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Abstract

This is a report on the meeting on chaotic phenomena in plasma, held at NIFS
on December 1, 1993.
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Analysis of Nonlinear Phenomena in Gas Discharge

BRAET #k R, IEER—
Y.Matsunaga and T.Kato
School of Science and Engineering Waseda University, Tokyo,169-50
Abstract

Hysteresis and low frequency chaotic phenomena have been observed in the discharge by hot cathode in
Ar gas . Supposing spatially that the ion density has constant distribution , that the beam electron density
from hot cathode has exponential distribution with the damping constant ¢ and that the electron density
has Boltzmann distribution, we analyze Poisson equation by linear approximation. The motion of an ion in
the nonlinear potential are calculated. The periodic-doubling bifurcation and chaotic oscillation in.some
parametric region is obtained numerically. The experimentally observed low frequency phenomena are
explained by our results adequately. Hysteresis phenomena are explained by filament temperature
differences between anode glow mode and Langmuir mode.
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1 The Lie Transform

In classical perturbation theory for Hamiltonian systems, in general a generating
function F is used to perform a canonical transformation from the old variables
q,p to the new variables @, P. This generating function depends on both the
old and the new variables, and as a consequence the transformation itself and
the relation between the old Hamiltonian H and the new one K appear in a
mixed form. For example, if the generating function is of the type F(q, P, ¢},
then for the coordinates we have the relations _

and for the Hamiltonians
: . a- .

We see that (1) is in a mixed form, while what we actually need are the relations

Q(g,p,t) and P(q,p,t), and that (2) is a relation between the functions H and K
at corresponding points in phase space. When (1) and (2) are used as the basis
for a perturbation analysis the result are very lengthy formulas even for very
low orders. It would be preferable to have a formalism that yields directly the
new variables in terms of the old one, or vice-versa, and such that- the relatlon
between H and K is a relation between functions.

This formalism has been developed by researchers working in celestial me-
chanics ([1], [2], (3], [4]), and has been presented in the review articles [5] and [6].
It is a formalism based on the so called Lie transform, which is a special kind
of coordinate transformation. The perturbation theory based on the Lie trans-
form has a number of advantages. It is canonically invariant and it is possible to
give a direct expansion of any function of the old variables in terms of the new
variables. We present in this section a brief account of the perturbation theory
based on the Lie transform. The great majority of the results are not derived,
and the reader is referred especially to ref. [6] for a rigorous presentatlon of the
theory. : -

Let us consider the coordinate iransformation

ZF =t 4+ eZP(2) + 225 () + -, ' (3)

from the variables z!,..., 2", to the variables ZY,..., 2", where ¢ is a small
parameter and Z{', Z¥, . .. are functions of n variables. We will use the compact
notation '

2" = Z"(z,¢). : @)



The transformation (4) is called a Lie transformation when the differential equa-
tion

2 gn = g (2*)

Be '

together with the initial condition Z#(z,0) = z#, is satisfied by the functions
Z#. The vector g* is called the generator of the Lie transform, and completely
characterizes it.

Let us now see how coordinates and scalars transform under a Lie transform.
We first introduce the operator L, which maps scalar functions into scalar func-
tions according to

Lyf =g"8,f. (5)
Notice that this is a functional relationship, so the symbol for the independent

variables is a dummy, and it could be z¥ or Z¥ or any other. It is then found
that the old and the new coordinates are related by

2P = e(“Lﬂ)Z"‘, (6)
while a scalar s(z) transforms in the opposite way, that is
5(2) = e~Las(z). (7)

We will be particularly interested in the transformation properties of the ex-
pansion, according to a smallness parameter ¢, of a 1-form

v=7"+eyt + e+, (8)

which could represent, for instance, the magnetic vector potential or some other
physical quantity. The superscript in the v’s indicate the order in ¢. The 1-
form (8) is better treated by a composition of individual Lie transforms, each
of them characterized by its generator ¢*. In the following the lower index
will represent the perturbative order, so that we will write g# to indicate the
generators of the nth Lie transform, of order ¢", and L, will now indicate the
operator such that, if & is an arbitrary 1-form, then (Lno), = g (8,0, -8,0,). !
Notice that the convention is the opposite for the 1-form: for the 1-form the
superscript represents the perturbative order. Our aim is to transform (8) into
an expression of the form

T=T"4elM 402 4. (9)

where T'! is obtained by a Lie transform characterized by the generator g;, I'?
is obtained by a Lie transform characterized by the generator ¢, and so on. It
is found that « and I' are related by

T =Ty +dS, (10)

1We have shorten the notation by writing Ln, instead of Ly, .




where

T=-T3:T, (11)
with . :
Tn=e ¢ Lom, (12)
and dS is a total differential which represents a gauge transformation of the

1-form and therefore does not affect the equations of motion. Expanding in
powers of ¢ we obtain

I = - (1-&Ly+38L24-)
(L—e?Lo+ 2e* L3 +---) (13)
(t —eLy + 3?Li+ - )y +dS.

Collecting the terms and using also the expansions for v and I' we obtain

re o= 7,

Fl = d51 - Ll‘yn + 71: (14)
2 = dS— Ly +79° - Liy' + §L1Y",

P = dSa— L3y’ + 7%+ Lal1y® — 10390 — Loy + 3L§' = Li7?,

and so on. Here S represents a gauge function that will not alter the equations
of motion. The coordinate transformation associated with the transformation
of the 1-form is found observing that the coordinate transform controvariantly,
that is

Z=T7, (15)
where '
Tl =TTt (16)
with :
Tyl = e Lon, (17)

Again, expanding and collecting the terms, we obtain -
2,12 3cl.3 |
Z=z+celiz+¢ (§L1 +L2)Z+C (6L1 + L1Lg +L3)Z+ (18)

To simplify the notation it is convenient to introduce the tensor w, called La-
grange tensor, and defined by (s is a 1-form)

<

Wy = Opbe — Guly, (19)

so that we can write . ‘
‘ (LaY%)u = Inw) - (20)
When ¢ is one of the terms of (8), then we will further simplify the notation by

. *
¥ instead of w?

writing w,,, >

so that, for example

Wi = 007 — Ouy- (21)



The general form of T is therefore
Fn = dSn - Ln’ru + Cn; (22)

where C,, 1s a 1-form calculated from 4" and the results of the preceding lower
order calculations. The generator is contained in the term-L,v°. The expres-
sions of (), Cy and Cj are

¢, = 71i ‘
Cr = 72 =Liy' + 313" (23)
Cs = LoLiy®— §L3y° — Loy + 3 L3y ~ Luy™.

It is possible to choose g2 = 0 to all orders, and this corresponds to the fact that
usually we do not want to transform also the time when we change coordinates.
The 2N components g!, and the scalar S, can be chosen as to bring the 2N -+
1 components of IT'?, where N is the number of degrees of freedom, into some
desired form. We want a form in which only the temporal component of T,
which will be the y-component in our case, is not zero, and this can be done
choosing - ‘

; h = (8iSn + Cui)J7 . (24)
where J;j is the inverse of the spatial part of the Lagrange tensor. With this
choice of the generators the temporal component of the 1-form becornes

I} = V9uSa + CauVg, (25)

where V¢ is the Poisson vector, defined as V§ = Jiw§;, V{ = 1. We stress that
with the choice (24) of the generators, the temporal component of the 1- form
is the only one which survives after the transformation.

2 Magnetic Field Lines Hamiltonian

In this section we discuss Hamiltonian formulations for the magnetic field lines
system. We first use a gauge transformation to eliminate the component v of the
vector potential and then expand the non vanishing components in Taylor series.
Then we apply perturbation theory based on the Lie transform to transform
systematically to canonical variables. In section § we show the procedure rather
in detail for the cylindrical limit approximation of the field. In section 6 we
derive a Hamiltonian correct until the third perturbative order for the toroidal
helical case, and in the following section we discuss a different Hamiltonian.



