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Our institute (National Institute for Fusion Science, Japan) joined the Graduate
University for Advanced Studies and is responsible for the graduate course (doctoral
course) of fusion science. Some colleagues are also responsible for a graduate course of
energy science at Nagoya University. We feel it very important to have a good text
book in plasma physics which is highly professional and also provides the detailed
derivation of basic equations in plasma physics such as the ballooning-mode equation,
for example. I, as a researcher specializing in experimental work, have found it very
difficult to spend much time to understand and derive the basic equations in plasma
physics, TAE-mode equation for example, although there are many experimental papers
on this topic. )

Recently I met professor emeritus Kenro Miyamoto of the University of Tokyo and
told him that we would like a book on plasma physics which is very useful to graduate
students in the doctoral course and experimenters. Professor Miyamoto had already
started to write such a book and was kind enough to accelerate the work. We hope this
book will be useful to all graduate students in plasma physics and researchers.

October 2000
Yasuji Hamada,
Deputy Director-General of
National Institute for Fusion
Science.
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Preface

Primary objective of this lecture note is to provide a basic text for the students to study
plasma physics and controlled fusion researches. Secondary objective is to offer a reference book
describing analytical methods of plasma physics for the researchers. This was written based
on lecture notes for a graduate course and an advanced undergraduate course those have been
offered at Department of Physics, Faculty of Science, University of Tokyo.

In ch.1 and 2, basic concept of plasma and its characteristics are explained. In ch.3, orbits
of ion and electron are described in several magnetic field configurations. Chapter 4 formulates
Boltzmann equation of velocity space distribution function, which is the basic relation of plasma
physics.

From ch.5 to ch.9, plasmas are described as magnetohydrodynamic (MHD) fluid. MHD equa-
tion of motion (ch.5), equilibrium (ch.6) and diffusion and confinement time of plasma (ch.7) are
described by the fluid model. Chapters 8 and 9 discuss problems of MHD instabilities whether
a small perturbation will grow to disrupt the plasma or will damp to a stable state. The basic
MHD equation of motion can be derived by taking an appropriate average of Boltzmann equa-
tion. This mathematical process is described in appendix A. The derivation of useful energy
integral formula of axisymmetric toroidal system and the analysis of high n ballooning mode are
described in appendix B.

From ch.10 to ch.14, plasmas are treated by kinetic theory. This medium, in which waves and
perturbations propagate, is generally inhomogeneous and anisotropic. It may absorb or even
amplify the wave. Cold plasma model described in ch.10 is applicable when the thermal velocity
of plasma particles is much smaller than the phase velocity of wave. Because of its simplicity,
the dielectric tensor of cold plasma can be easily derived and the properties of various wave
can be discussed in the case of cold plasma. If the refractive index becomes large and the
phase velocity of the wave becomes comparable to the thermal velocity of the plasma particles,
then the particles and the wave interact with each other. In ch.11, Landau damping, which
is the most characteristic collective phenomenon of plasma, as well as cyclotron damping are
described. Chapter 12 discusses wave heating (wave absorption) in hot plasma, in which the
thermal velocity of particles is comparable to the wave phase velocity, by use of the dielectric
tensor of hot plasma. In ch.13 the amplification of wave, that is, the growth of perturbation
and instabilities, is described. Since long mathematical process is necessary for the derivation of
dielectric tensor of hot plasma, its processes are described in appendix C. In ch.14 instabilities
driven by energetc particles, that is, fishbone instability and toroidal Alfvén eigenmodes are
described.

In ch.15, confinement researches toward fusion grade plasmas are reviewed. During the last
decade, tokamak experiments have made remarkable progresses. Now realistic designs of toka-
mak reactors have been actively pursued. In ch.16, research works of critical subjects on tokamak
plasmas and reactors are explained. As non-tokamak confinement systems, reversed field pinch,
stellarator, tandem mirror are described in ch.16. Elementary introduction of inertial confine-
ment is added in ch.17.

