.3 and B = 4x. It can be
found in Fig. 2(a) that the space inversion symmetry lines become
parallel at high momentum, which indicates that phase increase of
particles is almost constant for ultra-relativistic case. Momentum
inversion symmetry lines in Fig. 2(b) are asymptotic to the
separatrix KAM surface. In both figures, intersections of symmetry
lines determine stable and unstable periodic orbits.

3. CONCLUDINIG REMARK

Particle acceleration in the relativistic standard map is
studied and. it .is found that the relativistic correction suppresses
the chaotic motion of particles. PFor the waves whose phase
velocities extremely exceed the speed of light, particle trajectory
becomes regular. In this case, periodic orbits play dominant role
in the phase space and the stochasticity occurs around the secondary
island chains. In order to obtain critical information on the
periodic orbits, we carry out the symmetry analysis and construct
families of space inversion and momentum inversion symmetry lines.
Space inversion symmetry lines exhibit the constant phase increase
of particle motion. These two families of symmetry lines predict
stable and unstable periodic orbits of arbitrary period.
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Diffusion and relaxation in Hamiltonian chaos

Tetsuro KONISHI
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Chaos in Hamiltonian systems have great importance in fundamental physics as a basis of classical
statistical mechanics, as well as in application to plasma physics, solid state physics and so on [1-
8]. In this paper I will introduce some results on the properties of global diffusion for Hamiltonian
systems with many degrees of {freedom, through numerical studies on coupled map lattices {8, 9].

Many important facts have been revealed for the chaos in area preserving mappings e.g. standard
map (2].

K
P=p+ gsin%rz, z'.=n:+p' ' (1)

Phase space of area preserving mapping is filled with self-similar structure of islands and cantori,
which are related to dynamical properties such as anomalous diffusion and flicker noise [11, 12, 13].
Such delicate structures are expected to smeared out when the number of degrees of freedom increases.
The main topic here is; “Are chaos and diffusion enhanced by making system size large?” The answer
is partly yes, as we shall see below.

Qur models are i) standard map (1} and ii) symplectic version of coupled map lattices [15, 16,
17, 18, 19, 20, 21, 22, 23], defined on discrete space and time; a) locally interacting model,

pilt+1) = pi(t)+ K {sm[?w(z....](t)—z:(t)]—sm[?.fr(m(t —za@)} K>0, (2
;(t+1) = =)+ p.(t+1) i=12,---, N,

where we take periodic boundary condition z;4 5 = z;,pisny = pi. b) globally interacting model;

P&(t+1) = P-(t)+2 \/.—Zsm[%r(z_,(t) Ii(t))]: K >0, (3)
st 41) = m@)+plt+1), i=12-- N

The anomalous diffusion is observed both for area preserving mappings and {or systems with many
degrees of freedom, reflecting the self similar structures of phase spaces. In both cases, however, they
are transients appearing only for finite time. This is easily seen if we see the convergence of diffusion
coefficient[8]. After some finite time ¢, the diffusion coefficient approaches to a finite value D,
, which is inversely proportional to {.. Up to some time scale, the motion in phase space “sticks”
to some KAM tori, and the hierarchical structure of tori and islands leads to the power-law type
behavior. For longer time scales, however, the system escape from initial hierarchy and gets into
another one, thus causes random phase summation of independent hierarchical motions [8].

Crossover from anomalous to normal diffusion has its origin in array-like arrangement of equivalent
hierarchies of island chains in phase space, and are common to low dimentional and high dimensional
systems. The difference between area preserving mappings and systems with many degrees of {reedom
lies in dependence of D, on the coupling K [9]. It is known that D, o< |K — K,|* for standard
map, and it is found that, for systems with N > 3 | the diffusion coefficients obey ‘Nekhoroshev
form’ [14, 2]

D o K exp(—£(1/K)?). _ (4)



What is important is that the exponent # changes a.ccord.iné to the system size [9). The values
of B’s in eq.(4) which give best fit are summarized in Table 1;

Table 1: exponent £ and system size for locally interacting model
- D & K exp(—£(1/K)?)
N 3 4 .5 , 6 128
B(+0.05) 0.73 0.46 0.50 0.47 0.43

For the model (2) we see that

¢ When the system size ¥ is small compared to the spatial correlation length, # decreases as N
gets large. This means that diffusion is enhanced as the system size is increased.

e When N R (correlation length) the value of ﬁ seems to convefge to a finite value. In our

model this convergence is achieved when N & 8. The convergence is contrary to original
estimation[14}, where # — 0 as N — oo. :

For the model(3) we apply power-law fitting for D as an empirical formula. This power-law
may be a manifestation of ‘poor adiabacity’ proposed by Chirikov[24}. The exponent of the power
law again decreases as size, thus we see enhancement of the magnitude of diffusion by making system
size large.

In this way we have seen the properties of global diffusion in Hamiltonian chaos with many
degrees of freedom, where diffusion show a crossover from anomalous to normal and can be enhanced
according to the increase of size of the system.

The model (3) shows a peculiar behavior, that is, particles get clustered and show a kind of
order. Ordering process in conservative systems should attract much attention.

This work is a collaboration with Dr. K. Kaneko (Tokyo Univ., Komaba, Tokyo, Japan). We
would like to thank National Institute for Fusion Science at Nagoya for the computational facility of
FACOM M380 and VP200. ‘
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Non-linear Behaviour in Tokamaks

J.A. Wesson

JET Joint Undertaking
Abingdon, Oxfordshire, England

The range of non-linear phenomena observed in tokamaks is extensive. Rather than
summarise their behaviour, it is perhaps more interesting to choose specific subjects
which present clearly identifiable theoretical problems. We shall lock at three such
cases: ' '

i) Fast instabilities
ii) = The sequence of events in disruptions
iii) ~ Sawtooth reconnection

The problem of fast instabilities is widely misunderstood. It is generally assumed that
the experimental observation of a fast growing instability can be understood if an
appropriate mode with a fast growth rate can be found. As we shall see in the next
section, this is not so.

In the early days of tokamak research it was common to hear the question - "What is
the cause of disruptions?” It is now recognised that a disruption is usually a complex
sequence of events posing several theoretical questions. We shall find possible
explanations for some of the events, but still be left with a problem regarding the
energy quench phase.

When sawtooth oscillations were first observed it was immediately apparent that the
relaxation phase occurred on much too short a timescale for simple resistive
rearrangement of the magnetic flux to occur. Kadomtsev suggested that the timescale
could be understood if the reconnection takes place in a narrow layer at the q =1
surface. If turned out that Kadomtsev's proposed model is indeed the solution of the
resistive mhd equations for an m=1 instability. However, for large tokamaks at least,
the observed sawtooth collapse time is an order of magnitude shorter than predicted by
Kadomtsev's model. In the third section the reconnection process is re-examined and a
new model with an order of magnitude faster reconnection is described.

i) Fast Instabilities

- The procedure in linear stability calculations is to take an equilibrium solution of
the equations and, assuming that perturbations have a time dependence e, to
calculate the growth rate y. A fast instability is then associated with a strongly
unstable equilibrium.

It is clear that in most cases of interest this does not represent the actual
behaviour. In tokamaks it is not possible to produce strongly unstable
axisymmetric equilibria because the timescales required for equilibrium
development are much longer than the timescale of fast instabilities.
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We can attempt a quantitative description by using the approximation for the
perturbation '
!

E=¢& exp [ ¥

o

where marginal stability is passed ata time taken to be t=0 and the perturbation
at that time is §. Taking as a simple example ¥ = ¥/ we obtain

y? = 27"£n-§—-

o

Now if £ is first observed at a level E,ps and if the growth rate is then y,,5, we can
write

= L 2_[,,.5_05_5 (1)

Yobs
Teq éo

where Teq(= Yobs ! ¥) is the time taken for the changing equilibrium to produce a
growth rate Ygbs.

Equation (1) makes the problem clear. The observed growth time is a few times
less than a characteristic equilibrium time and this would seem to preclude the
appearance of fast instabilities.

The problem can be made even clearer by considering a particular case and the
sawtooth collapse on JET provides a carefully investigated example. Figure 1
shows the measured displacement of the peak of the soft X-ray radiation profile
for three sawteeth. The displacement appears out of the noise level at ~ 1 cm and
then increases to ~ 50 cms with a characteristic growth time of 25 us.