3 Magnetic Potential

The general scalar potential satisfying the condition V¥ = 0, regular at £ = 0,
and allowing for an axial current is (refs. 7], [8])

. +o0 . . . . .
¥ =Ip+ (1 —Ecosm)/? Z aimUtm (€)' Him9, (26}
im=—co
where .
Uim(§) = E“”Q'”" (1/e). (27)

The coordinates £, n and p are toroidal coordmat.es, in terms of which the
Cartesian coordinates are z = £sinn/(1 — £cosn), z = (1 — £2) /2 cos /(1 —
£cosn), and y = (1-£2)"/2sin p/(1 —£cos n). Units are selected such that I = 1.
The coefficients a;m are arbitrary provided that a1 = a2, .y. The function.
Q¥ is the modified Legendre function of second kind. From the potential ¥ the
component for the vector potential for the divergence-free and curl-free magnetic
field are obtained as explained in ref. [8] and the vector potential can be written

o .
Z aim AT, AT+ aim A, Y moAD), (28)
I.m I
where

AT = (1/2)((1 - cos )~ ‘ln(——u@—‘-’f-’l)+(1—cosn) (L2808 (9g)

14¢
A" = mem(f)an(l — eos ) Vefntime, - (30)
AP = mfu — £7)8(1' - gcos )/ Ui (€)eflm+ime . (31)
Al = / dz[z(1 — zeos )]~ leo(I) n(1 - zeos )26, (32)

We select the harmomcs (I, m) and (1,0), that i is we will consider the b_otent'ial
= (€A™, AT + eAl™ ' AL), (33)

where ¢ = ay,,, €/ = ayp. Now, in order to apply the Lie transform, we consider
the 1-form

= (€A™ + 8¢ S)dE + (AT + cAl™ 4 8,8)dn+ (¢ AV + 3,5)dp,  (34)

where S is a gauge function. Exploiting the gauge freedom, we choose the gauge
function in order to make the £ component of the 1-form to vanish, that is we
choose the gauge function to be

S=—¢ / deAlm, (35)



and therefore the 1-form becomes
y= (AT +cdi™ — ¢ / dgd, AT ) + (¢ A0 — ¢ / dEd, A dp.  (36)

We now introduce the new variable § = 5 + (m/l)p, where ! is the poloidal
multipolarity and m is the number of field periods, so that we obtain

v = [A} A —efdga,,A{;n]da
+He' Al — (m/D(AT + eAl™)
—c [ dg(0, 4y — (m/D3y A Ndp. (37)
The 1-form is of the type v = v3d# + ~v,dip, where
76 = AT + eAl™ — ¢ / dgd, A, (38)

and

e = €AY — (m/D(AT 4 cAl™) — ¢ [ dE(B, Al — (m /D)3, AL)

¢ Al — (m/l)ys — e]dfawAém. (39)

In the next section we will expand the 1-form in Taylor series in the variable £.

4 Taylor Expansion of the Potential

To apply the Lie transformation we need to have the l-form written as an
expansion of the type (8). We will consider €,¢' and £ as smallness parameters
of the same order, and we will expand the 1-form in the variable £ about the
point £ = 0. We proceed first to the expansion of the quantities Uj,(£). The
functions Uy, (€) admit the integral representation (ref. [8])

Ut (€) =;3,mg'(1-52)—m/2f0" d(sint)* (1 + Ecost)™""1/2,  (40)

Expanding (1 — £2)=™/2 and (1 + £ cost)™'"1/2 we can put (40) in the form
Uim(€) = €' (Ul + €U, +E3UR, + ), (41)

where the normalization constants F,; have been incorporated into the constant

quantities U2, U} ... From now on we will set { = 2. For the other terms we



obtain

AT = (1/2)€2 + (1/3)¢3¢cos n + (1/4)€* (1 + cos p?) + - -+,

AT = (2i/m)US_g2e% 4 .
(1/2m)cos nUS £3e204
(i/m)(2U2,% — UL )e%e®® 4 .-,

A = (3m)UB e+ |
(1/2m)US.(2cos  — sinp)E2e®? + - - -,

(42)

AR = —il8 e 2en— |
(1/6)U3y(sin i + 2icos n)E3e®" + ---.

The quantities U}, are constant, and the only values that we will need are
Ul =1/2, US, = (m?)/8, Uk =0, U3, =0and U} = 35/96. Putting all the
terms together, introducing the new variable 1 = (1 /2)¢? and taking the real
part of the various terms in (42) we obtain, up to the third order, the following
expansion for -y

Ye = ¥
vi = (1/3)(29)*2 cos((me)/2 - 6),
¥ = $*(1+cos((me)/2-6)?), (43)

¥ = (1/5)V2S2(T cos((mp)/2 — 8) + cos((3myp) /2 — 30)+
(1/(4m))e? (3503, — 48UZ.) sin(26), -

and for ¥,
Te = —(my)/2,

7L = ~(1/3)V2my*? cos((myp)/2 - 8)-
2e' YUY sin(mp — 26) + 2eyp U, sin(20),

12 = —(3/4)my? — (1/4)mp? cos(myp — 26)— ‘
(3v2) ' ey®/ 2V, sin((myp)/2 — 30) — (3v2) ey 2 U, sin((3myp)/2 — 30)—
(1/v/2)e' 912U sin((mep)/2 = 8) + (1/V2)ey® 23, sin((mp) /2 + 6),

¥ = —(1/(5v2))mu®/? cos((3mep)/2 ~ 38) — ((Tm)/(5v/2))$*/* cos((mip) /2 — 0)+
(3/8) ey US, sin(m ) — (3/8) € 9 Uy sin(m p — 26)—

2¢' Y U2 sin(mp —20) —4e? U sin(28) + 8ep? U, sin(28).

: (44)



5 Cylindrical Limit Approximation

In this section we apply the Lie transform technique to the cylindrical limit ap-
proximation of the magnetic field, which is the approximation that neglects the
toroidicity of the field. The field becomes therefore a straight helical field. The
calculations will be carried cut in great detail in order to ilhistrate with a simple
example the use of the Lie transform. The calculation scheme described below
will be used, unchanged, when we will take into account, also the toreidicity of
the field. In the case of the cylindrical limit approximation we have

=%, (45)
Al = #II(TRE)?”"“"W: _ ._ - (46)
Af;n - %ae_r,'(mg)e“"f"’".‘?,. ' _ | : '- (47)
AP =0 | . (48)

The Ij(mg) are the modified Bessel functions, that is solutions of the equation
12
Oe(€0eW) = (7 + m* €)W, - (49)
and they admit the series expansion : ,
— (miy2yk=ca e 2k
If(mg) - ( 2 )(U)Zkzo Fé?ﬁmj E (50)
= &L +E0,+& 0+,

and, for I = 2, we have for the first two terms

©_1 my,
@ _ 1 my

For the cylindrical limit case it is convenient to use the formula
v = AT+l —e [ aco, Al
He AR — (m/1)(AT + eAl™)
—c [ de@aay = (i, A, (59)

and observe that 8,47 — (m/l)8,A{™ = 0. Then, expanding the quantities
AT, Ay, Al™ in Taylor series about the point & = 0, taking the real parts and
introducing the variables ¢ = (1/2)£* and # = 4+ {m/{);, we obtain



Tg =1, ) 7% = _(m/2)¢5 . - v .
T =0, = eyy(m? /4)sin(26), (54)
v: = —c(ma/fi)v,b2 sin(26), ‘f = e(m*/12)¢?sin(20).

From the expansion above we see that the lowest order part of the vector po-
tential is . _ o .
P = do = (m/Dwdp. (55)
This expression is already in canonical form, # and p play the role of canonical
conjugate variables and the unperturbed Hamlltoma.n is H = (m/2)y. Actually
it was the introduction of-the variable ¥ = (1/2)¢? that pat the lowest order
potential in canonical form. The lowest order of the vector potential, and the
corresponding Hamiltonian H = (m/2)1,b will be considered the unperturbed
part of the potential.
We now recall, for convenience, the formulas for the generators of the Lie

transform and for the temporal part of the iransformed 1-form. We have (see
eqs. (24) and (25))

gl = (85 +Cai)Jdg, (56)
7 = V0,5, + Ca Vi, . - (57)

where Jo is the inverse of the spatial part of the Lagrange tensor and Ve is
the Poisson vector, defined as V§ = Jywl;, V@ = 1. In our calculations we
have three vanables @, 8 and . The variable ¢ corresponds to the time, and
therefore the temporal part of the 1-form is the one corresponding to. . -Let
us now see how eqs. (56) and (57) appear in our case. First we note that the
zeroth component of the transformed 1-form is equal to the unperturbed one,
t.hat. i8

= gdo - (m/2wde. . (58)

We use this expressmn to calculate thé Lagrange tensor w?, the inverse of its
spatlal part Jg7 and the Poisson vector Vy'. For the Lagrange tensor we obtam

th = &P'}'e - Bg'yw = y . - E (59)
wg¢ = 3‘,73 - 3‘;,73 =m/2, (60)
way = dpyg — Oy7s = —1. _ (61)

The Lagrange tensor is therefore the 3-dimensional matrix -

0 0 my2
0: 0 -1 |,
“m/2 1 0

(13).

and its spatial part is



from which we obtain its inverse, the matrix J&/

(55)

The Poisson vector is now obtained from the formula Vg = J;j wd;. Accordingly
V=0, V{=m/2, - (62)

and we remind the reader that by definition V¥ = 1. Using these results, from
eq. (56) we obtain
g5, = —8pSn — Cpy, (63)

9';'? = aﬂsn + Cnﬂs (64)
and g% = 0 for every n. The expression (57) for I'; is given by

I‘:; = aan + V0¢a¢sn + Vaqaﬁsn + an + V[;J)Cngb + V(fcng, (65)
and substituting the Poisson vector, we obtain
I7 = 8,50 +(m/2)39Sn + Cnyp + (m/2)Chrs. (66)

We see that, for every order n, the basic formulas (63), (64) and (66) suggest
two possible strategies:

1) first we choose the generators. Then (63) and (64) give us the equations
by which we determine the gauge function S. Substituting in (66) we obiain
the transformed 1-form.