Readers may have impression that there is too much mathematics in this lecture note. However
there is a reason for that. If a graduate student tries to read and understand, for examples,
three of frequently cited short papers on the analysis of high n ballooning mode by Connor,
Hastie, Taylor, fishbone instability by L.Chen, White, Rosenbluth, toroidal Alfven eigenmode
by Betti, Freidberg without preparative knowledge, he must read and understand several tens
of cited references and references of references. I would guess from my experience that he would
be obliged to work hard for several months. It is one of motivation to write this lecture note
to save his time to struggle with mathematical derivation so that he could spend more time to
think physics and experimental results.
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This lecture note has been attempted to present the basic physics and analytical methods
which are necessary for understanding and predicting plasma behavior and to provide the recent
status of fusion researches for graduate and senior undergraduate students. I also hope that it
will be a useful reference for scientists and engineers working in the relevant fields.

October 2000
Kenro Miyamoto

Professor Emeritus Unversity of Tokyo

miyamoto@phys.s.u-tokyo.ac.jp .

The pdf file of this lecture note is being prepared in Research Reports of http://www.nifs.ac.jp.



1.2 Charge Neutrality and Landau Damping 1

Ch.1 Nature of Plasma

1.1 Introduction

As the temperature of a material is raised, its state changes from solid to liquid and then
to gas. If the temperature is elevated further, an appreciable number of the gas atoms are
ionized and become the high temperature gaseous state in which the charge numbers of ions and
electrons are almost the same and charge neutrality is satisfied in a macroscopic scale.

When the ions and electrons move collectively, these charged particles interact with coulomb
force which is long range force and decays only in inverse square of the distance r between the
charged particles. The resultant current flows due to the motion of the charged particles and
Lorentz interaction takes place. Therefore many charged particles interact with each other by
long range forces and various collective movements occur in the gaseous state. The typical cases
are many kinds of instabilities and wave phenomena. The word “plasma” is used in physics
to designate the high temperature ionized gaseous state with charge neutrality and collective
interaction between the charged particles and waves.

When the temperature of a gas is T(K), the average velocity of the thermal motion, that is,
thermal velocity vr is given by

mv3 /2 = kT/2 (1.1)

where « is Boltzmann constant & = 1.380658(12) x 10~23J/K and 7T indicates the thermal
energy. Therefore the unit of T is Joule(J) in MKSA unit. In many fields of physics, one
electron volt (eV) is frequently used as a unit of energy. This is the energy necessary to move
an electron, charge e = 1.60217733(49) x 10~!? Coulomb, against a potential difference of 1 volt:

leV = 1.60217733(49) x 1071%J.

The temperature corresponding to the thermal energy of leV is 1.16 x10* K(= e/x). The ioniza-
tion energy of hydrogen atom is 13.6 eV. Even if the thermal energy (average energy) of hydrogen
gas is 1€V, that is T ~ 10* K, small amount of electrons with energy higher than 13.6 eV exist
and ionize the gas to a hydrogen plasma.

Plasmas are found in nature in various forms (see fig.1.1). There exits the ionosphere in the
heights of 70~500 km (density n ~ 10'? m~3, kT ~ 0.2eV). Solar wind is the plasma flow origi-
nated from the sun with n ~ 105~"m=3, kT ~ 10eV. Corona extends around the sun and the
density is ~ 10 m~2 and the electron temperature is ~ 100V although these values depend
on the different positions. White dwarf, the final state of stellar evolution, has the electron
density of 10**~3 m~3. Various plasma domains in the diagram of electron density n(m~3) and
electron temperature xT (eV) are shown in fig.1.1. Active researches in plasma physics have
been motivated by the aim to create and confine hot plasmas in fusion researches. Plasmas play
important roles in the studies of pulsars radiating microwave or solar X ray sources observed
in space physics and astrophysics. The other application of plasma physics is the study of the
earth’s environment in space. Practical applications of plasma physics are MHD (magnetohy-
drodynamic) energy conversion for electric power generation, ion rocket engines for space crafts,
and plasma processing which attracts much attention recently.

1.2 Charge Neutrality and Landau Damping

One of the fundamental property of plasma is the shielding of the electric potential applied to



2 1 Nature of Plasma
AKT
{ev)
10° | R -
— <T=me fusion core
B plasma stellar 7
inertial interior-

B n confinement b
tolamak {asma
R
10° . i
corona p;nch
[ solar (| plasma -1
wind
- E :] -
. glow ﬂ.\%=1 KT =¢p
- ionosphere discharge E
c
- degenerate -
. plasma
wleakly coupled 22:’;%13' et
asma
ws}p P ~ plasma 3 plasma E
T 4T TN E RN AN Wl e |
101 10% 10 n{m™?)