T 4 100cm

Displacement

10cm

Diem

Figure 1 Graphs of the magnitude of the displacement, &, of the peak X-ray
emission for three sawtooth collapses taken from different discharges. The
initial noise level is ~ 1 cm and the growth rises out of this noise with a growth
rate ~ (25 pus)1, increasing the displacement to ~ 50 cms in ~ 100 us.



The expected behaviour depends somewhat on the particular instability
imagined to underlie the behaviour, but the essential result does not depend on
the instability. In all cases the time which would be taken for the equilibrium to
evolve from marginal stability to the observed growth rate is 2 100 ms. Thus on
a millisecond timescale the growth rate does not change. We should therefore be
able to extrapolate the displacement back in time from the observed value using
the observed growth rate. Looking 1 ms before the observed instability gives a
displacement

&E=(lcm)exp- (215’:;5)

~10¢em

This shows that the observed instability, even at its smallest amplitude has no
connection with conventional linear theory. To say that the behaviour is non-
linear does not, of course, contribute to our understanding. We need a new
theoretical framework to deal with fast instabilities of this sort. |

A tentative model is described in reference (1). This involves the coupling of
two stability boundaries as illustrated in Fig. 2. When the first stability boundary
is passed, stability is maintained by some weak stabilising effect. This allows
progress to the second stability boundary where the weak effect fails to provide
stability. At this point the basic instability would have a fast growth rate but this
has been suppressed. After passing the second stability boundary the instability
then grows slowly until, at some unobservable amplitude (~ the ion Larmor
radius perhaps) the weak effect is lost and transition to the fast growth of the
basic instability occurs, giving the appearance of a spontaneous fast instability.

Growth
Rate .
i mhd pr
growth "7
rate -
,l
I’;,
Lo~ lragite Equilibrium
‘f stahility ‘ parameter
mhd actual
marginal marginal
point point

Figure 2 Illustrating a type of behaviour which would be consistent with the
experimental observations. A weak stabilising effect provides a fragile stability
beyond the mhd stability boundary. This allows the build up of free energy
which is then suddenly released when the actual stability boundary is reached.
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ii)

Disruptions

Disruptions often involve a quite complex sequence of events (2). The observed
growth of mhd instabilities at the time of the disruption is a clear indication that
these instabilities play a crucial role. However the principal threats posed by
disruptions are related to the subsequent fast current decay which transfers
current to the vacuum vessel produdng very large forces, and the generation of
large currents of relativistic electrons. Even the basic mhd features are more
complicated than expected. In JET the form of the energy loss is not consistent
with any of the theoretical models and the negative voltage spike does not
appear at the expected time. These issues have been addressed in a number of
papers and the present understanding is outlined below.

Figure 3 shows the behaviour of the current, temperature and loop voltage in a
typical JET disruption. There has been a precursor growth of mhd instability
prior to the events shown and it seems likely that the mhd perturbations are
responsible for the initial fall in the temperature. However careful examination
of the soft X-ray behaviour reveals a spatial structure which does not appear to be
consistent with the theoretical mhd models. These models predict either multi-
mode turbulence or a gross non-linear behaviour in which the m=1 and m=2
modes drive each other through profile effects. What is seen experimentally is a
large modification of the soft X-ray profile, this modification having an m=1
structure. However the spatial structure of the change has the form of an
"erosion” of the profile and does not correspond to the displacement expected
from the theory of m=1 modes. This important issue is therefore unresolved.

{#13505
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Figure 3 The temperature drop in the disruption occurs in two phases. The
positive current and negative voltage spikes appear only after the second phase.



iii)

If the initial fall in temperature is due to the mhd instability then we would
expect that it would also produce the observed negative voltage spike. The delay
in the appearance of the spike therefore needs an explanation. A theoretical
model has been developed in which the current flattening associated with the
mhd instability does not extend to the plasma surface 3). This gives rise to a
surrounding negative current sheet. The current configuration is frozen on the
millisecond timescale because of the high electrical conductivity of the plasma.
However this conductivity is suddenly reduced by orders of magnitude when the
plasma temperature undergoes its second stage fall, reaching a very low
temperature. The negative current then rapidly diffuses out of the plasma
producing the current increase shown in figure 3 together with the associated
negative voltage spike. Numerical simulations based on this model have
reproduced the observed behaviour.

The final rapid fall in temperature is believed to be due to an impurity influx @),

. In this model the rapid decay of the current is not due to plasma turbulence but

results simply from the high resistivity of the cold plasma.

Another consequence of the increased resistivity is the production of a large
current (~ MA) of runaway electrons. This arises because the critical parameter
for runaway is proportional to the product, ET, of the electric field and the
electron temperature. It is therefore proportional to njT and hence to 1/T1/2.
Consequently a fall in temperature by a factor of 100 leads to an order of
magnitude increase in the runaway parameter. This gives rise to a complicated
runaway process which results in the observed runaway current. The velocity
distribution of the electrons is unstable and calculations have been carried out to
investigate the types of possible relativistic non-linear behaviour.

It is seen from the above account that disruptions can involve a complex
sequence of events which have been only partly explored.

Sawtooth Reconnection

It is well known that the sawtooth relaxation oscillations observed in tokamaks
are not understood. In particular the Kadomtsev model appears to be in conflict
with a number of experimental results. It is not clear therefore whether, or
when, reconnection of the Kadomtsev type takes place. This makes it important
to examine the assumptions of the model. As a result of such an examination it
has been found that the assumption of resistive behaviour is seriously in
question ©).

If full reconnection of the helical flux within the q=1 surface takes place on the
observed timescale of the sawtooth collapse then we can calculate the resulting
electric field at the reconnection layer. If we then use Ohm's law to calculate the
drift-velocity of the electrons carrying the reconnection sheet current we obtain

n T
Vg — (I_QO) ;}f_e . n

c
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Where qq is the axial value of the safety factor, r1 is the radius of the q=1 surface,
R is the major radius, 1e and 1. are the electron collision time and the sawtooth
collapse time and wcis the electron cyclotron frequency.

Using typical JET values gives v4 ~ 3 x 108 ms™1 (= ¢). Itis clear that under these
circumstances the resistive model is inappropriate and that the electrons would
undergo strong runaway.

A current carried by runaway electrons sees a very low resistance. However,
although the electrons entering the layer rapidly acquire a large velocity in the
direction of the q=1 field lines, they are immediately swept out of the layer into
the magnetic island. Thus the high current density has to be maintained by the
continuous acceleration of electrons entering the layer. Consequently, rather
than presenting a low impedance, this form of reconnection gives a high
impedarnce.

When electron inertia dominates, the appropriate form of Ohm's law is

E+vxB=-"0nVj . (2)

ne

The electric field in the layer is given by the rate, vB*, at which flux is brought in
to the layer, B* being the helical magnetic field at the edge of the layer. Thus,
using Ampere's law,

B*
Ko

Vj ~

where & is the layer thickness, equation (2) gives

and the layer thickness is of the order of the collisionless skin depth.

The conventional reconnection analysis provides the expression for the
reconnection time, 1, in terms of the layer thickness

1:‘r'1'
~ A
é

where 14 =11 / (B*/VHoP ) and so, using relation (3}, the reconnection time is

T~ 12, . (4)

Comparing numerical predictions we find that for a typical JET sawtooth collapse
having a timescale of 100 ps the prediction of Kadomtsev's model is ~ 3 ms
whereas relation (4) gives ~ 300 pus. It is clear that the new model gives better
agreement but there are many reservations since we do not understand the

sawtooth mechanism.
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Summary

From the many non-linear processes occurring in tokamaks we have chosen three
quite different phenomena. Firstly, the problem of fast instabilities which is quite
subtle and requires some new thinking. Secondly disruptions, which are found to be
rather complex. Although explanations have been provided for some of the features,
the initial energy quench does not appear to be consistent with existing theoretical
models. Finally, an analysis of the Kadomtsev reconnection model leads to doubts
about the applicability of the resistive Ohm's law and suggests that the effect of electron
inertia would be predominant.
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Fluctuation Spectrum of lon Temperature Gradient Driven Modes
in Sheared Magnetic Fields

Takashi Tuda, Masatoshi Yagi and Masafumi Azumi
Japan Atomic Energy Research Institute

' introduction

The electrostatic fluctuation due to the ion temperature gradient driven -
mode[1] is considered to cause the anomalous ion heat transport in L-mode
discharges of a tokamak. Because of importance of this mode on the present
day tokamak, many authors studied the linear properties and the nonlinear
saturation mechanism of the mode. However, understanding on the saturation
mechanism, the estimated fluctuation level and also the spectrum shape is not
still satisfactory and the resulting expressions for the heat transport do not
always agree with experimenAtal results in the wide range of discharge
parameters until now. For these reasons, we have developed several kinds of
fluid simulation models, which include the toroidal effect, neoclassical effects
and the impurity ion response, in order to investigate the ion temperature
gradient driven mode in various situations and to analyze the experimental
fluctuation measurements.