2} first we choose the gauge function S, then from (63), (64) and (66) we
obtain the generators and the transformed 1-form.

The two strategies are completely equivalent, and using one or the other is
a matter of choice. We will proceed according to 2), because choosing first the
gauge function allows one to specify more directly the form of the transformed
1-form. A typical choice would be to choose S, such that the equation

< 8,5, + (m/2)8: 5, >=0, (87)

where the brackets denote average, is satisfied. This corresponds to taking I'™
as the average of Cy, + (m/2)C,p over the same variables as (67).

Finally, we stress that (63), (64) and (66) are derived under the require-
ment that only the temporal part of I', that is I'¥, is not zero after the Lie
transformation of coordinates.

We now proceed to the calculation of the first order contribution to T'®. We
start by taking I'}, as the average over # of the quantity V{'Cy, = v} +(m/2)7},
which vanishes, since

Y + (m/2)vs = e(m?/4)ysin 26. (68)



We have now to calculate the first order gauge function and the first order Lie
generators, which will be necessary in order to calculate the second order com-
ponent of the transformed 1-form. To calculate the first order gauge function,
we have to solve the equation

8,51 +(m[2)8s5) = —v,, — (m/2)7g. (69)

A solution of this equation is a gauge function which does not depend on ¢,
that is

5, = (1/4)erpcos 20. (70)

The generators are obtained from eqs. (63) and (64) which explicitly read
g = —8,81 = —(1/4)emcos 26, (71)
gy = 05 + 7} = —(1/2)empsin 26. (72)

At the first order we see therefore that there is no contribution to the unper-
turbed Hamiltonian. Let us proceed to the second order calculations. From
(66) we obtain

T} = 8,52 + (m/2)84Sz + Cap + (m/2)Cao, (73)
and therefore we now have to evaluate the 8 and ¢ components of the quantity
Ca=7" = Liy' +(1/2)L{y". : (74)
We have
L11)e = oYwye
= fon =0, (75)
L")y = glwp, +otw,
= g} By, + 9107,
= —(1/8)*m®y. (76)
Besideé, we have
L = glug”
= g¥[6y(L17%)s = B6(L17")y], ) (77)
(L"), = glugs™ +glwi”
= g1[06(L17")e = Ou(L17")e) ,
+97 Bu(L171%)e — 8o (L17°)y], (78)



and therefore we have to calculate first the components of the operator L;v?:

We obtain
(L17) = g¥wSy = —(1/2)emipsin 26,
-.(LI'YU)!‘D = Q'fw&p = (1/4)émcos 28, |
(L17%)p = g3, + g¥wl, = (1/4)m?egsin20.
Substituting these relations into (77) and (78) we obtain .

(1/2)(Z34%) =0,

(_41/2)(‘Lf'r°)¢ = —(1/16)*m%y.

Using these results we obtain

Cao = 73— (L11")s + (1/2)(Li7%)e = —(1/8)em>p?sin 26,

Yo = (L1 Yo+ (1/20L37°),-
(1/12)em*y?sin 20 4 (1/8)2m3y — (1/16)e*m3y
(1/12)emn*y?sin 26 + (1/16)e?m3y.

Cap

Averaging over 8 the quantity
Cap + (mf2)Cug,
we obtain the sécond order contribution to the transformed 1-form

ry = (1/16)*m%y.

(79)
(80)

(81}

(82)

. (83)

(84)

(&)

(86)

- (81)

Accordingly, the expression of the transformed 1-form up to the second order is

I = ¢df + [—(m/2)¢ + (1/16)e2m3y]dp.

(88)

In this expression the magnetic potential is expressed in canonical form, with
) and @ playing the role of action angle variables. The Hamiltonian up to the

second order is

H= (m/2)¢ - (1/16)52m?¢_

(89)

The equations of the magnetic field lines flow are obtained directly from the

above expression.



6 Helical Toroidal Potential

‘We now proceed to the calculation of the transformed 1-form in the toroidal
case, along the same line followed for the cylindrical limit approximation. The
starting point is again the expansion of the magnetic potential, which we report
for convenience until the first order

¥ = ¥

ho= (/)9 cos((mp)/2- 6), (%)
Yo = —(mi)/2,
Yy = —(1/3)V2my3/2 cos((myp)/2 — 8)— (91)

2¢ YUY sin(mep —28)+2e9p US, sin(20).

We note that the zeroth order term is equal to the zeroth order term of the
cylindrical limit approximation. The ‘zeroth order in the expansion is the un-
perturbed part of the potential
70 = $do - T pdp, (92)

and it is in canonical form, with # and 4 playing the role of action angle variables
and —v, playing the role of the Hamiltonian for the unperturbed system. We
now proceed to the calculations of the transformed 1-form to the various pertur-
bative orders. For the zeroth order we have that the I-form is left unchanged,
that is ' . . _

% =+ = $df - (m/2)ydp. ' (93)
We also note that this is the same expression that we obtained in the cylindrical
limit approximation, therefore the Lagrange tensor w’, the Poisson vector V#
and the tensor Jy/ are the same as for the cylindrical limit approximation of the
field, that is we have :

wg& = 0’ w?pv‘b = m/2: “g‘p = _11 (94)

and .
V=0 V¥=m/2 Vf=1 (95)

This means that egs. (66), (63) and (64) are left unchanged, and therefore for
the first order transformed 1-form we have to calculate the expression

TL =8,5 +(m/2)S: +75+(m/27h. (96)

In the above equation we can choose the gauge function to be zero, so that the
expression for I}, becomes

Ty =% +{m/2)%;, (97)



and, using the Taylor expansion for ¥ we obtain
Tl = —2¢¢ U sin(mep — 20) + eUY,, sin(26). (98)

For the first order generators we have

91 = =845, - Cy, (99)
¥ =351 + Chp-  (100)
Since 51 = 0 and Cy = 0 we obtain
91 =0, (101)
¥ _ 93/2 0.,3/2 _
g7 = 275 /3¢ * cos(mf2p — 8). -(102)

The equation for the second order contribution is
F?o = 9,5, + V[fa.;Sz + %¢8¢Sz + Czw + ng%a + Coy Vod', (103)
which becomes, after substituting the values of the Poisson vector
I‘i = 0y53 + (m/2)83 82 + Cop + (M 2)Coy. (104)

For the second order we need therefore to evaluate the quantity Cp = % —
Liy' + (1/2)L24°. The calculations of the explicit expression of the operators
L’s are straightforward but the algebra is quite lengthy, so we give only the
results

(L1vh)e = —(2'%/3)4%2 cos(m/2p — ) x
(22 my'/2 cos(m/2p — ) + 4€UL, sin(myp — 26) —
4€'U2  sin(29)), (108}
(LivY)e = (4/3)4" cos((m/2)p — 8)?, (106)
ULy = —(2/3)my? cos((m/2) — 0)?, (107)
(1/20(L39%) = (4/3)my? cos((m/2)p — §)*. (108)



The equation for Fi 18

T2 = 8,5; + (m/2)8Sz + Cap + (m/2)Cas, (109)

and, choosing again the second order gauge function to vanish, we obtain

2 = 27208 sin(m/2p — 38) + (1/(3V2))ey® 2 Uy sin(m/2p — 8) +
272320 Y, sin(3/2mep — 30) +
(1/(3V2))e®™ U, sin(m/2¢ + 6). (110)
For the second order generators we obtain from eq. (24)
93 = =0y Sz — Cay, (111)
9% = 9352+ Cas. (112)
Since §3 = 0 and Cyy = 0 we obtain
gz =0, : (113)
g% = (1/6)02(7 + cos(mp — 20)). (114)

To proceed to the calculations of the third order we have to calculate now the
quantity

Cs = LaL1?° = (1/6)L3y° = Loy + (1/2)Liy* — Liy?. (115)

Calculating the above expression and choosing again the gauge function to van-
ish, we find for I'® the following expression

P = (1/24)ey?U3, sin(mep) + (47/24)e' 23U S, sin(myp — 20)—
(47/28)e9?US , sin(20) — 2€'$2U2, sin(mep — 20)+ (116)
ew2UL . sin(20).

Up to the third order the Hamiltonian is given by

H=-Ty,=-T)-T,~T%-T3, (117)
For convenience we collect below the various contributions.
Hy = "‘?"’ (118)
Hi = 2d9pUjysin(mp—260)—2ey U, sin(20), (119)
ep? UY, sin(B2 - 36) ¢y} U, sin(2ZL — 39)
Hy = -— - -
V2 V2



€3 U sin(22 —0)  epd UL, sin(B2 +96)
3v2 3v2 ’
— (ep?UJ, sin(me)) 4T 2 U, sin(my — 26)
- +
24 24
4Teyp? U3, sin(26)
24

(120)

Hs =

2¢ Y2 UZ sin(mep—260) + - 2e9? U2, sin(28))

7 Integrable Model

In this section we discuss a different Hamiltonian for the toroidal helical mag-
netic field. We observe that the perturbation theory based on the Lie transform
allows a certain freedom of choice in selecting the transformed variables. In fact
it can be noticed from eq. (66) that choosing a different gauge function would
lead to different Hamiltonians. However there is no contradiction in this fact,
since the different Hamiltonians are expressed in terms of different variables.
In the same sense, when we perform a canonical transformation we are free to
select arbitrarily the generating function, ? leading to different Hamiltonians ex-
pressed in terms of different canonical variables. For the same physical system,
depending on the choice of the canonical variables, we can have completely dif-
ferent Hamiltonians, one being time-dependent and one being time-independent,
or one being the energy of the system and one being not, and so on. . All these
different Hamiltonians describe the same physical system.