Fig.1.1 Various plasma domain in n- T diagram.

the plasma. When a probe is inserted into a plasma and positive (negative) potential is applied,
the probe attracts {repulses) electrons and the plasma tends to shield the electric disturbance.
Let us estimate the shielding length. Assume that the ions are in uniform density (n; = no)
and there is small perturbation in electron density n. or potential ¢. Since the electrons are in
Boltzmann distribution usually, the electron density n. becomes

ne = no exp(ed/rT.) = no( + e/nT).

Poisson’s eqation is

2

=—V¢, Vi{eE) = —eV2¢ = p= —e(ne —no) = _ noqb
. kT,
and
T\ /2 1\ 1/2
Vi = i; Ap = (E"" 3 ) = 7.45 x 10° (iﬂ) (m) (1.2)
AD e€ e €

where n. is in m~? and &7, /e is in €V. When n ~ 10®%cm™3, xT, /e ~ 10keV, then Ap ~ 75um.
In spherically symmetric case, Laplacian V? becomes V¢ = (1/r)(9/0r)(r04/0r) and the
solution is

_q_exp(=r/A0)
dmeg r '

It is clear from the foregoing formula that Coulomb potential g/4mepr of point charge is shielded
out to a distance Ap. This distance Ap is called the Debye length. When the plasma size is a
and a 3> Ap is satisfied, then plasma is considered neutral in charge. If @ < Ap in contrary,
individual particle is not shielded electrostatically and this state is no longer plasma but an
assembly of independent charged particles. ~The number of electrons included in the sphere of
radius Ap is called plasma parameter and is given by

3/2 1

3 _ EO KTE
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When the density is increased while keeping the temperature constant, this value becomes small.
If the plasma parameter is less than say ~1, the concept of Debye shielding is not applicable
since the continuity of charge density breaks down in the scale of Debye length. Plasmas in the
region of nA3 > 1 are called classical plasma or weakly coupled plasma, since the ratio of electron
thermal energy x7. and coulomb energy between electrons Ecoulomb = €2/4megd (d ~ n~Y/3 is
the average distance between electrons with the density n} is given by

T,

—=° _ —an(nA})¥? (1.4)
Ecoulomb

and nA% > 1 means that coulomb energy is smaller than the thermal energy. The case of
n/\g <1 is called strongly coupled plasma (see fig.1.1). Fermi energy of degenerated electron
gas is given by ep = (h?/2m,)(37%n)*3. When the density becomes very high, it is possible to
become ep > xT,. In this case quantum effect is more dominant than thermal effect. This case
is called degenerated electron plasma. One of this example is the electron plasma in metal. Most
of plasmas in experiments are classical weakly coupled plasma.

The other fundamental process of plasma is collective phenomena of charged particles. Waves
are assoclated with coherent motions of charged particles. When the phase velocity vpn of
wave or perturbation is much larger than the thermal velocity vy of charged particles, the wave
propagates through the plasma media without damping or amplification. However when the
refractive index N of plasma media becomes large and plasma becomes hot, the phase velocity
vpn = ¢/N (c is light velocity) of the wave and the thermal velocity vr become comparable
{(vph = ¢/N ~ vr), then the exchange of energy between the wave and the thermal energy of
plasma is possible. The existence of a damping mechanism of wave was found by L.D. Landau.
The process of Landau damping involves a direct wave-particle interaction in collisionless plasma
without necessity of randamizing collision. This process is fundamental mechanism in wave
heatings of plasma (wave damping) and instabilities (inverse damping of perturbations). Landau
damping will be described in ch.11, ch.12 and appendix B.