Model

As the first step of our study, we investigated the linear and nonlinear
properties of nj mode by employing the mode! of Hamaguchi and Horton [2].
The electron Boltzman response and the quasi neutrality condition are
assumed. The ion fluid velocity perpendicular to the magnetic field consists of
the ExB drift motion, the ion diamagnetic drift motion and the polarization drift
motion. The normalized system of model equations is given as

d dd
-vD 5 =-0-kvD - v 0,930 - wyvie ()



av 5 N
F uCO+p) = {0V} + p Vv + u, Vv, (2)
op % 2 2

I —Kay ~ Vv = {0} + X, VP + %4V P (3)

Key variables are normalized as
X z te
X=_,y= =L Z=737 5, T= 3
Ps Ps’ Ln Ln

and
| Lo o _vyln _PilgT
_Te ps’  Cs ps’ p—PiO ps Te
1 2 d - d
where Cg _(—) / ps = m—ciand Ln E_(d_x' In ng) 1, Lt (d in T,o)

Nondimensional parameters K and I are defined by

T; Ly Ti
K—— 1+ =T and T =y
(1+mi), Wi Lt an YTc )

and the Poisson bracket {f,g} is defined by
adg af dg

{fg}‘ezv ExVig= axdy " ay ax’

Linearlized equations (1)-(3) have two branchs of solution. One is the
electron drift wave which has the maximum real frequency at k;ps ~ 0.5 and is
stabilized by the magnetic shear effects by out-going wave propagation.
Another branch corresponds to the ion drift wave. ( ni-mode ) unstable for n>n¢

. . . . 2 .
and its real frequency increases monotonically with k; approximately.

Steady state solution

Equations {1)-(3) has a solitary double vortex solution similar to the electron
drift wave of Meiss and Horton[3] in the uniform magnetic field when dissipative
effects are absent (w,= u,= x»= x1= I'= 0). This solitary wave can propagate
oblique to the magnetic field and the fluctuation amplitude is in the the same
order as the value estimated from the mixing length theory. Propagation velocity
U of this solution in the y-direction is limited with the velocity U<-K or U>1. In
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these regions, the linear wave is inhibited to propagate. Existence of this kind of
steady state solution is important for the nonlinear behavior of ion temperature
gradient driven mode.

~ Simulation results

We studied the saturation mechanism of the ion temperature gradient driven
mode by using simple 2-D and 3-D simulation codes of fluid model. in 2-D
mode! with single resonance surface, the fluctuation energy is transferred to the
longest wave length region (the inverse cascade) at the initial stage. After the
amplitude of the mode with maximum growth rate (k) ps~ 0.8) reaches the level
of a mixing length theory (ed/T ~ 1/k Ly), the spectrum becomes broad.(see
figure 1) For short wavelength region(k;ps> 1), the spectrum behaves $2 «k f.

The longest wavelength mode (k ps<<l, weakly unstable) has the largest
fluctuation energy.

In 3-D case, the situation is quite different. The modes which have the large
radial size are stabilized by the modes on neighboring rational sufaces and the
fluctuation spectrum has a peak at the shorter wavelength fegion (k1ps~ 0.3).
Many double vortex structures (kyps~ 0.6} are formed and sustained for the time
interval longer than 20 Ly/cs. '

Conclusions

We studied the saturation mechanism of the ion temperature gradient driven
mode by using simple 2-D and 3-D simulation codes of fluid model. Many
double vortex structures (k_ ps~ 0.6) are formed and are sustained for the long
time, more than 20 Lp/cs, which is longer than the linear growth time. The
resulting thermal diffusion should be much smaller than the prediction from a
mixing length theory by this sturucture formation.with long life

[11 B. Coppi, M. N. Rosenbluth and R. Z. Sagdeev, Phys.Fiuids 10 582 (1967)
[2] S. Hamaguchi and W. Horton, Phys.Fluids B2 1833 {1990).
[3] Meiss and Horton, Phys.Fluids 26 990 (1983).
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Figure 1 Time behavior of fluctuation spectrum. Ly = 80, K:Z.O, = 0.1,
v1=0.1, py= 1.0, xy=1.0, Ly/Ls = 0.1.
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Figure 2 The contours of constant ¢ at t=250L,/cs by 3D simulation. Ly = 80,
K=2.0, ;= 0.1, v;=0.1, uy= 1.0, X/,'Z_I.O, L./Ls =0.1.
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EQUILIBRIA AND DYNAMICS OF TEMPERATURE IN A FUSION
REACTOR PLASMA

Hans Wilhelmsson

Institute for Electromagnetic Field Theory and Plasma Physics
Chalmers University of Technology
S5-412 96 Goteborg, Sweden

1. INTRODUCTION

Equilibria and dynamics of plasma temperature profiles are central topics in
present-day research on fusion plasmas. In view of future possibilities of
approaching ignition in the large fusion machines extensions of prevailing
theory or new methods for describing these phenomena have to be deviced.
A model equation for describing the temperature evolution has to include
the effects of a combination of external heating (from HF and/or NBI
sources) and alpha particle heating (from light-nuclei reactions) and the
effects of losses, like bremsstrahlung losses, as well as the simultaneous
effects of diffusion and the presence of boundaries. The corresponding
partial differential equation (PDE) is an elaborate form of a reaction-
diffusion equation. It is found to exhibit interesting features from principal
as well as practical points of view. Even for forms which are special cases of
the one to be discussed here, it has been demonstrated [1] that no exact
analytic solutions can be obtained to such equations for arbitrary initial
conditions. One therefore has to resort to other methods of analysis [2-8].

2. The principle of central expansion

It is the purpose of the present paper to study reaction-diffusion equations
by means of a new technique, the central expansion, which simultaneously
accounts for the process of diffusion and the effects of sources, losses
(represented by different powers of the temperature) as well as the effects
of boundaries. Various possibilities will be discussed of using new results
from the central expansion analysis for describing the dynamics of
complicated realistic systems. The procedure of how these results can be
obtained by means of the central expansion will be described in detail. It
may be useful in this connection to consider the accompanying scheme of
analysis.
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SCHEME OF ANALYSIS

Central cxpansion in space (x3)
of dynamic variable 0 = A G(x2/£2; n),
(radially symmetric cases)
Time dependent A (umplitude), £ (width)
and n (shape paramcter)
u denotes ¢.g temperamure (T) or density (o}

h '

Reaction-diffusion PDE
dufdt = NL Diffusion + NL Sources - NL Losses
Boondary condition: a(b, 1) = 0, all
Initial conditon: u(x, 0) = vy (x) uglz}2 0

h 4

Matching of x2i-terms

(i=01,2)
Coupled NL
Exact solution first order ODEs
{n constant} da/dt = KA. £2) Phase plane
ﬁ;(t) —6—1d22/dt = g(A, £2, )] ~>] description
£i() dnfdt = b(A, £2, 1) (n_.coastant}
(1)

Y

Time dependence of dynamic:

variables A £2 n determines u

The starting point in the process of analysis is to construct a certain form of
expansion, which for radially symmetric (or spatially symmetric one-
dimensional) profiles contains terms of increasing powers of the spatial
variable squared, where the terms have time-dependent coefficients. The
expansion can be expressed as a product of the central value (amplitude)
A(t) and a series in powers of x2, inciuding £X1), where £is the width of a
profile, and n(t), which is a shape parameter, with £ as well as n' depending
on time. By proper account of flux conditions at the boundary the effects of
the boundary can be included directly in the form of the expansion.