Let us consider now eq. (66) for n = 1 and let us choose the gauge function
such that the equation

(m/2)8:5, = —2¢£U3ms_in 20, (122)
is satisfied. We then obtain )
5 = U-Em%cos 2'9,. (123)

and, consequently, introducing the variable n = 6 — (r/2)p, we obtain
I, = _QE'Uggipsin 2. {124)

For the first order generators we obtain

2e
¢ = —Ugm;-n—cos%, (125)

derp

9f = ~Uf—sin 26 + (21;;)3/2%. ' (126)

2The choice of the gauge function is, however, subject to the restriction that it must be
bounded in the variable .



For the second order we need therefore to evaluate the quantity C = ¥%—
Lyt + (1/2)L1°. After some lengthy algebra we arrive at the result ®

41pe? 2
Ut (127)

r2 = €'(29)32(1/6)UZ,[—2sin 2ncos 7 — cos 2nsin 1) +

Therefore, up to the second order, we have the following e_xpre'ssi'on for the
Hamiltonian '

~H=T,=T%+T, +I2, - (128)
that is

H = +(m/2)y — €U 2sin2y I
—&(29)3/2(1/8)U %[ 2sin 2ncos i — cos 2rsin')

4‘¢!£2 2
— Ul (129)

It can be seen that this Hamiltonian is time-independent, and therefore is
integrable and cannot exhibit chaotic behavior. For another discussion on this
problem, see ref. [10], pag. 130

8 Conclusion

We have derived in this section an expression for the Hamiltonian for the toroidal
helical magnetic field lines system up to the second perturbative order for the
cylindrical limit approximation of the field and up to the third perturbative order
in the toroidal case. Going to higher orders will be a straightforward application
of the same procedure used in this work, and the only difficulty to be expected is
algebraic complication. The particular Hamiltonian we have derived is not the
only possible choice, since we can manipulate the Lie transformation in order
to get different Hamiltonians, and we have discussed this point in section 7,
where a different Hamiltonian has been given up to the second order. Different
expressions for the Hamiltonian could be of interest when analyzing particular
problems, or for the application of symplectic integration schemes to the solution
of Hamilton’s equations.
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Quasi-Periodic Perturbation for the Alfvén Wave

Y. Yamakoshi, K.Muto and Z.Yoshida
Department of Quantum Engineering and Systems Science,
Faculty of Engineering, The University of Tokyo
Hongo, Tokyo 113, Japan

~ Abstract
Two-dimensional periodic modulation of the ambient magnetic field causes field lines to be chaotic and yields
a quasi-periodic potential for the Alfvén wave. The wave equation derived here is similar to the one-dimensional
Schrdinger equation in a quasi-crystal. For the quasi-periodic potential, the Alfvén continuum changes into
point spectra and solutions of the wave equation are localized in a finite region,

1 . Analogy with Solid-State Physics

Before discussing the localization of Alfvén waves, we make comments on the similarity between the spectrum of
Alfvén waves in a magnetized plasma and that of valence electrons in a crystal lattice [1]. This similarity is very
suggestive to understand the spectral study of Alfvén waves in nonuniform magnetic field.
The properties of solid, such as the state of electrons, are characterized by the potential in the Schrédinger
equation. In the free-electron model, the one-dimensional Schrédinger equation is written by
: n
H'¢=—g—m%¢=-€¢- (1)

When the wave function ¢ satisfies the periodic boundary condition ¥/(z) = ¢(x + L), ¢ takes the form
1 : .
(1) = —=exp(ikx), 2
Pr(T) 7L plikz) 2)

where k = k, = 2rn/L (n = 0,%1,+2,---). The energy spectrum is E, =h?k?/2m for the wavenumber
k. Though the wavenumber and the energy spectrum are discrete numbers because n is any integer, they can be
treated as continuous numbers for large L. Thus the spectrum in free-electron model has arbitrary energy level.
The Schrédinger equation for free electron model corresponds to the eigenvalue problem of the operator — V2,
Electrons in a crystal lattice, however, cannot have arbitrary energy, so the gaps yield between continuous
spectra. The reason for this phenomenon originates from Bragg reflection of electron wave by the crystal lattice.
When the potential V(x) is periodic, for example, V (x) = € cos(2mz/a), the solution of the Schridinger equation

B &
T 2mdx?

+ecos(2nzfa)| ¢ = By, 3

results in Mathieu function, which has been extensively studied. If we assume the small perturbation, i.e., ¢ < 1,
wave functions are approximated by those of free-electron model. However, when the wavenumber k satisfies the
Bragg condition & = k, = nn/a, the degeneracy in the unperturbed state is removed and two standing waves
W ~ e'fn® & e~ gre produced for each n. The energy gap between those states are calculated by

AE ~ (¢ V(@) ~ e €]

Next we discuss the similarity between Alfvén waves in magnetized plasma and valence electrons in a crystal
lattice mentioned above. Alfvén waves in nonuniform plasma have continuous spectra with forbidden bands, as



well as the electron waves in a periodic potential have. The formal analogy is shown below {1]; the curvature of
the field lines corresponds to the potential of crystal lattice, the poloidal angle to the length between ions in the
lattice, the Alfvén wave function to the electron wave function, and the spectrum of Alfvén wave to the energy of
electrons.

There is another remarkable analogy between them; either Alfvén waves or electron waves are localized in
disordered media, which is known as Anderson localization [2]. While in a periodic potential the wave function
of electrons spreads over the whole region, in a random potential they does not extend but is localized in a finite
area and point spectra for it appear in the forbidden band. The study on localization in random media originates in
the study on materials with random potential, such as amorphous or crystal with impurities. Recently, it has been
applied to other wave equations, such as light and Alfvén wave propagation or heat transport.

The simplest model of localization is one-dimensional Schridinger equation with quasi-periodic potential.
The property of this equation is fully investigated (3, 4]. The wave equation we will consider for Alfvén wave is
given by ‘

2 ' .
~ (Bx)- VY4 = 75y = By, )
A
where B{x) is a normalized magnetic field, w is a frequency and V4 is Alfvén speed. Though the Alfvén wave

equation is formally different from the Schrodinger equation

hzvz Vv Yp=FK ' 6
V' +V@)| =By, 6)

one can easily find that the solution of equation (5) is strongly depends on the magnetic field B{z).

In this paper we assume that the magnetic field is the ABC flow [5] which can cause chaos. This chaotic
magnetic field corresponds to a higher dimensional periodic perturbation, which is reduced to a quasi-periodic po-
tential for Alfvén wave. The Alfvén wave equation derived here resembles one-dimenstonal Schridinger equation
with quasi-periodic potential. Under the condition that the modulation is relatively large, localized eigen modes
appear and the Alfvén continuum changes into point spectra.

2 MHD Spectrum

In this section we derive linearized ideal MHD equations for the nonuniform plasma [6, 7], and we discuss the
Alfvén wave equation. The linearized MHD equation is very important in the field not only of spectral analysis
but of MHD equilibrium or stability.

First we consider the MHD equilibrium. All of physical quantities are divided into two parts: Q(z,t) =
Qo(x) + Q1 (z, t). Substituting these quantities to the set of MHD equations, we find the equilibrium condition is
given by

JQXBU=VPU, VXB(_):JU,V-BO:O, ‘Uo=0. (7)

Next we introduce a vector £ which is defined by v, = 2§/t and derivate the linearized equation for £, The

vector £ indicates the displacement from the plasma equilibrium. The other perturbed quantities are represented
by £ and equilibrium components, i.e.,

n = =& - Vpo— eV &, 8)

B, = V x(£x By), 9)

Ji, = iv x V x (¢ x By). (10)
o

Substituting these quantities into the linearized momentum equation

2

pogs = Jox Br + 7, x By - Vp, (1)



then we obtain second order derivative equation of £

r2e '
poa_tf = AL, ap

where X is a linear operator defined by
K€ = ﬂi(v x Bo) x (V x (¢ x Bg))
0
1 .
+;L—0(V X (V x (§ x Bo))) x Bo+ V(£ -Vpo+ypV - &) (13)

Solving the initial value problem of equation (12) is equivalent to solving the eigenvalue problem of the
operator K. and the latter is often efficient for spectral analysis. Assuming the dependence of perturbed quantities
Q1 (z, t) = Q1 {x)exp(—iwt), equation (12} is then written by .