1.3 Fusion Core Plasma

Progress in plasma physics has been motivated by how to realize fusion core plasma. Necessary
condition for fusion core plasma is discussed in this section. Nuclear fusion reactions are the
fused reactions of light nuclides to heavier one. When the sum of the masses of nuclides after
a nuclear fusion is smaller than the sum before the reaction by Am, we call it mass defect.
According to theory of relativity, amount of energy (Am)c? (c is light speed) is released by the
nuclear fusion. \

Nuclear reactions of interest for fusion reactors are as follows (D; deuteron, T; triton, He?; helium-
3, Li; lithium):

(1) D+D=T(1.01 MeV)+p(3.03MeV)

(2) D-+D— He®(0.82MeV)4n(2.45 MeV)

(3) T+D— He'(3.52MeV)+n(14.06 MeV)
(4) D+He® — He*(3.67MeV) +p(14.67 MeV)
(5) Li®+n—T+He*+4.8MeV

(6) Li"4+n(2.5MeV)—T+He*+n

where p and n are proton (hydrogen ion) and neutron respectively (1MV=10feV). Since the
energy released by chemical reaction of Ha + (1/2)0; — H20 is 2.96 eV, fusion energy released
is about million times as large as chemical one. A binding energy per nucleon is smaller in
very light or very heavy nuclides and largest in the nuclides with atomic mass numbers around
60. Therefore, large amount of the energy can be released when the light nuclides are fused.
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Deuterium exists aboundantly in nature; for example, it comprises 0.015 atom percent of the
hydrogen in sea water with the volume of about 1.35 x 10° km® .

Although fusion energy was released in an explosive manner by the hydrogen bomb in 1851,
controlled fusion is still in the stage of research development. Nuclear fusion reactions were
found in 1920’s. When proton or deuteron beams collide with target of light nuclide, beam
loses its energy by the ionization or elastic collisions with target nuclides and the probability
of nuclear fusion is negligible. Nuclear fusion researches have been most actively pursued by
use of hot plasma. In fully ionized hydrogen, deuterium and tritium plasmas, the process of
ionization does not occur. If the plasma is confined in some specified region adiabatically, the
average energy does not decrease by the processes of elastic collisions. Therefore if the very hot
D-T plasmas or D-D plasmas are confined, the ions have velocities large enough to overcome
their mutual coulomb repulsion, so that collision and fusion take place.

Let us consider the nuclear reaction that D collides with T. The effective cross section of T
nucleous is denoted by . This cross section is a function of the kinetic energy E of D. The
cross section of D-T reaction at E = 100keV is 5 x 10724 cm? . The cross sections o of D-T, D-
D, D-He? reaction versus the kinetic energy of colliding nucleous are shown in fig.1.2(a).1:? The
probability of fusion reaction per unit time in the case that a D ion with the velocity v collides
with T ions with the density of nr is given by nrov (we will discuss the collision probability
in more details in sec.2.7). When a plasma is Maxwellian with the ion temperature of T;, it is
necessary to calculate the average value (ov) of gv over the velocity space. The dependence of
{av) on ion temperature T} is shown in fig.1.2(b).> A fitting equation of {gw) of D-T reaction as
a function of T in unit of keV is?

KT + 5.45
37 3+ wT(l+kT/37.5)%8

-18
(o) (=) = — 37> 10 ( 20

H(kT) x (kT)?/3 ExXp _W) ,  HED)=
(1.5)

Figure 1.3 shows an example of electric power plant based on D-T fusion reactor. Fast neutrons
produced in fusion core plasma penetrate the first wall and a lithium blanket surrounding the
plasma moderates the fast neutrons, converting their kinetic energy to heat. Furthermore the
lithium blanket breeds tritium due to reaction (5),(6). Lithium blanket gives up its heat to
generate the steam by a heat exchanger; steam turbine generates electric power. A part of
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Fig.1.3 An electric power plant based on a D-T fusion reactor

-the generated electric power is used to operate heating system of plasma to compensate the
energy losses from the plasma to keep the plasma hot. The fusion output power must be
larger than the necessary heating input power taking account the conversion efficiency. Since
the necessary heating input power is equal to the energy loss rate of fusion core plasma, good
energy confinement of hot plasma is key issue.