The next step is to introduce the expansion into the original reaction-
diffusion equation, and to carry out the differentiations in space and time
and the expansions of the powers in the source and loss terms. Matching
separately the terms which do not depend on x2 as well as the x2 terms and
the x* terms one obtains as a result three coupled nonlinear first order
differential equations in time for the time-dependent variables A, £% and n.
as indicated in the scheme of analysis. One important task in the
fortﬁcoming analysis will be to determine the forms of the algebraic
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expressions f, g and h, which define the right-hand membra of the three
coupled equations. These equations can be used to study the equilibria and

dynamics of the system. The initial values Ao,fz and ne can be given
arbitrary values. This freedom allows for consideration of a wide variety of
dynamic situations, where the variables may deviate far from equilibrium
values, which they may finally approach.

The three coupled nonlinear first order differential equations are well suited
for computer analysis by which A, £? and n can easily be determined as a,
function of time for various initial values of these variables. The dynamic
variable u is accordingly determined as a function of x and t from the form
of the central expansion, defining at any moment a certain spatial
temperature or density profile. A unified description for one-, two-, and
three-dimensional situations can be given for radially symmetric situations.
Profiles of equilibria and the dynamic approach to equilibria from initial
states, which deviate appreciably from the equilibrium states, can be
determined with high accuracy.

There exists, however, also other possibilities of exploiting the coupled
nonlinear first order ODEs. By chosing for the shape parameter 1 a suitable

. 2 .
constant value, only two coupled equations for A and £° remain to be
studied. For certain cases, i.e. removed boundary and neglect of loss term,
the coupled equations can be solved exactly by introducing a certain

. . . « 2.
transformation in time t(t) and expressing A and £° in terms of T, [2].

Alternatively, and even more interesting, the two coupled equations for A
and £, assuming m constant, can be treated by a phase plane description

where A and £° are the co-ordinates in a Cartesian system.  The
evolution of the 'system from any initial point (Ao,fﬁ) can then be easily
traced by noticing the signs of the rate of change in time of A and £° at each
point of the evolution. These signs are generally easily determined by
relating the position of a particular point (A, £2) to the cardinal curves
defined by dA/dt = 0 or de¥dt = 0, i.e. f(A, ?.2) = 0 or g(A, 22 Ne) = 0. In
partic'ular the cross-points where f(A,£2)=g(A. Ez.qc)=0 correspond to
equilibria. A phase plane description may, accordingly, provide full insight
into the structure of dynamic behaviour of the system for different initial
states. The approximation introduced by chosing a particular value of n can

obviously be relaxed by introducing at any moment, i.e. for any point of the
phase trajectory, the instantaneous value of 1 given by the full solution of

the three coupled equations.



The original  reaction-diffusion equation can also be studied by direct
numerical analysis. The results are in excellent agreement with those
obtained by means of the centrai expansion approach. The initial profiles
allow for more specific and complicated features in the case of direct
numerical evaluation than can be specified by the central expansion
including a limited number of terms. This freedom of choice is at the
expense of higher complexity of the computer calculations. With due regard
to the advantages of a phase-plane description, based on the central
expansion approach, this method and the direct numerical analysis method
may be considered complementary for the understanding and description of
the results.

A remarkable result of the present investigation is the high accuracy
obtained by using the central expansion, and the wide range of applicability
that such an approach seems to have. It can be used for analysis of systems
which are far from equilibrium, e.g. in combination with phase-plane
description, in contrast to variational methods which apply to small
deviations from equilibrium. It also has certain advantages in comparison
with direct computer calculations from the original nonlinear PDE equation,
in that insight into the roles of the physical processes in the dynamic
evolution of the systems is facilitated. It furthermore aids in the
determination of the number of equilibria for each case. Moreover, the
computational use of the coupled equations, obtained from the central
expansion, is particularly simple. |

The parameter values chosen for the examples correspond to situations of
interest for describing equilibria and dynamics of temperature in a future
fusion reactor plasma. The results indicate the interesting fact that several
different equilibria may occur for the same set of parameter values in the
original equation. '
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Model for Marfe- Detached Plasma Transition in Tokamaks

F.E. Kaw, S. Deshpande, K. Avinash and S. Rath

Institute for Flasma Research,

Bhat, Gandhinagar - 3B2Z 324,
IiNDIA.
ABSTRACT
"The nonlinear saturated state of the radiative
thermal ~condensation instability responsible for the
phenomenon of marfes observed in tokamak edge plasmas, has

been investigated. In essence, the problem 1s one of
studying two—dimensional thermal equilibria in the tokamak
edge where perpendicular and parallel heat conduction
bal ances the radiated power and heat flux to the limiter. 1In
certain reasonable limits, the relevant nonlinear Poisson’s
gequation can be solved exactly and the solution displays
many featuwres of the observed marfe—-Detached Flasma
transition. NMumerical results taking realistic temperature
dependences for thermal conductivity coefficients and

generally accepted coronal radiation moudel are also

presented.
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PROPAGATIONS OF DRIFT WAVES IN TOROIDAL PLASMA SYSTEMS

S. Yoshikawa and C. Z. Cheng
Princeton University, Plasma Physics Laboratory
Princeton, NJ 08543

Abstact

Drift wave patterns in toroidal plasmas are studied. The dispersion relation was simplified to
retain both the shear and the toroidal coupling effects, Since the dispersion relaton does not depend
on the toroidal angle, ¢, the dispersion is solved in the two-dimensional épacc made up with minor
radius and poloidal angle. The dispertion relation can be reduced into second-order, pardal
differendal equatons of a hyperbolic type. The one—dimensional convective mode analysis, which
was originated in the 1960's, was extended into the two—limensional analysis. Depending on Lhé
srength of the magnetic shear, one can obtain either the convective or the localized solutions. The
results show that the plasma is expected to be unstable for large azimuthal mode number and that the

plasma instability tends to be more stabilized for large mass ions.
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STATISTICAL MECHANICS USING SYMBOLIC DYNAMICS
Roscoe B. White
Princeton Plasma Physics Laboratory
Princeton, New Jersey 08543
and

Alexander B. Rechester
Massachusetts Institute of Technology

Cambridge, MA 02139

Symbolic dynamics® provides a means of partitioning phase space so that information con-
cerning the particle orbits is imbedded in the partitioning. Consider a sequence of numbers
Zo,Z1,ZT2 - given by the dynamics, which we call an orbit, the subscript refering to time.
Define a sequence of integers sg, 51, 82, -+ - associated with this orbit. If there is a unique cor-
respondence between the symbol sequence and the orbit as the length of the orbit becomes
infinite, then the set of such allowed sequences entirely describes the dynamics. Many examples
of symbolic dynamics are known, the simplest being that associated with the logistic map, which
exhibits the period doubling route to chaos. This map is given by

g1 = Cf.'ft(l ‘— m:) (1)
where 0 <z <1l and 0 < o < 4.
The symbolic sequence associated with x, is defined by

] 0 when It'(%
s‘_{l when z,> 1" )
We use this map as an example, but the methods are similar also for two dimensional maps such
as the Henon map and the Chirikov-Taylor map, which we have also investigated.

Consider a truncated sequence S = sq, $1,- -, Sn~1 and let D(S) be the set of all z which
produce the sequence S as time is advanced. Each of the 2" sequences S defines a coarse grain
element of phase space. Upon advancing in time we have

50y 83,77 " Sn—1 — 51,52 5y : (3)

and in the case of the logistic map there are two possible resulting sequences, corresponding to
s, = 0,1. That is, all points in one phase space element D(S) move in one time step to at most
two other elements. '

Now introduce a coarse—grain approximation, i.e. approximate the distribution function
f(z,t) as constant in each coarse grain domain D(S). Similarly, let D(S, 5’) be the image of
the set D(S) in coarse grain element D(S5'}) in one time step. The coarse-grain approximation
to the branching ratios is then given by

, D(S, §")
5,8 = 2/ (@4
7(5,5) > o D(S, S7) @)

The sets D(S) and the branching ratios (S, S’) are easily found numerically.
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Figure 1: Invariant distribution f(z) for the chaotic attractor produced by the logistic map,
a = 3.62. Shown is the result from orbit averaging (solid line) and that from solving Eq. 5,
n =18

The symbolic kinetic equation? for the coarse grain probabilites P,(S) takes the form

-Pt+1(S) = XS:Pt(S’)'Y(Sa S’) ' (5)

and this equation can be readily solved for the steady state probabilities P(S5). An example is
shown in Fig. 1, which shows the solution to Eq. (5) as well as the result of directly averaging
over a long orbit. We find that the solution of the symbolic kinetic equation generally requires
much less computing then orbit averaging over the necessarily long particle orbits.