— WP pof = KE. (14)

This eigenvalue problem is generalized by spectral analysis (see e.g. (6]). The property of a linear operator A4 is
characterized by its resolvent operator Ry = (AJ — A)~!, where ) is any complex number and I is the identity.
The set of complex A such that R, exists and that the domain of R}, is dense and continuous, corresponds to the
resolvent set p(.A). Spectrum o(A) is a complementary set of 5(A), ie., o(4) = C \p(.4). Furthermore, a(A) is
divided into point spectrum ¢ p(A), continuous spectrum o (4) and residual spectrum ar(A). The definitions
of these three spectra are as follows; 0 p(A) = {A\| R does not exist }, o (A) = { A| Ry exists and the domain of
Ry is dense but is not continuous } and o z(A) = {A| Ry exists and the domain of R is not dense }. In order to
advance more, one has to consider special MHD equilibria {8].
Equation (12) is very complicated but under the condition V - £ = 0, (12) is reduced to

1 5 By- B,
—— e . — -
PogR ,uu(BO V)Y€ -V (Pl e ) (15)

Operating with Vi - ¥ x on both side of equation (15), we obtain Alfvén wave equation

gy 1
ﬂo% = #—O(Bu - W), (16)

where ¢ = V-V x £, Under the condition ¥-£ = 0, there are two modes that can propagate in the inhomogeneous
plasma. One is the component of the vorticity that propagate one dimensionally aleng the field lines and the other
is coupled to the velocity component along the direction in which the magnetic field varies. The latter mode is
obtained by solving more complicated three-dimensional equation [9].

3 ABC Flow

As mentioned in the previous section, the structure of magnetic field is related to the wave that propagates along
field lines one-dimensionally. In this section we discuss magnetic chaos and take the ABC flow as an example of
it.

The magnetic field line, the stream line of magnetic field, is not compressible because ¥V - B = 0. This
suggests that the equation of magnetic field line can be written by the Hamiltonian form. Generally solenoidal
vector fields are represented by stream functions (Clebsch representation) and this representation is very useful for
the Hamiltonian form.

The Beltrami function, the eigen function of curl operator, is often investigated for the study of chaotic
magnetic field lines. Beltrami functions satisfy

V x u=\u. an



where A is a constant parameter. In the fluid dynamics, this equation (17) means that the vorticity parallels to
the flow. In plasma physics, the magnetic field that satisfies equation (17) is called force-free field because the
vorticity of the magnetic field is proportional to the current density, thus the force added into the plasma is zero.
The eigenvalue problem of curl operator is discussed minutely in [10,11].

The ABC flow is one of the Beltrami functions and is a very simple vector function composed only of trigono-
metric functions; -

B(x.y,2)= BsinAz + Acos Az
C'sin Ay + Beos Az

Asin Az +C cos Ay
) , (18)
where 4, B, C and X are real constants. One finds that this vector function is a solution of equation (17) and that
A is an eigenvalue of the operator V x. Though whether the field without symmetry has an equilibrium or not has
not been proven, the ABC flow is an exact equilibrium field.
The ABC flow is also described by the Hamiltonian form. Clebsch representation on B is

B=VyxVy+V¥ x Vz, ' (19)
where
Y = ANBsinAz+AcosAz)+ Casin Ay _ Qo)
¥ =

A~N(C sin Ay + B cos Ax) — Az cos Ay. 2n

The equation of magnetic field line is then written by

dx _ ¥
dy 3_‘*!"
d:

When none of 4, B and C is zero, field lines no longer lie on the magnetic surfaces but move in the three-
dimensional space because ¥ depends not only on angle or action variables but on time variable =.

Though ‘¥ cannot be explicitly written as a function of \, y and =, we can solve the equation of field lines
dz/ds = B(x), where & = (z,¥, z). Figures 1, 2 and 3 show the Poincaré plots of the ABC flow. There exist
magnetic surfaces in the whole area when at least one coordinate is neglected. On the other hand, magnetic surfaces
are destroyed when there are no negligible coordinates.

4 1D Alfvén Wave Equation

In this section we show the higher dimensional modulation is reduced to a quasi-periodic potential for Alfvén
wave and derivate one-dimensional wave equatton along magnetic field lines. For this purpose we assume that
the equilibrium field is divided into two parts: B(x) = (0, Bsin Az, B cos Ax) and B(y, z) = (4sin Az +
C cos Ay, A cos Az, Csin Ay) and that the perturbed term is sufficiently small: | A|, |C'| <« |B|.

First we consider the unperturbed magnetic field B (). In this case, constant .« gives magnetic surfaces
and the wave propagating on each surface is characterized by mode number m and n, where wave function ¥/(y, =)
is assumed to be expanded as the form ¢'(y, ) = me (e €Xp(EAMY + iAnz) for constant . Substituting the

unperturbed magnetic field B%(z) into (16), we obtain partial differential equation

82 3 . a a 2
aglli =V (sm A:va’- +Cos /\'ca) i, (23)

where Vs = B/ /pofio is Alfvén velocity. Since x can be treated as a parameter, independent variables y, = of
equation (23) are reduced to s that satisfies Vs = B©® / |B(°)|. Transforming the Cartesian coordinates (y, z} into



(s, Az), i.e., y = scos Az, 2 = ssin Az, we obtain

& a?
szt =Vaza?: ' | (24)
Assuming the wave function 4" with an exponential time dependence exp(—iwt}, (24) results in the eigenvalue
problemn of Laplacian: )
d ,
- L w=Ew, (25)
where E = w?/V3.

When the perturbed term for B® is considered, the wave function is no longer characterized by mode num-
ber. In this case, however, there still exist local solutions along single field lines [12). The higher dimensional
modulation B whose amplitudes are sufficiently small is reduced to a quasi-periodic potential for Alfvén wave
because of the propenty of Alfvén wave to propagate one-dimensionally [13]. If the wavelength ~ 1/k is much
smaller than the characteristic length of media ~ 1/, then Alfvén wave is decoupled from other modes and we

obtain -
2

] ' ‘ _
- Fy= -—+(a151nA +azcos,\y)£-+alcos)\~ +agsm)\_,:i ¥+ O(A), (26)

dy
where a; = A/B and a; = C/B. Assuming that 9;% = 0 at 2z = = for simplicity, the wave propagates on a
magnetic surface of B. Let the angle between the wave vector k and B be tan~! », where » = k /k;. The
value x is relatively large because the wave has a shorter wavelength across field lines than along them. For the
fixed &, 1 is written as (s} and we get one-dimensional Alfvén wave equation {13] '

- —(1 + V(S))2 Se=EY, C@En
where V (s) is a potential for the Alfvén wave generated by the perturbed term. The potential V (s) is of the form
V (s} = v1 cos(Apy8) + vz sin{Auss + fg), , _ (28)

where v, .= a,(5in Azo + & cos Axg), 112 = aa(cos Aza — & 8in Axg), ;£ = €08 Azg, 2 = §in Azg and xp and 90 are
fixed numbers.

When either A or C is zero,or the ratio ¢ = i3/, is a rational number, ¥ (s) 15 a penodlc function. On the -
other hand, when neither A nor C is zero and o is irrational, (s} is a quasi-periodic potential, and it is expected
that the behavior of solutions for the latter potential is completely different from that for former one. The waveform
of potential V(s) with irrational o(= (1 + v/5)/2) is shown in Fig.4.

a

5 Results

In this section we calculate the one-dimensional Alfén wave equation derived in the previous section numerically
and show that the localized modes and point spectra appear when the modulation is two-dimensional, i.e., the
magnetic field lines are chaotic.

Spectral study on Schridinger operators with quasi-periodic potential has been investigated thcoretwally [3]
or numerically [4,12]. According to those papers, when the eigen value parameter E is relatively small and the
amplitude of the potential is greater than a critical value, localized solution of Schridinger equation can exist
which decay to zero exponentially at both side of the domain. Similar results are shown for the one-dimensional
Alfén wave operator —d/ds(1 + V(s))*d/ds in the following.

We treat the eigenvalue problem (27) both as an initial value problem and as a boundary value problem.
These two methods compensate each other.

The eigenvalue problem (27) is written in a recursive form as

d 1,[1 _ 0 1 d: 0
ds | . | E 2V (s) . 29
¥ TO+VE@)2E 1+V(s) ¥



where f indicates the derivative of function f. The equation (29) can be solved if initial value 4(0) = (¢{0), #(0))
is given. Here eigenvalue parameter E is not an eigen value but takes an arbitrary value. In order to solve the
spectra of equation (27), a set of one order differential equations (29) must be investigated for all £/, which requires
iterative calculations. When the eigenvalue E belongs to point spectra, the corresponding solution 4 decays to zero
at both endpoints. However, it may diverges at large s because of the slight error of E. These defects are overcome
by treating equation (27) as a boundary value problem. As for the instability in the initial value problem, shooting
is also useful as discussed later. The solution by shooting is a kind of that of initial value problem. However,
there are advantages in the initial value problem; we can easily find whether the eigenvalue parameter E belongs
to continuous spectra or to point spectra.

Since equation (29) is a linear system, Lyapunov exponents of this system are easily calculated by multiplying
discrete matrices in (29). Generally, property of a system described as ordinary differential equations like (29)
is characterized by their Lyapunov exponents. The numerical methods for calculating Lyapunov expanents are
summarized in [14].