The thermal energy of plasma per unit volume is given by (3/2)nk(T; + T.). This thermal
energy is lost by thermal conduction and convective losses. The notation F;, denotes these
energy losses of the plasma per unit volume per unit time (power loss per unit volume). There
is radiation loss R due to bremsstrahlung of electrons and impurity ion radiation in addition to
B,. The total energy confinement time 7g is defined by

_ B/2ns(Te +T) | 3nkT

R+R  P.+R (16)

The necessary heating input power Pheat is equal to P, + R . In the case of D-T reaction, the
sum of kinetic energies Qo = 3.52MeV of a particle (He?* ion) and Q, = 14.06 MeV of neutron
is Qnp=17.58 MeV per 1reaction. Since the densities of D ions and T ions of equally mixed
plasma are n/2 , number of D-T reaction per unit time per unit volume is (n/2)}(n/2){cv), so
that fusion output power per unit volume Pyr is given by

Pyp = (n/2)(n/2){ov)Qnr- (1.7)

Denote the thermal-to-electric conversion efficiency by 7. and heating efficiency (ratio of the
deposit power into the plasma to the electric input power of heating devme) by nheat Then the
condition of power generation is

3nkT
Heat PL +R= _TE— < (nel)(nheat)ﬂ\ll:' (18)
that is

3nnT Q

(Tfma)(ﬂa)%n (ov),

12T
ngE > ————— 1.9

™ Qnr(ov) (1.9)

where 7 is the product of two efficiencies. The right-hand side of the last foregoing equation is
the function of temperature 7' only. When «7 = 10eV and n ~ 0.3 (Tt ~ 0.4, Mhear ~ 0.75),
the necessary condition is nmg > 1.7 x 102 m~3 - sec. The condition of D-T fusion plasma in the
case of  ~ 0.3 is shown in fig.1.4. In reality the plasma is hot in the core and is cold in the edge.
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Fig.1.4 Condition of D-T fusion core plasma in nrg - T diagram in the case of 5 = 0.3, critical
condition (7 = 1) and ignition condition (n = 0.2}.

For the more accurate discussion, we must take account of the profile effect of temperature and
density and will be analyzed in sec.16.11.

The condition Pheat = Pyr is called break even condition. This corresponds to the case of p =1
in the condition of fusion core plasma. The ratio of the fusion output power due to a particles
to the total is Q./@nr = 0.2. Since ¢ particles are charged particles, o particles can heat
the plasma by coulomb collision (see sec.2.8). If the total kinetic energy (output energy) of «
particles contributes to heat the plasma, the condition Ppeae = 0.2FyF can sustain the necessary
high temperature of the plasma without heating from outside. This condition is called ignition
condition, which corresponds the case of n = 0.2.
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Ch.2 Plasma Characteristics

2.1 Velocity Space Distribution Function, Electron and Ion Temperatures

Electrons as well as ions in a plasma move with various velocities. The number of electrons
in a unit volume is the electron density n, and the number of electrons dne(vz) with the z
component of velocity between v, and v, + dv; is given by

dng(vy) = fe(vg)dus.

Then fo(vg) is called electron’s wvelocity space distribution function. When electrons are in
thermally equilibrinm state with the electron temperature T,, the velocity space distribution
function becomes following Maxwell distribution: :

1/2 2

By the definition the velocity space distribution function satisfies following relation:

/_ o; fe(vz)dvz = ne.

Maxwell distribution function in three dimensional velocity space is given by

3/2 2, .9 2 .
n M me(vs + v, + ;) :
Je(vz, vy, v;) = ne (27mTe) exp ( o . (2.1)

Ion distribution function is also defined by the same way as the electron’s case. The mean square
of velocity v2 is given by

1 f== wT
vh = - /_m 2 f (v, )du, = P (2.2)
The pressure p is
p=nxd.