Any statistical quantity can be readily computed from the probabilities P(S) and the branch-
ing ratios 7($, S*). For example the correlation function is given by

C(r) = Em,ﬂ{zl Zmop(soh(so,s:). ' (6)

An example is shown in Fig. 2.

The branching ratios (S, §') define a network, or Markov chain, whose topological properties
are related to the physical properties of the system. Systems with long correlation time have
networks with relatively few closed loops, whereas systems with short correlation time have
networks with high topological connectivity. An example is shown in Fig. 3 for the logistic map
for « = 3.71, n = 6. This network has high topological connectivity, corresponding to the short
correlation time apparent from Fig. 2.

In Fig. 4 is shown the power spectrum P{w), which is the Fourier transform of the correlation
funcdon, for the logistic map, @ = 3.94. The “fluctuations” have a broad spectrum with two
peaks.

This technique has also been applied to the Henon map (strange attractor) and the Chrikov—
Taylor map (Hamiltonian), with similar agreement found between orbit averages and the solution
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Figure 2: Correlation function for the logistic map, @ = 3.71. Shown is the result of orbit
averaging (solid line) and the coarse grain result from Eq. (6).

20X3068

Figure 3: Network diagram for the logistic map, e = 3.71, n = 6. The points indicate coarse
grain elements, labelled using a shorthand designation?® for the sequences, and the arrows show
the effect of advancing in time.
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Figure 4: The power spectrum P(w) obtained from the correlation function for the logistic map,
a = 3.94. The line is the result of an orbit average and the dotted line the coarse—grain result
from Eq. (6).

to the symbolic kinetic equation. The results indicate that the use of symbolic dynamics can
lead to a rapid calculation of the statistical properties of chaotic sytsems, and give insight into
their dynamical properties.
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Diffusion Through Stochastic Webs in Two and More Dimensions

by

Allan J. Lichtenberg
EECS Dept. University of California, Berkeley, CA 94720

Extended Summary

Hamiltonian systems of coupled oscillators or their related area preserving map- -
pings will have a connected web of stochasticity in the action space if the system has
three or more degrees of freedom. This intrinsic property of higher-dimensional sys-
tems is known as the Arold web and the diffusion through the web is called Amold
diffusion [1]. A connected web of stochasticity can also be obtained in two degrees of
freedom from a mapping derived from a linear oscillator that is perturbed by a periodic
force which is harmonically related to the linear oscillator [2,3]. However, the phase
space topology and the diffusion are quite different in the two degree of freedom sys-
tem than in the higher degree system.

With three or more degrees of freedom resonances of all order between the pn-
mary oscillators are coupled together, making a web dense within the phase space [4].
Since stochasticity exists generically along the separatrices of these resonances, and
particles in a stochastic phase space are free to explore all parts of it, it is possible for
particles within the stochastic web to eventually approach arbitrarily close to all other
points in the phase space. The diffusion rate along the stochastic layers is exponential
in the ratio of the harmonic resonance frequencies, and is therefore generally extremely
slow [4, 5].

The topology and the diffusion through a stochastic web in two degrees of free-
dom has quite different properties from the higher degree-of-freedom system. Near-
resonance exists everywhere in the phase plane, but is broken by the interaction term.
This leads to a mesh of exactly resonant elliptic and hyperbolic fixed points. The ellip-
tic fixed points are surrounded by Kolmogorov Arnold Moser (KAM) curves which
isolate the phase space in their vacinity. The hyperbolic points are joined by the sto-
chastic web. The transport through the web occurs by diffusion across the stochastic
layer, from one web to another, rather than along the layers as in the Amold diffusion.
Since the web, as well as the diffusion rate, is exponentially thin in the harmonic ratio,
the effective diffusion rate is not exponential but rather follows a power law of the fre-
quency ratio [6]. ’

We illustrate these contrasting behaviors with two mapping systems. For the two
degree of freedom problem we consider the motion of a charged particle in a magnetic
field perturbed by a periodic 8-function electric field. The differential equation for the
motion then has a mapping representation [3]

U, =, +K,sinv, cosa + v, sinc,

)

Vpy = —(u, + K gsiny, )sina + v, cosa,

where o = ®,. T is the rotation angle between kicks, K is the stochasticity coefficient,
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and u# and v are the normalized velocity components. At a resonance we have
o = 2np/q. Taking p =1 for simplicity, we see that ¢ is the number of &-function
kicks per gyroperiod. There is an approximate ¢-fold rotational symmetry, and, for
q = 2,3, 4, and 6, there is also translational symmetry. The combination of these sym-
metries tiles the phase space by the separatrix joining the unstable periodic points of
the mapping. For example, a piece of the resulting phase space is shown in Fig. 1, for
g =4 and K, =0.5, for a few inidal conditions, showing both the KAM surfaces
within a tile, and the stochastic continuous web surrounding the separatrix. A blow up
of the phase space near a hyperbolic fixed point is shown in Fig. 2.

]
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FIG. 1. A portion of the phase space FIG. 2, Stucture of the phase space in
with a 4:1 resonance, showing the sto- the neighborhood of an x point of the
chastic web and a few curves of constant  stochastic web for K, = 0.4.

Hamiltonian within a tle.

The basic assumption made for calculating the global diffusion is that the stochas-
tic region is ergodic. This implies that the stochastically available canonical phase
space out to the KAM barrier is uniformly occupied in the asymptotic (long time) limit
{4]. The number of steps n needed for a separatrix crossing is, then, just the ratio of
the total stochastic phase space area within a single square to the phase space crossing
the separatrix on each step. Although both are exponentially small in the frequency -
ratio n/K , the ratio of these areas gives the simple result n = n%/4K ;. Using this we
calculate the spreading from

Los = LgepT (T, )12, 2)

where T is the number of iterations and T,, is the average rotation period. This result
gave excellent agreement with numerical calculations [6].
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For a higher dimensional system we use as the model coupled pendula in which
gravity is applied as a periodic delta function. For a single pendulum the resulting
mapping equations are the well studied standard map [4,5]. A convenient coupling for
study is obtained by coupling the phases through a sinusoid, giving

In+l =In + K" sinen + psm(ﬂn + q)n)v 9,,+1 = Sn +In+1v

3
Jn+l = Jn + K] Sin¢rz + |.1811‘l (en + ¢n)’ ¢n+l = q)n + ‘In+1' ( :
The phase space is now four dimensional. However, for small coupling, which we con-
sider here, the phase space of two variables, over short times, looks very similar to the
- phase space of a single standard map, as shown in Fig. 3. However, over longer time
periods an initial phase point within the stochastic region will explore the entire phase
plane of Fig. 3. In particular, a phase point in the main stochastic web in J, ¢, and on
a rotational orbit in [, 6, will slowly Arnold-diffuse across the 7-space. The global
nature of this diffusion is shown in the 7, J space in the surface of section 6 = ¢ = 0,
in Fig. 4. The shaded areas indicate the main resonance layers and the thinner lines
indicate the positions of the secondary resonance layers. The diffusion along resonance
layers is clearly seen.
The local diffusion rate along a main resonance layer can be calculated from the
three resonance model [4, 5], giving :

Al s = 4L Qgexp(-n0 o/2)n 12 )

Rotational Diffusion Regiea
FIG. 3. The phase space of the stan- FIG. 4. Amold diffusion in the 7, J
dard map with K = 0.8 and small cou- plane with K; =K; = 0.8 and p = 0.003

pling. 1000 particles were run for two million
iterations.
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where Qg = @;/o; =1/K j1/2_ We note the exponentially slow nature of the diffusion.
To calculate global diffusion we again make the ergodic assumpton that the local sto-
chastic phase space has a uniform density distribution. This is difficult to satisfy on
intermediate tme scales because of the slow diffusion through the secondary reso-
nances. Nevertheless, it gives a reasonable first approximation to the diffusion. The
global diffusion is then calculated by dividing the coupled phase space into the follow-
ing regions:

1. Primary Stochastic — stochastic: particles are rapidly transported a distance in
action equal to the width of the island chain around which the stochastic region lies,
contributing to the diffusion with a very high diffusion rate. 2. Primary Stochastic —
librational: the motion of particles averages to the fixed point as it librates around
the island, removed from the global diffusion while in the region. 3. Primary Stochas-
tic — rotational: particles Arnold diffuse slowly through both the regular and secon-
dary stochastic layers. 4. Regular — regular: the phase space is inaccessible to par-
ticles which begin in a stochastic region.