Here, however, we do not solve equation (29) directly but introduce the phase angle ¢(s)(= tan ™" VEY(s) / w(s))
so that the numerical instability could be avoided. The evolution of ¢(s) is then described as a nonlinear differential
equation

% = VEcos? ¢ + VE( + V(s)sint ¢, (30)

where we neglect the first-order derivative of V'(s) in equation {(29). From the evolution of #(s) we can calculate
winding number [4, 12, 15] defined by
¢(s)

The winding number corresponds to the final vatue of angular velocity in the phase space and is a nondecreasing
contirious function of E with plateaus where w(E) has a constant value (mp; +ng2)/2, (m,n=0+£1,£2,--4).
According to theoretical studies, gaps between spectra appear in the constant w(E). In other words, the resolvent
of equation (27) or (29) consists of such values E as are in the plateaus. Thus the winding number w{FE’) is a
function that classifies the domain of resolvent operator into two groups—resolvent and spectrum.

Furthermore, spectrum is divided into three groups—peint spectrum, continucus spectrum and residual spec-
trum. We are now considering only a self-adjoint operator, so the residual spectrum does not exist. Lyapunov ex-
ponent of wave function or of phase angle is a strong tool for distinguishing continuous spectra from point specira.
The linearized equation of (30) is given by

‘?—j = VEsin2¢ [(1 + V(s)™% — 116, (32)

where &¢(s) is a small perturbation of ¢(s). Lyapunov exponent, defined as

AlE) = lim mw(ﬁlw(o))’

1
—

(33)

is obtained without reorthonormalization since (32) is one-dimensional equation. When A4(E) = 0, the wave func-
tion #(s) does neither diverge nor decay to zero. In this case, corresponding eigenfunction belongs to continuous
spectrum. On the other hand, when A4(E) < 0, the solution of wave equation is either unstable or localized. More
precisely, unstable sclution and localized solution belong to resolvent and to point specirum, respectively. Thus
Lyapunov exponent A, (E) distinguishes continuous spectrum from others. Calculating both w(E) and A4 (E), we
find which group the eigenvalue parameter F consists in. The relation between them is summarized in Table 1.

The eigenfunction solved directly from equation (29} is numerically unstable. This difficulty can be avoided
by using the method called shooting. The way of calculation by shooting is following; after imposing initial
conditions on both end points, the eigenvalue parameter £ and its eigenfunction are determined so that the loga-
rithmic derivations take the same value at the center of the domain. Whether E is spectrum or not depends on a
discriminant defined as

F(E)= lxlb+'¢}— - J'—'ﬁbﬂ . (34)



where 4, (¢»_) indicates a solution solved toward plus (minus} direction. The distribution of spectra is found out
as an assemblage of a point over which the sign of the discriminant F(E) changes. More accurate spectra and
corresponding eigenfunctions, however, should be determined from so called regula falsi method.

Next we treat the equation (27) as a boundary value problem. Because localized solutions require the bound-
ary conditions lim,—_ o ¥'(a) = 0, limg_ o, t7(d) = 0, it is proper to give such a condition from the beginning.
The eigenvalue problem of differential operator in (27) results in an eigenvalue problem of matrix. Under given
boundary conditions the discrete equation for (27) takes the form

o M 0 () i
B o2 m a2 Y
=F , (35)
Bn-2 anN-1 TN-1 Y- P -1
0 Bn-1  an YN U
where diagonal and off—diagonal elements n; and 3; = +; are given by
(1+V_,-_1)2 (1+V,j+a)2 _ .
aj = hz 2 + hz 2 1 ]=1721"'1Nw (36)
(+V,?
ﬁj"=7j=_ h? . ]=1a21"'1N_11 (37)

and h = (b — @)/(N + 1). This formula requires the assumption that the step width % is much smaller than the
characteristic length of the potential V'(s} and that |b — «| is sufficiently large. The matrix of the eigenvalue
problem (35) is symmetric tridiagonal one, hence the procedure of calculation from it is remarkably easier than
that for general matrices. The characteristic equation of matrix A:

det(AT — 4) =0, (38)

provides eigenvalues. Simple regula falsi method is used for solving the characteristic equation in [4}. Here,
however, we adopt another method based on Sturm’s theorem {16]. Corresponding eigenvectors are computed by
inverse iteration method [186].

The essence of calculation from boundary value problem is that we find the value of E instead of using F as
a parameter, therefore it does not take much time to compute the spectra from boundary value problem compared
with initial value problem.

We show an overview of the continuous spectrum of equation (27) in Fig.5. The continuous spectrum, which
corresponds to Ag(E) = 0, is plotted for various £ and vy, with ¢ and v, fixed. We find that the band structure
varies as the amplitude v, increases; the region where continuocus spectra exist is separated or even disappears for
large v1. In the case of a periodic potential, E that belongs to o still exists for large amplitudes, even though the
region of such E becomes narrow. On the other hand, a quasi-pericdic potential transforms the continuum to point
spectra as we will see in the following. In Fig.6, Lyapunov exponent A4{E}, winding number w(E'), and spectra
from several methods are plotted for vy = v, =04 and o = (1 + \/5)/2. As pointed out in the above, Az(E) =0
corresponds to o¢ and dw(E)/dE = 0to p. For small or large E, the complementary set of {E|A,(E) = 0}
is equal to the set of { E|dw(E)/dE = 0}. In the region of moderate E, however, there is such an eigenvalue.
parameter E that satisfies Ay (E)} < 0 and dw(E)/dE = 0, which suggests the existence of point spectra. Here we
choose the wavenumber of the magnetic field A as A = 2. Though E(~ kﬁ) is smaller than A? in the present case,
the condition |k/A| > 1 is still valid because » = & /&y is sufficiently large. Eigenfunctions are found from the
boundary value problem and shooting method. Figure 7 shows the eigenfunctions from boundary value problem
and the quasi-periodic potential for the waves. The eigenfunctions that belongs to o are extended solutions.
On the other hand, point spectra yield localized solutions that decay into zero at both endpoints. In addition to
them, unstable solutions that grow exponentially at the endpoints were found because numerical errors allow their
spectra to appear in the gap.
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Table 1: The classification of E. p,l o¢ and o p correspond to the resolvent set, contin-
uous spectrum and point spectrum, respectively,

[ETdw(E)]dE =0 | {E|dw(E)/dE 707
=p =acUop
{E|A¢(E)=0} ocNp oc N{ec Uop)
{E|A4(E) # 0} (pUep)np (pUap)N(ocUap)
=pUap =p =0p
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Figure 2: Poincaré plot of ABC flow for B=1,C =0.3and A =0.



Figure 3: Poincaré plot of ABC flow for B=1,C =03 and A =0.2.
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1/f** a Noise from Neuron. Magnetron and Galaxy
N.Tanizuka, T.0kada., MH.Takano
Integrated Arts & Sciences. University of Osaka Prefecture

Abstract

Noise in laboratory plasmas, biological plasmas and cosmic plasmas is a chaos,
which evolves to a cosmos in the process of self-organization.
£xperimental and observational discussions of these noise are given and
the question which algorithm is included in the noise system is still an open
problem.
Keywords:neural networks,magnetron noise.galactic noise,self-organization,

algorithm.
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1. Introduction

The reversed-field pinch (RFP)[1,2] is one of the toroial magnetic confinement systems,
in which the equilibrium is achieved by a balance between the stresses in the poloidal
(Bp) and toroidal { By) magneticfields. It leads to the relations By/Bg < 1, and ¢ << 1,
where g is the safety factor. Linear stability against ideal kink modes is provided by
both high magnetic shear and a conducting outer boundary, the former resulting in the
reversed toroidal field in the outer edge of the plasma. The RFP configuration is set
up spontaneously (MHD relaxation)(3] and can be sustained against resistive diffusion
as long as the toroidal plasma current is induced (RFP dynamo). The spontaneous
formation and subsequent sustainment of the configuration is an example of the self-
organization{4] in high tempareture plasmas.

In the RFP configuration, m=1 kink modes play important roles in the dynamics
of the self-organization, because singular surfaces of the m=1 modes are closely spaced,
unlike in tokamaks. As a result, overlapping of magnetic islands for the dominant modes
occurs at an early stage of their growth, allowing turbulent nature of magnetic fluctua-
tions.

Experimental analyses of edge magnetic fluctuations have revealed rather complicated
pictures of the mode coupling process during the self-organization. In the STP-3M, at
the event of a discrete dynamo, growth of m=0 modes is preceeded by the growth and
subsequent decay of m=1 modes, giving rise to the picture that m=0 modes originate
from the coupling of two m=1 (positive and negative) modes.[5] More recently, they
have found the “continuous dynamo”, characterized by a quiet, axisymmetric increase
of a toroidal flux, which might result from single helicity mode coupling.[6] In the MST
RFP, measured fluctuations are characterized by broadband frequency spectra, most of
the power of which is concentrated in a few.long wavelength internal resonant tearing



modes.[7] It is also shown that the mechanism behind these tearing mode turbulence is
a three wave coupling process, where two m=1 modes couple to a m=2 modes.[8]

In view of these results summarized above, it is natural to raise a question whether
the nature of the turbulent edge magnetic fluctuations in RFP is probabilistic or de-
terministic, i.e., has the turbulence infinite number of degrees of freedom or can it be
modelled by nonlinear equations woth only a few variables. If in the latter case, the
model of the dynamical system would be helpful in understanding the self-organization
mechanism in RFP.