Particle flux in the x direction per unit area I'y ; is given by

kT )1/2

2rm

I'y.= ‘/’Ooovmf(vz)dvm =y (

When an electron beam with the average velocity v, is injected into a plasma with a Maxwell
distribution, the distribution function becomes humped profile as is shown in fig.2.1{b). Follow-
ing expression can be used for the modeling of the distribution function of a plasma with an
electron beam:

me \ Y2 Meu? me \/? me(v; — vy)?
fe(v:) _ne(21mTe) P\ Toar. )T ™ (2me) e ey ‘
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Fig.2.1 (a) Velocity space distribution function of Maxwellian with electron temperature T,.. (b)

velocity %pace distribution function of Maxwellian plasma with electron temterature T; and injected
electron beam with the average velocity vy, ,

2.2 Plasma Frequency, Debye Length

Let us consider the case where a small perturbation occurs in a uniform plasma and the
electrons in the plasma move by the perturbation. It is assumed that ions do not move because
the ion’s mass is much more heavy than electron’s. Due to the displacement of electrons, electric
charges appear and an electric field is induced. The electric field is given by Poisson’s equation:

E()V o —e(ne ha no).
Electrons are accelerated by the electric field:

mei—;’ = —eF.

Due to the movement of electrons, the electron density changes:

One
ot

+ V- (nev) =0.

Denote n, — ng = 11 and assume |n;| < ng, then we find

dv on
6@V E=—en, me-g = —ekF, 6—; +ngV-v=140.

For simplicity the displacement is assumed only in fhe z direction and is sinusoidal:
ni(zx,t) = ny exp(ikx — iwt).

Time differential 8/t is replaced by —iw and 8/0z is replaced by ik, then
ikeg B = —eny, — fwmev = —ekE, —dwny = —tkngv

so that we find

9 T 62

we = (2.3)

€QTTte .

This wave is called electron plasma wave or Langmuir wave and its frequency is called electron
plasma frequency Il.:

o€ 1/2 i { e 1/2
I, = (Eo‘me) = 5.64 x 10 (—1—623) rad/sec.
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Fig.2.2 Larmor motion of charged particle in magnetic field

There is following relation between the plasma frequency and Debye length Ap:

1/2
Apll, = (K'Te) = UTe-

Me

2.3 Cyclotron Frequency, Larmor Radius

The equation of motion of charged particle w1th the mass m and the charge ¢ in an electric
‘and magnetic field F, B is given by

dv
m— =q(E+v x B). (2.4)

When the magnetic field is homogenous and is in the z direction and the electric field is zero,
the equation of motion becomes © = (¢B/m){v x b} (b = B/B) and
vy = —v, sin(82f + 6},

vy = v cos(§2¢ + 4),

'Uz = UZO:

0= ‘f (2.5)

The solution of these equation is a spiral motion around the magnetic line of force with the
angular velocity of £2 (see fig.2.2). This motion is called Larmor motion. The angular frequency
2 is called cyclotron (angular) frequency. Denote the radius of the orbit by pp, then the
centrifugal force is mv? /pq and Lorentz force is quy B. Since both forces must be balanced, we
find

muvy
lg| B

po = (2.6)
This radius is called Larmor radius. The center of Larmor motion is called guiding center.
Electron’s Larmor motion is right-hand sence (f2, > 0), and ion’s Larmor motion is left-hand
sence ({4 < 0) (see fig.2.2). When B = 1T, &7 = 100eV, the values of Larmor radius and
cyclotron freqency are given in the following table:
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Fig.2.3 Drift motion of guiding center in electric and gravitational field (conceptional drawing).
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e

Fig.2.4 Radius of curvature of line of magnetic force

B=1T, kT'=100eV electron proton
thermal velocity vy = (kT/m)/2 | 4.2x10°m/s 9.8 x 100 m/s
Larmor radius pg 23.8 pm 10.2mm
(angular} cyclotron frequency 2 1.76 x 101 /s ~9.58 x 107 /s
cyclotron freqeuncy §2/2w 28 GHz —15.2MHz

2.4 Drift Velocity of Guiding Center

When a uniform electric field E perpendicular to the uniform magnetic field is superposed,
the equation of motion is reduced to '

m%% = gq(u x B)
by use of
b
v = ug + u, Ug = E; . (2.7}

Therefore the motion of charged particle is superposition of Larmor motion and drift motion ug
of its guiding center. The direction of guiding center drift by F is the same for both ion and
electron (fig.2.3). When a gravitational field g is superposed, the force is mg, which corresponds
to gF in the case of electric field. Therefore the drift velocity of the guiding center due to the
gravitation is given by

gxb

. (2.8)

m
= — b) = —
ug qB(gx )

The directions of ion’s drift and electron’s drift due to the gravitation are opposite with each
other and the drift velocity of ion guiding center is much larger than electron’s one (see fig.2.3).
When the magnetic and electric fields change slowly and gradually in time and in space (|w/2| <
1,pa/R <« 1), the formulas of drift velocity are valid as they are. However because of the
curvature of field line of magnetic force, centrifugal force acts on the particle which runs along
a field line with the velocity of v). The acceleration of centrifugal force is

2
=

gcurv — R n
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where R is the radius of curvature of field line and n is the unit vector with the direction from
the center of the curvature to the field line (fig.2.4).