Applying these properties to the relative amounts of phase space in each category the
global diffusion is calculated. It is found to agree well, asymptotically, with the
corresponding numerical determination of the diffusion [7].

In summary, the topology and diffusion rate through a stochastic web in two
degrees of freedom is quite different from the Amold diffusion in higher degrees of
freedom. Nevertheless, the ergodic assumption of the uniformity of an equilibrium sto-
chastic phase space of a Hamiltonian system can be applied to both systems to relate
local to global diffusion. The results of the three degree coupled standard maps can be
extended to higher degree coupled mappings Strong coupling can also be investigated
numerically [8], but the results lose their straightforward interpretation from the three
resonance model.
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Formation and Dynamics of Solitary Waves and
Vortices in Driven and Damped Systems

K.H. Spatschek, P. Heiermann, E.W. Laedke, V. Naulin, H. Pietsch
Heinrich-Heine-Universitat Diisseldorf
D-4000 Disseldorf, F'.R.Germany

Abstract: In the first (introductory) part, near-integrable model equations which al-
low spatially coherent solutions with temporal chaos are reviewed. In the second (main)
part, this contribution focusses on nonlinear drift waves. The adequate model equations
in simple (density and temperature) inhomogeneous situations are presented. Without
driving and damping, the stability of spatially coherent structures (monopoles, dipoles,
etc.) are summarized. Also structural perturbations are included. The self-organization
hypothesis is tested for two different situations. The formation of large-scale-structures on
the one hand and of zonal flow on the other hand are discussed. In both cases, numerical
simulations as well as analytical predictions are presented.

1. INTRODUCTION

During the last years, the solitary wave solutions of integrable nonlinear field equations
experienced a renaissance because of the fact that they can play a decisive role also in non-
integrable driven and damped systems. For example, more general nonlinear Schrédinger
(NLS) equations (for higher space dimensions, or with non-cubic nonlinearity, or when
damping and driving terms are incorporated)} do not posses the integrability property but
many interesting new phenomena can occur with spatially coherent soliton-like solutions
playing an important role [1]. Let us just mention the paradigm of a perturbed NLS
equation. As has been first demonstrated by Nozaki and Bekki [2], in the model for
damped nonlinear Langmuir waves driven in a rf capacitor field,

iqt + dzz + 2|Q|2q = —37(1 - iae&m b (1)

the period-doubling route to temporal chaos can occur for phase-locked solitary waves.
Analyzing (1), we can derive the existence condition for a phase-locked solitary wave as
29w'/? fra < 1. The stability of this phase-locked solitary wave was investigated analyti-
cally {1]; at finite driving amplitudes a (for fixed damping rate -y and prescribed frequency
w) an instability in form of a Hopf bifurcation takes place and a regulary pulsating soli-
tary wave appears. In a reduced phase space, the phase-locked solitary wave corresponds
to a limit-cycle. With increasing values of driving amplitudes, the system undergoes a
series of torus-doubling bifurcations for which the universal Feigenbaum constants ., =
4.6692... and o, = 2.50291... could be recovered quite accurately. The situation changes
when two space dimensions are taken into account. Then the collapsing solutions can be
new attractors and analytical proofs exist for this behavior [3]. On the other hand, the
whole scenario depends on the form of the “perturbations”. If, e.g., we change from (1) to

iq + gz + |ql°g = ~iag — Bg— ¢ (2)
or

19 + goz + plgl’¢ = 1 — 2¢ (3)
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Fig.1  Contour plot of the potential ¢ in z,y-space at t=1200.

for nonlinear modulated cross-waves in Faraday resonance [4] or radiation in laser-irradiated
inhomogeneous plasmas [5), we can find bifurcations in space or quasi-periodic soliton gen-

eration, respectively. These results clearly show that in any theoretical investigation the

perturbation terms and the dimensionality should be carefully chosen when a close con-

tact with experimental results is aimed for.

In this contribution we concentrate on new results for nonlinear drift waves; we directly

use 2d models and include driving and damping selfconsistently in a similar way as Kono

and Miyashita [6] did. Compared to the latter investigation we allow for density as well

as temperature inhomogeneities and test the self-organisation hypothesis.

2. NONLINEAR COLLISIONAL DRIFT MODES .

When dissipative and driving terms are ignored it is now straightforward to derive a gen-
eralized Hasegawa-Mima equation when both density and temperature inhomogeneities
exist [7). For vortices scaling on the ion Larmor radius at the electron temperature and
weak density and temperature inhomogeneities the original Hasegawa-Mima equation (8]
is the correct model. A different situation occurs when we look for vortices on a long
scale compared with the ion Larmor radius. Then, by the multiple-scale technique, also
a scalar nonlinearity appears. Collisional effects can be included in the same way as done
by Kono and Miyashita. For the normalized potential ¢ we obtain the equation

52
0 (1 - V- ﬁfﬁ y) ¢+ {—nﬂay + E,gﬁag

— (85ady — BV + i1dl,8 = T X V- VI, (4)

where &, and k7 are the density and temperature inhomogeneity coefficients, respectively,
and D=0, /v, characterizes the collisional contributions. For D — oo, §=T;/T.=0, =0,
and xr=0 the original Hasegawa-Mima model [8] appears. It has dipolar vortex solutions
whose stability properties can be investigated. The dipolar vortices are structurally un-
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Fig.2  Fourier components corresponding to Fig.1 in k., ky,—space.

stable {7,9], whereas monopolar vortices (for k7 # 0) are stable. The latter facts let us
pose the questions: What will be the self-organized state of (4)7 Can a zonal flow exist in
drift-wave-turbulence? In answering these questions we have first confirmed the results of
Kono and Miyashita for k7=0. A big dipolar vortex being the final state of the simulation
is identified as the appropriate self-organized state; in this case no zonal flow exists. How-
ever, we should remember that for large-scale-structures the scalar nonlinearity cannot
be ignored anymore. Simulation results of the full equation (4) [with one unstable mode
as initial condition| show completely new results; see Figs.1 and 2. A zonal flow exists.
Energy condensation occurs into small k,- but finite k;-values whereas the density can
cascade to large k-values, As shown in Fig.3, a series of monopolar structures appears.
It 15 very interesting to note that such a self-organization can already be observed in the
dissipation-free case when one starts from the 2d KdV (ZK) equation including the vector
nonlinearity as shown in Fig. 4.

Summarizing, for collisional drift waves a new self-organized state with zonal flow has
been found. Spatially coherent structures are important in drift-wave-turbulence. The
structural instability of dipolar vortices could be the reason for absence of dipolar vortices
in plasma turbulence.
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SOLITONS AND CHAOS IN PLASAMA

Yoshi H ICHIKAWA
National Institute for Fusion Science

Nagova, 464-01, Japan.

ABSTRACT
Plasma exhibits a full of variety of nonlinear phenomena.
Active research in nonlinear plasma phvsics contributed to.
explofe the concepts of soliton and chaos. Structure of
soliton equations and dynamics of low dimensional Hamiltonian
systems are discussed to emphasize the universality of these

novel concepts in the wide branch of science and engineering.

1. Evolution of Fundamental Concepts in Plasma Phyéics

Plasma is a treasure land of instabilities!’, which give rise
to a full variety of nonlinear phenomena. Endeavor of plasma
research during the past four decades may be best characterized as
studies of collisionless plasma, 1. e. physics of conservative
systems. Here, I will speak on solitons and chaos in plasma as
a summary report of what plasma physics contributed to advancement
in the field of fundamental physics during the past half centuries.