In RFP experiments, low dimensional chaos was first reported in broadband magnetic
fluctuations in the HBTX-1A.{9] Following this attempt, similar possibility was examined
in the MST RFP. In the MST, however, low dimensional chaos could not be identified;
they have ascribed it to the severe sensitivity of the analysis techniques to the presence
of niose and stationarity of the RFP discharges.[10]

In what follows, preliminary results will be reported from our attempt to search for
chaotic attractor in edge magnetic fluctuations in a small- (STE-2) and medium- (TPE-
1RM20) sized reversed field pinches.

2. Analysis of STE-2 RFP data

Edge toroidal field fluctuation signals are analyzed in the STE-2 RFP. Details of the
machine are described in ref.11. It uses a 2 mm thick non-bellows SUS chamber whose
major radius R is 40 cm and minor radius a is 10 cm. Time traces for a typical discharge
are shown in Fig.1.

The magnetic fluctuations are measured with one of the magnetic probes set just
inside the chamber. Time series of the signals from 0.2 to 0.6 ms, in the quasi-steady state
of a discharge, are recorded by a transient recorder as 4096 words of 10 bit resolution with
a sampling time of 0.1 us. The fractal dimensionality analisis has been performed using
the algorithm by Grassberger and Procaccia.[12] The sequence of signals are embedded
in the p-dimensional delayed phase space in which a set of vectors X is constructed,

X = (x{ti + 7), x(t; + 27), ..., x(t + (p=17),(=1,...,N),

where z(t;) are recorded signals and N is the total number. 7 is the delay time, which
1s usually chosen to be a fraction of the auotcorrelation time of the fluctuations. For
each value of p, the following correlation integral, which represents the probability that
any two points are within a given distance r of each other in the p-dimensional delayed
phase space, is calculated,

N
) 1
C(r) = Jim 3 =70(1%: - Xyl — v),
i#j

where 8 is the Heaviside step function and |X; — X;| is the Euclidian norm of the vector
Xi — X;. The correlation integral, in the logarithmic sence, is proportional to distance
r, and the correlation dimension is the proprotionality constant (the slope in log C' v.s.



logr plot). Existence of a strange attractor is indicated by saturation of the slope
over a significant range of distance r, when increasing the embedding dimension. The
correlation dimension is the saturated value of the slope, giving the lower bound of the
Housdorff dimension of the fractal volume of the attractor.

The results are shown in Fig.2. Figure 2(a) shows a time trajectory of the signals
in the 2-dimensional delayed phase space. The correlation integral v.s. distance 18
plotted (both in logarithm) in Fig.2(b) for the values of the embedding dimension p =
1 — 9. The values of the local slope are calculated from this figure, and is shown in
Fig.2(c). Saturation of the slope is observed in a narrow range of distance, and the
saturated correlation dimension is 2.5-3. A further examination is under way to test if the
saturation is-true, not spurious, by analyzing surrogate data constructed by randomizing
the phase of the signals.

For comparison, we have examined how sensitive the analysis method is to noise and
coherent oscillations which may be inevitably superposed in real experimental signals.
In the first examination, we construct a time sequence of signals by adding white noise
to those calculated from the Lorenz model for Benard convection. It has been found
that, when amplitude of the noise is Imaximum amplitude of the chaotic component,
the correlation dimension can be estimated, in spite of dull saturation of the slope.
When amplitude is increased up to 5observed. The results provide us with an idea of
the minimum dynamic range required in recording signals. »

In the second examination, we construct a time sequence of signals by adding sinu-
soidally oscillating components to those from the Lorenz model. In this case, fractal
volume of the attractor distributes around a limit cycle of the coherent component, and
fractal dimension of the whole trajecoty may be distorted. The effect of low {requency
oscillation is shown in Fig.3. In this case, amplitude of the coherent component is the
same as the chaotic component at the same frequency. Figure 3(a) gives the time trajec-
tory in the delayed phase space, and local slope v.s. distance (in logarithm) is shown in
Fig.3(b). It shows that original correlation in the chaotic component is distorted by the
coherent oscillation over a significant range of distance; however, the original correlation
dimension of the Lorenz attractor, slightly smaller than 2, appears to be preserved In
the narrow range of 7. This situation is similar to the experimental results shown in
Fig.2. High frequency oscillation has been shown to be more harmful in estimating the
correlation dimension.

On the basis of the results described above, we interpret the edge fluctuations in the
STE-2 RFP as a mixture of the chaotic component with the correlation dimension 2.5-3
and low frequency coherent components. Some filtering techniques might be helpful in
separating these components, leading to a more accurate estimate.

3. Analysis of TPE-1RM20 data
In the TPE-1RM?20 device, edge magnetic fluctuations exhibit a variety of behaviors

according to the value of the pinch parameter ©. In the low-© regime where © is in the
range 1.4-1.6, edge magnetic fluctuations are dominated by m=1/n=7-9 modes, resonant



near the plasma center, with fluctuation level of 1.2 Magnetic islands associated with
these modes are observed to rotate rigidly with the plasma in the opposite direction
to the current. On the contrary, in high-© regime where © > 1.6, various types of
discrete events are observed in coincidence with a sawtooth crash in soft-X ray (SXR)
signal. Rotating modes are decelerated and subsequently locked to the wall prior to SXR
crash, an abrupt change in the mode spectra then follows. Sometimes a single helicity
state persists for a significant duration after the mode locking to the wall. Detailed
analyses of the magnetic fluctuations are described in ref.13. In all these cases, the RFP
configuration is sustained in the similar way; a quention is raised how the degrees of
freedom in the mechanism of these various types of mode coupling processes depend on
the discharge parameter ©.

In the TPE-1RM20 RFP, radial field fluctuations are measured with a pickup coil
inserted inside the bellows liner right at the plasma edge. Time traces for a typical
low-@ discharge are shown in Fig.4. Time sequence of the signals is recorded with a
12 bit resolution at sampling frequency of 500 kHz. The signals from 3 ms to 9 ms are
analyzed using the same algorithm as mentioned above. It should be noted that, owing
to the capability of an amplifier, dynamic range of the signals recorded in this period is
rather small (about 8 bit from peak to peak) in spite of the 12 bit resolution of an A/D
converter.

Figure 5 gives the results for a discharge with the value of © 1.45 (# 66753). Time
trajectory in the delayed phase space is shown in Fig.5(a), a plot for the correlation
integral v.s. distance in Fig.5(b), and a plot for the local slope v.s. distance in Fig.5(c).
The correlation dimension does not saturate up to the embedding dimension of 9.

Results in a high-© discharge (©=1.68 (# 66512)) are shown in Fig.6(a), (b) and (c).
In contrast to Fig.5, the correlation dimension saturates in a narrow range of distance,
which is similar to the results in Fig.2. The value of the correlation dimension is around
3, shghtly larger than in the STE-2 case.

In view of these results, it has been concluded that we have identified the difference
in the correlation dimension depending on the values of the pinch parameter ©. A mod-
elling of the dynamical system([14] is essential for further understandmg of the nature of
edge the fluctuations in RFP.

4. Summary

Preliminary results are reported from an attempt to examine the possibility that low
dimensional chaos governs the dynamics in RFP discharges. Magnetic fluctuation signals
are analyzed using the algorithm by Grassberger and Procacia to estimate the correlation
dimension which is a measure of the fractal volume of the attractor in the phase space.

In the STE-2 RFP, the correlation dimension saturates only in a narrow range of
distance in the phase space, giving rise to the correlation dimension 2.5-3. This may
be an indication of alow-dimansional chaotic dynamics. The range for saturation of
the correlation dimension is shown to be influenced by a coherent component which is
possibly superposed in the experimental data. Some filtering techniques might be helpful
for a more accurate estimate of the correlation dimension.

—85—



In the TPE-1RM20, the correlation dimension depends on the values of the pinch
parameter ©. In low-© regime, no evidence is obtained of low dimensional chaos. On the
contrary, in high-© regime, the correlation dimension is estimated to be about 3, which
might be influenced by coherent components. Increase in the dynamic range of signals
recorded, now under way, may be helpful for more accurate estimate of the correlation
dimension.
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Nonlinear Dynamic Behavior of An Emissive Divertor Plate
and Divertor Piasma

OHNO Nori'yasu*,lYE Minyou, MASUZAKI Suguru, SHIRAEISHI Katsuhiko
TAKAMURA Shuichi*

Department of Electrical Engineening,
*Department of Energy Engineering and Science
School of Engineering, Nagoya University

ABSTRACT--When the divertor target plate is heated by a plasma flow to a temperature
sufficient for thermoelectron emission, the sheath voltage decreases abruptly so that the impurity
generation through sputterring can be expected to be extremely suppressed. In this paper, anu-
merical analysis was done for a nonlinear system composed of the divertor target plate with ther-
moelectron emission and the high heat flux plasma including the power balance of electrons in the
entire system. The relations among sheath voltage, plate temperature and plasma parameters are
obtained. A preliminary experiment for demonstrating numerical results was carried out on
NAGDIS-L |

1. Introduction

As is well known, it is quite important to stﬁdy the interactions between the divertor plasma
with very high heat flux and the divertor target materials in order to explore innovative divertor
concepts which accomodate the heat and particle exhaust encountered in thermonuclear reactors.
Impurity control from the divertor target plate is a crucial point for an advanced divertor, The
sheath voltage at the plasma -- material interface is a key parameter determining the impurity
production through a sputtering.