Furthermore, as is described later, the resultant effect of Larmor motion in an inhomogeneous
magnetic field is reduced to the acceleration of

2
v /2
gvp =~ jg/ VB.

Therefore drift velocity of the guiding center due to inhomogenous curved magnetic field is given
by the drift approzimation as follows:

2
_ 1 {9 Uﬁ_ vEB

The first term is called curvature drift and the second term is called VB drift. Since Vx B = g7,
the vector formula reduces

LB -B) =0b-V)B+bx (VxB):%(Bb)-f-bx,ugj

2B
OB db Vp OB n Vp
=-_b g~ = p_BZ _
g0t By Ty =gt By mp
We used the following relation (see fig.2.4)
ab n
8 R

Then‘ we have

nxb__(VB+ Vp)xb
R \'B "THE '

If Vp is much smaller than V.B?/(2), we find

" __1vﬁ+vj’_/2 o x b)
£ N R )
The parallel motion'along the magnetic field is given by
dy mv} /2
mE = qE” +mg — B V”B

where [ is the length along the field line.

Let us consider the effect of inhomogeneity of magnetic field on gyrating charged particle. The
z component of Lorentz force F, = qu x B perpendicular to the magnetic field (z direction)
and the magnitude B of the magnetic field near the guiding center are

Fiz = qu,B = —|q|v) coséB
aB 0B
= = 8+ == posin .
B=5By+ 5 P2 €08 + By pasing

The time average of z component of Lorentz force is given by (F1.) = 3{(8B/dz)(—|g|)v J_bn and

the y component is also given by the same way, and we find (see fig.2.5)

_ mu? /2 '
B

(Fu), = V.B.
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Fig.2.5 Larmor motion in inhomogeneous magnetic field.

Next it is necessary to estimate the time average of z component of Lorentz force. The equation
V - B = 0 near the guiding center in fig.2.5 becomes B, /r + 8B, /0r 4+ 3B, /82 = 0 and we find

- _ 8B,  mvi/20B
{(FLz) = —(queBr) = |alvLpa ar B 8z’

since r is very small. Thus the necessary expression of gyp is derived.

2.5 Magnetic Moment, Mirror Confinement, Longitudinal Adiabatic Constant

A current loop with the current I enciréling the area S has the magnetic moment of gy, = IS.
Since the current and encircling area of gyrating Larmor motion are I = ¢f2/2x, § = TR
respectively, it has the magnetic moment of

e 5, mvl

Hm = or ™0~ 35

This physical quantity is adiabatically invariant as is shown later in this section. When the

magnetic field changes slowly, the magnetic moment is conserved. Therefore if B is increased,

mvﬁ_ = punB is also increased and the particles are heated. This kind of heating is called
adiabatic heating.

Let us consider a mirror field as is shown in fig.2.6, in which magnetic field is weak at the
center and is strong at both ends of mirror field. For simplicity the electric field is assumed to be
zero. Since Lorentz force is perpendicular to the velocity, the magnetic field does not contribute
the change of kinetic energy and

(2.10)

2 2 2
muy
0 muvy _ mu _ _
g T =g = E = const. (2.11)

Since the magnetic moment is conserved, we find _
2 1/2 9 1/2
Y == (—E - vi) =4 (v2 - —umB) .
m m

When the particle moves toward the open ends, the magnetic field becomes large and v becomes
small or even zero. Since the force along the parallel direction to the magnetic field is —pmV | B,
the both ends of the mirror field repulse charged particles as a mirror reflects light. The ratio
of magnitude of magnetic field at open end to the central value is called mirror ratio:

=B,
Let us denote the parallel and perpendicular components of the velocity at the mirror center

by v and v o respectively. The value vﬁ’_ at the position of maximum magnetic field By is
given by

Ry

UiM = —BM Uﬁ.o
By
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Fig.2.6 Mirror field and loss cone in o) - v, space.