When nuclear fusion reaction occurs 1in the high temperature
plasma, species of the constituent particles change into other
species and produced energy 1s carried away. Thus, we are
" confronted with dissipative systems, where such concept as strange
attractors are cbming to play key rolles.
2. Birth of Scoliton and Quest for Chaos

Upon the introduction of high speed electronic computer in the
early 1950's, as one of the research program in the Sherwoods

) undertook numerical experiment to

Project, Fermi, Pasta and Ulam
observe the equipartition of energy among the normal modes of one
dimensional c¢oupled system of anharmonic oscillators. On the
contrary to their expectation, encergy is not distributed over the
entire mode of the system, but i1s shared among the lowest modes and

after a finite time of elapse the syvstem returns to the original
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state. This observation of the Fermi-Pasta-Ulam recurrence acted
as a holy spring of the novel concepts of soliton and chaos.

Examining the long wave length behavior of the discrete coupled
oscillator equation, Zabusky and Kruskal®' have reduced it to the
K-dV equation, and numerically examined the collision processes of
solitary wave solutions. In spite of its nonlinearity, two sclitary
waves retains their original form after the collision. Thus, they
were led to propose to call the K-dV solitaryv wave as "soliton".

At the same time,the observation of Fermi-Pasta-Ulam recurrence
phenomena renewed active interest to investigate the ergodic
behavior of dynamical systems, and led us to examine "chaos'" in the
low dimensional nonlinear dynamical systems.
3. Inverse Scattering Transformation

The mysterious secret of K-dV soliton has been uncovered by the
genius discovery of the inverse scattering transformation for the
K-dV equation®’. Subsequent extension of the method to the cubic
nonlinear Schrodinger equation inspired Ablowitz et al.® +to
formulate the 2 2 matrix representation of the inverse scattering
transformation, which succeeded to unify the K-dV equation, the
modified K-dV equation, the cubic nonlinear Schrodinger equation and
the sine-Gordon equation as the completely integrable soliton
equations. Generalizing the A-K-N-S scheme , we®’ have shown that
the superposition of A-K-N-S5 and K-N scheme wvalid for the
generalized nonlinear Schrodinger equation and also derived the

the new types of soliton equation such as

2 o 2° Y — 1)
AT T

and
2 ?* / 92} |
- = ( 2
‘ at%’ + 912{(1,_[_ 21)3/1 2X | )

Extending eq.2), we ’'have studied propagation of a loop

soliton along a string. El Naschie® ;referring to the Euler
elastica, noticed the close similarity of this soliton looping and
buckling of compressed strut and emphasized that the study of
elastic models will provide useful infeormations on the interactioen
between the integrable soliton and the non-integrable chaos.

4. Dynamics of Vortex Filament

As for the first type of WKI equation, eq.l), we have shown
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that the self induction equation for a thin wvortex filament is
reduced to a modified WKI equation. We obtained analytic soliton

solutions?’ , which are in agreement with the numerical sclutions

given by Aref and Flinchem.?
5. Discretized Soliton Equations and Integrable Mapping

Although we ﬁave emphasized success of the analytical approach
in the sgliton theory, advancement of computational physics plays
the key role in development of nonlinear science. 1In this regard,
there have been extensive studies on the discretized socliton
equations and the nonlinear differential-difference equations.
Following the IST theory of the Toda lattice, Ablowitz and Ladik
have presented the extensive thecry to construct socliton solutions
for various nonlinear differential-difference equations.u’It would
be worth to notice that Ross and Thompsonm)have discussed
integrability of nonlinear mapping by examining several choices of
dicretization of the nonlinear terms. Extending their approach,
Quispel et al.' have been discussing relationship between the
soliton equations and the integrable mappings.
6. Chaos in Low Dimensional Hamiltonian Systems

Having discussed a connection between the soliton equations and
integrable mapping, we are now led to study non-integrable mapping

in low dimensional Hamiltonian systems. Helleman'?’

emphasized that
mechanics 1is not in good shape,contrary to the preoccupation
implanted through the preéent day physics c¢ourse on classical
mechanics. The most Hamiltonian systems are non-integrable, and many
orbits exhibit sensitive dependence on the initial condition,
{though their temporal evolution 1s deterministic). Hence, the
chaotic behavior appears already in systems with only 2 or 3 degrees
of freedom.
7. Concluding Remark

In the present discussion on scliton and chaos in plasma, 1
have tried to picturize the universality of the novel concept of
soliton and chaos in dealing with nonlinear phenomena in science and
engineering. With regards toc the proper problems in plasma physics,
I will refer to several investigators on interplay of soliton and
chaos, such as on the process of chaotic emission of solitons in

15)

nonlinear inhomogenepous media Though these works are based on

computational analysis, their observation provides us clear insight
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to develop strong plasma turbulence theory. Furthermore, I should
mention that a number of experimental studies on chaos in plasmam"
Y awaits further investigation to explore the true understanding

of the nonlinear phenomena in plasma.
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S.Kida (Kyoto Univ.)
15:15-15:35 Coffee Break

(Chairman: J.A.Krommes)

15:35-16:05 Statistical Properties of Two-dimensional Magnetohydrodynamic
Turbulence |
D.Biskamp (Max Plank Inst.)
16:05-16:35 Subgrid-Scale Modeling of Ma.gnetohydrodynarmc Turbulence

A.Yoshizawa (Tokyo Univ.)
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Wednesday, November 28, 1990

Se_s.sion 111
9:00- 9:40

9:40-10:20

10:20-10:40

10:40-11:05

11:05-11:30

11:30-12:00

12:00-13:30

Session IV
13:30-14:00

14:00-14:25
14:25-14:40

14:40-15:00

15:00-15:20

Transport I (Chairman: A.J.Lichtenberg)

Hybrid Fluid/Kinetic Descriptions of Tokamak Plasmas.
J.D.Callen (Univ. of Wisconsin) _

The Theory of Turbulence and Anomalous Transport in Plasmas:

Past, Present, and Future

J.A Krommes (PPPL)
Coffee Break

(Chairman: S. Yoshikawa)
Ton Temperature Gradient Turbulence and Coherent Structures
D.Choi (Korea Advanced Inst.)
Three-Dimensional Particle Simulation of Trapped Electron
Instabilities in Tokamaks
C.Z.Cheng (Princeton Univ.)
Studies of Anomalous Transport Driven by G and 7 i modes in

Heliotron/Torsatron
M.Wakatani (Kyoto Univ.)

Lunch

Helical Plasmas (Chairman: M.Wakatani)
Optimization, MHD-Mode, and a-Particle Confinement Behaviour
of Helias Equilibria '
J.Nuhrenberg (Max Planck Inst.)
Equilibrium Beta Limit of Helical Systems and Suppression of
Magnetic Surface Breaking
T.Hayashi (NTFS)
Suppression and Control of Magnetic Islands in Toroidal
Plasmas '
A.Bhattacharjee (Columbia Univ.)
Theoretical Studies of Nonlinear Sheath Dynamics
J.K.Lee (POSTECH)

Coffee Break
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Session V
15:20-16:00

16:00-16:30

16:30-17:00

18:30-20:30

Laser Plasmas (Chairman: K.Nishikawa)
Hydrodynamic Instabilities in Laser Driven Implosion
K.Mima (Osaka Univ.)
Solitons and Chaos in Laser-Plasma Interaction
C.8.Liu (Univ. of Maryland)
Nonlinear Evolution of 2D and 3D Rayleigh-Taylor Instability at
Stagnation Phase in Laser Implosion
K.Nishihara (Osaka Univ.)

Banquet (Wakamiya-Kaikan)

Thursday, November 29, 1990

Session VI
9:00- 9:40

9:40-10:05

10:05-10:30

10:30-10:50

Session VII
10:50-11:20

11:20-11:40

11:40-12:00

12:00-13:00

Transport IT (Chairman: J.A.Wesson)

- Models for Transport in Configuration with Destroyed

Magnetic Surfaces
~ G.Laval (Ecole Polytechnique)
Issues in Direct Numerical Simulation of Plasma Turbulence and
Transport
A.Thyagaraja {Culham Lab.)
Anomalous Electron Thermal Diffusivity and Particle Pinch Due
to Short Wavelength Electromagnetic Toroidal Drift Mode
A.Hirose (Univ. of Saskatchewan)

Coffee Break

Space Plasmas (Chairman: P.K.Kaw)
Magnetohydrodynamical Formation of Astrophysical Jets from
Gravitationally Collapsing Objects

Y.Uchida (Univ. of Tokyo) _
Computer Simulation of Solar Wind-Magnetosphere Interaction

K.Watanabe (NIFS)
Rapid Acceleration of Protons in a Nonlinear Magnetosonic
Wave

K.Ohsawa (Nagoya Univ.)