On the divertor target plate sometimes a very high plasma heat flow increases the plate tem-
perature. Recently, the experiment of carbon test limiters in TEXTOR showed that the hot spot on
carbon limiters was formed due to thermoelectron emission !). But graphite is not a good thermo-
electron emitter,

It has been shown that when the divertor target plate made of LaBg is heated by a high
plasma heat flow to a temperature sufficient for thermoelectron emission, the sheath voltage de-
creases so that the impurity generation through sputterring can be expected to be extremely sup-
pressed as predicted by a series of experiments on a linear device NAGDIS--1 (Nagoya University
Divertor Simulator) in 1992. This concept is called Emissive Divertor Plate 2.

In these experiments the quasi static bifurcation phenomena was observed and it was ana-
lyzed by the nonlinear theory on the sheath potential, the plasma heat flow, the thermoelectron
emission current and the heat-temperature characteristics of the plate. But in the numerical analysis

of reference 2) the power balance of electron was not considered, i.e., Te was assumed constant in



both the cold and the hot states. In fact Te will change with the transition of target plate state.

This paper describes the dynamic behavior of a nonlinear system composed of the tﬁrget
plate made of LaB6 with thermoelectron emission and the high heat flux plasma including the
electron power balance in the entire system. The relations among sheath voltage, plate tempera-
ture and plasma parameters are obtained. This is a first step for the new divertor concept which has
a decreased sheath voltage suppressing a impurity sputteering and a efficient heat divergence from
the hot plate , probably tungstenin real condition , through the radiation.

2. The basic experiments on NAGDIS-1 2)

A helium plasma with a magnetic field of 750 G was generated on NAGDIS-I. A divertor
target plate was made of LaB6 which is a good electron emitter at relatively low temperature owing
to a small work function of 2.7 ev. Figure | shows that when the divertor target plate was ohmically
heated to a temperature sufficient for thermoelectron ermission, the floating potential became
abruptly half of that of a cold plate at a certain heating power. In fact the sheath voltage decreased
to a third of the cold value because the plasma potential was negative with respect to the vacuum
chamber. Some kind of hysteresis loop shows the presence of state transitions. Figure 2 shows that
a heat pulse induced a transition from the cold state to the hot state of the target plate. Even after the
removal of external heat input the sheath voltage remained low. An additional plasma heat flow
associated with plas-ma electron influx went to the target plate due to the resultant small potential
barrier compared with the case of cold plate.

3. Numerical analysis model

The plasma heat flow to the target Q is determined mainly by the energy associated with
impinged plasma particles:

Q-STcnse(—Q)l/Z[OS T¢ et m‘)l/Zexp( ¢s , )

where S is the area of the target plate and nge is the plasma density at the sheath edge.
The sheath voltage on the emissive plate with the thermoelectron emission JTH1$ described

as follows :

i ense 8Te 172

 ¢=Lein rﬂmi B2, jm J
€ m
4 Tmg ’

(2)

where thermoelectron current - j‘TH 1s determined by the smaller value of either the Richardson-

Dushman's temperature limited current

I, —A'ﬁexp(-&”-) , (3)
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Fig. 1 Static characteristics of sheath voltage as a function of external heating power
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or space charge limited current ,
g, =2.33% 10405/ 2 (@)

where A is Dushman's constant , 9 w is the work function of plate material , T [K] is plate tempera-
ture and d is the sheath thickness .
On the plate the temporal change of plate temperature 15 written by

H%:Q - GeSTH - QufS (5)

where H is the heat capacity, Ois the Stefan-Boltzman constant and € is the emissivity coeffi-

cient. Q 1s plasma heat flow flux armiving at plate, the second term , the third of the right hand side
of equation (5) is respectively heat radiation_loss of plate and heat loss due to thermoelectrons
emission.

The energy balance equation of electron in the plasma is following :

—£=Py, - anH"(cV)i etv _ (2Teets) nsefSTe 1/2ex &9s : (6)
2 ) exple— )S DsfmS

The ﬁrst term of the right hand side of equation (6) is the input power, the second term is the
energy loss by ionization , the third term is the energy loss by absorption of high-energy electrons
and last term is the energy input by injection of thermoelectrons into the plasma. I is the ionization
potential and {GV}, is the ionization rate coefficient which is a function of electron temperature . In
the cold equilibrium state the right side of equation (5) equal to 0 and J73 = 0 . In the case of
electrically floated target plate, taking a cold state as a reference state "0", equation (6) can be

written by
dTe _ - Teyedso Tegy jp _ 2Teeds 8T, efs _%]'_m -
&t ooVl - (OV) )CI+————"—{ )1 _SL_(mne) Xply ) nL N

where n_,=0.5n,, is assumed. L is the length of plasma considered.

4. Numerical results and discussion ,

The numerical calculation is performed following the experimental conditions for the target
plate made of LaBg : the area of the target plate S =1.6 x1073 m2 A=2.9>< 105 [A/(msz)] , Ow
=2.7ev  €=10.82 and heat capacity H=5.0 J/K . In calculations, the sheath thickness d is assumed
to be 3 times as large as the Debye length of the plasma.

4.1 steady state solution ‘

Figure 3 shows that ¢ ; ,T and Te as a function of helium plasma density are of typical S
curves 1n a steady state. This curve shows the presence of state transitions from the cold state to the
hot state of plate. When the plate arrives at the hot state with incréase of plasma density, the sheath



voltage and the electron temperature de- : S e
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We define the width of the transition re-
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4.2 The dynamic behavior 6 2 4 6 8 10 12

L [m]
In tokamak, a divertor target plate re- Fig. 4 Dependence of plasma pa-

ceives repeat heat pulse due to minor disrup- rameters on the length of plasma L.
tion and the activity of the edge localized
modes in H-mode. So it is significant to investigate a time response of an emissive divertor plate
for heat pulse. Here we consider simply a step increase and decrease in helium plasma density to
study time response of ¢, T and Te.

Figure 5 shows that time response of ¢ ¢, T and Te to a step increase from 3.5x 10'8m-3 0
5.0x10!8 m-3 and a step decrease from 5.0x1018m3 t0 3.5%1018m-3 in' helium plasma density.
The initial values start from the solutions of the steady state in the cold state. The initial density in

Fig. 5 is in transition region. It shows that a step increase of plasma density induces a transition
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from the cold state to the hot state of the target plate, the sheath voltage and the electron tempera-
ture decrease arriving at a smaller steady state value. Even after the plasma density go back to
3.5x10!8m™3, although the plate temperature decreases slightly, the state of the target plate is still
kept hot,and the sheath voltage and electron temperature remain smaller value. A drop of
electron temperature from the cold state to the hot state means that the plasma is finally cooled
because the energy loss by absorption of high-energy electrons by plate 1s larger than the energy
input by injection of thermoelectrons accelerated by a smaller sheath voltage. In TEXTOR carbon
test limiters experiments DA drop of the electron temperature has been observed. A preliminary
experiment on NAGDIS-1 shows this point too. '

If we choose a slightly lower value of initial density value in the cold state that in the
previous case, the results will be very different. Figure 6 shows that time response of ¢ . Tand Te
to a step increase from 3. 0x1018m3 0 5. OXIO18 -3 and a step decrease from 5. (}xlOl 8m-3 o
3.0x10/8m-3 in helium plasma density. It also shows that a step plasma density increase induces a
transition from the cold state to the hot state of the target plate. But when the plasma density go
down to initial value 3.0x1013m-3, the plate temperature , the sheath voltage and electron tem-
perature go back to initial values.
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5. Summary

Numericat results show the plasma and target plate parameters, ¢ , T and Te as a function of
helium plasma density are of typical S curves in a steady state. When the emissive divertor target
plate is heated by a plasma flow to a temperature sufficient for thermoelectrdn emission, the tran-
sition from the cold state to the hot state is spontaneously made, the sheath voltage decreases
abruptly and the electron temperature also decreases. The amount of drop depend on the length of
~ plasma column.

A drop of the electron temperature means that the plasma is finally cooled because the energy
loss by absorption of high-energy electrons by plate is larger than the energy input by injection of
thermoelectrons accelerated by a smaller sheath voltage.

Dynamic behavior of the plasma - target nonlinear system is found to be very sensitive to the

change in plasma density near the state transition,
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