Lunch

— 223 —



Session VIII

- 13:00-15:00

10

11

12

13

14

15

Poster Session

Effect of Pressure on Mode Transition Point of Partially Relaxed
States with Peripheral Loss
Y. Kondoh (Gunma Univ.)
Relaxed State and Entropy Production
T. Kato (Waseda Univ.)
Simulation Study of MHD Relaxation and Reconnection Processes
K.Kusano (Hiroshima Univ.)
Finite 8 Equlhbnum for A Pressure Conﬁgutatlon
S. Kajita (Gifu Univ.)
Application of "Mathematica’ to Energy Principle
T. Yamagishi (Fukui Inst. of Technology)
Direct Ion Heating in MHD Relaxation
Z. Yoshida (Univ. of Tokyo)
Structure of Quter-Heliosphere
H. Washimi (Nagoya Univ.)
Self-Similar Evolution of Nonlinear Magnetic Buoyancy Instability
K. Shibata (Aichi Univ.)
Turbulent Mixing due to Rayleigh-Taylor Instabilities in Laser
Driver Implosion
H. Takabe (Osaka Univ.)
Particle Simulation of the Toroidal Plasma
M. LeBrun (Univ. of Texa.s)
Internal Kink Mode Simulation by 3-D Gyrokinetic Code
H. Naitou (Yamaguchi Univ.)
Particle Simulation Study on the Tilt Stabilization of
the FRC Plasma
R. Horiuchi (NIFS)
3-D Macroscale Electromagnetic Particle Simulation of
Inhomogeneous, Magnetized Plasmas
M. Tanaka (NIFS)
Study of Kink Instability by Three Dimensional Macroscale
Particle Simulation
H. Takamaru (NIFS(Hiroshima Univ.))
Nonadiabatic Behavior of the Magnetic Moment of a Charged
Particle in a Dipole Magnetic Field
S. Murakami (NIFS(Hiroshima Univ.))



15:00-15:30
15:30-17:30
15:00-17:00

16

17

18

19

20

91

22

23

24

25

26

27

28

29

30

Sheared Electric Field Effects on the Resistive
Pressure-Gradient-Driven Turbulence
L. Garcia (Fisica Teorica)
Numerical Study of Ion Temperature Gradient Modes in a Tokamak
M. Yagi (JAERI)
Nonlinear Behavior and Transport Property of Multiple-Helicity
Resistive Interchange Modes
H. Sugama (NIFS)
Nonlinear Computer Analysis of a Backward Wave Oscillator
T. Watanabe (NIFS) :
Mode Conversion of Alfven Waves Induced by Quadrupole
Magnetic Field Modulation
H. Hojo (Univ. of Tsukuba)
Numerical Simulation of Potential-Driven Ton Cyclotron
Oscillation : '
S. Ishiguro (Tohoku Univ.)
Dynamics of Interfaces with Internal Structures
T. Kawakatsu (Kyuéhu Univ.) -
Nonlinear Equations for weakly unstable modes
N. Nakajima (NIFS)
Hole Dynamics of One-Dimensional Plasma
K. Kitahara (Tokyo Institute of Tech.)
Shock and Soliton Structures Induced by Poloidal Flow in Tokamaks
T. Taniuti (Chubu Univ.) -
Soliton Phenomena in Electron Beam Plasma
‘T. Yajima (Univ. of Tokyo) -
Point Vortex Model of Modons
C. Matsuoka (Nagoya Univ.) _
Structure of Magnetic Field Lines in the Helical Torus
T. Hatori (NIFS) o
Regular Motion -and Symmetry in the Relativistic Standard Map
Y. Nomura (NIFS)
Relaxation and Diffusion in Hamiltonian Chaos
T. Konishi (Nagoya Univ.)

Coffee Break
Tour to New Toki Site

Lectures for Public Audience
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Friday, November 30, 1990

Session IX
9:00- 9:40

9:40-10:10

10:10-10:40

10:40-11:00

11:00-11:35
11:35-12:00

12:00-12:30

12:30-13:30

Session X
13:30-14:10

14:10-14:50

14:50-15:10

15:10-15:40

15:40-16:00

16:00-16:20

Tokamak (Chairman: J.D.Callen)
Non-Linear Behaviour in Tokamaks

J.A.Wesson (JET)
Fluctuation Spectrum of Ion Temperature Gradient Driven Mode:
in Sheared Magnetic Fields

~ T. Tuda (JAERI)

Equilibria and Dynamics of Temperature in a Fusion Reactor
Plasma

H.Wilhelmsson (Univ. of Technology)

Coffee Break

(Chairman: G.Laval)

Model for Marfe-Detached Plasma Transition in Tokamak
P.K.Kaw (Inst. for Plasma Research)

Propagations of Drift Waves in Toroidal Plasma Systems
S. Yoshikawa(PPPL)

Energy confinement as nonlinear coupling of macroscopic motion

with transport processes
Huo Yu-ping (ASIPP)

Lunch-

Chaos-Soliton (Chairman: C.S.Liu)
Dynamical Networks of Nonlinear Systems
R.White (Princeton Univ.)

Diffusion Through Stochastic Webs in Two and More Dimensions
A.J.Lichtenberg (UC Berkeley) '

Coffee Break

(Chairman: K.Mima)
Formation and Dynamics of Solitary Waves and Vortices
in Driven and Damped Systems

K.H.Spatschek (Universitat Dusseldorf)

Solitons and Chaos in Plasma

Y Ichikawa (NIFS)

Closing

— 226 —



LIST OF PARTICIPANTS
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Department of Physics :
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Sh. M. Khalil Institute for plasma physics
forschungszentrum -
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- Jae Koo Lee , POSTECH _
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Huo Yu-ping Director’ _
. Institute of Plasma Physics
Academia Sinica
Hefei
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H. Wilhelmsson

J. Wesson
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M. LeBrun Institute for Fusion Study
University of Texas
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Science Dept.
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U.S A

C. S. Liu Dept. -of Physics
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S. Ishiguro Faculty of Engineering
- Tohoku University ‘
Aramaki, Aoba, Aoba-ku, Sendai, Japan

K. Tani Japan Atomic Energy Research Institute

T. Tuda 801-1 Mukoyama, Naka-machi, Nakagun, Ibaraki, Japan
M. Yagi :
H. Hojo Plasma Research Center

University of Tsukuba
1-1-1 Tenodai, Tsukuba, Ibaraki, Japan

T. Honzawa Faculty of Engineering
Utsunomiya University ‘
2753 Ishii-cho, Utsunomiya, Japan

Y. Kondoh Faculty of Engineering
Gunma Umniversity _
1-5-1 Tenjin-cho, Kiryu, Gunma, Japan

K. Minami | Faculty of Engineering
Niigata University
2-8050 Igarashi, Niigata, Japan

M. Al Graduate School of Science and Technology

K. Ogura Niigata University
2-8050 Igarashi, Niigata, Japan
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. Tanno

A. Yoshizawa
Y. Uchida

S. Kaneko
M. Taguchi
T. Yajima
7. Yoshida
Y. Hirano

T. Kato
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Faculty of Science
Tokyo Institute of Tech.
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College of Engineering
Chubu University
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Aichi University of Education
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Faculty of Engineering
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Recent lssues of NIFS-PROC Series

NIFS PROC-1  U.S.-Japan Workshop on Comparison of Theoretical and
Experimental Transport in Toroidal Systems Oct. 23-27, 1989 ;
Mar. 1990

NIFS-PROC-2 Structures in Confined Plasmas —Proceedings of Workshop of US-
Japan Joint Institute for Fusion Theory Program— ;Mar. 1990

NIFS-PROC-3 Proceedings of the First International Toki Conference on Plasma
Physics and Controlled Nuclear Fusion —Next Generation
Experiments in Helical Systems— Dec. 4-7, 1989 ; Mar. 1930

NIFS-PROC-4 Plasma Spectroscopy and Atomic Processes —Proceedings of the
Workshop at Data & Planning Center in NIFS—; Sep. 1990

NIFS-PROC-5 Symposium on Development of Intensed Pulsed Particle Beams
and Its Applications; Oct. 1990