If this value is larger than v = vg, this particle can not pass through the open end, so that the
particle satisfying the following condition is reflected and is trapped in the mirror field:

2
v B 1 :
(ﬁ) - S0 _ | (2.12)
vo BM RM

Particles in the region where sin@ = v, /v satisfies

1

sin @ < —
M

are not trapped and the region is called loss cone in v - v space (see Fig.2.6).
Let us check the invariance of j1y, in the presence of a slowly changing magnetic field (|8B/dt| <«
|2B([). Scalar product of v, and the equation of motion is

dv, d (m’ui

UL T T @\ 2

) =q(vy - EL).

During one period 2r/|12| of Larmor motion, the change AW of the kinetic energy W, = muv? /2
is

AW, =q (v Bi)dt=q § By -ds =g [(Vx B-n)as

where § ds is the closed line integral along Larmor orbit and [dS is surface integral over the
encircled area of Larmor orbit. Since V x E = ~8B/0t, AW, is

oB OB
AW, = —q/ 7 ndS = |q|1rp§z—é—t—.

The change of magnetic field AB during one period of Larmor motion is AB = (3B/0t}{2= /|1}|),
we find

When a system is periodic in time, the action integral §pdg, in terms of the canonical vari-
ables p, g, is an adiabatic invariant in general. The action integral of Larmor motion is J, =
(—mpaf?)2rpq = —(Anm/q)um. J1 is called transversal adiabatic invariant.

A particle trapped in a mirror field moves back and forth along the field line between both
ends. The second action integral of this periodic motion

JH = m}v”dl . . (2.13)
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Fig.2.7 Probability of collision of a sphere a with spheres b.

is also another adiabatic invariant. J| is called longitudinal adiabatic invariant. As one makes
the mirror length [ shorter, (vy) increases (for Jy = 2m{v|)! is conserved}, and the particles are
accelerated. This phenomena is called Fermi acceleration.

The line of magnetic force of mirror is convex toward outside.” The particles trapped by the
mirror are subjected to curvature drift and gradient B drift, so that the trapped particles move
back and forth, while drifting in @ direction. The orbit (r, §) of the crossing point at z = 0
plane of back and forth movement is given by J“(r, 8, tim, E) = const.

2.6 Coulomb Collision Time, Fast Neutral Beam Injection

The motions of charged particles were analyzed in the previous section without considering
the effects of collisions between particles. In this section, phenomena associated with Coulomb
collisions will be discussed. Let us start from a simple model. Assume that a sphere with the
radius @ moves with the velocity v in the region where spheres with the radius b are filled with
the number density n (see fig.2.7). When the distance between the two particles becomes less
than a + b, collision takes place. The cross section ¢ of this collision is ¢ = m(a + b)?. Since the
sphere a moves by the distance { = vét during é¢, the probability of collision with the sphere b-
is

nlo = novdt

since nl is the possible number of the sphere b, with which the sphere a within a unit area of
incidence may collides, and nlo is the total cross section per unit area of incidence during the
period of 8t. Therefore the inverse of collision time ) is

(tcoll)_l = NOY.

In this simple case the cross section ¢ of the collision is independent of the velocity of the

incident sphere a. However the cross section is dependent on the incident velocity in general.
Let us consider strong Coulomb collision of an incident electron with ions (see fig.2.8) in

which the electron is deflected strongly after the collision. Such a collision can take place when

Fig.2.8 Coulomb collision of electron with ion.



2.6 Coulomb Collision Time, Fast Neutral Beam Injection 15

the magnitude of electrostatic potential of the electron at the closest distance & is the order of
the kinetic energy of incident electron, that is,

Zer  meu?

dregh 2

The cross section of the strong Coulomb collision is o = 7b%. The inverse of the collision time
of the strong Coulomb collision is

52 nim(Ze? ), Zietn
= Ni0Ve = Nivemh® = = i
teon e e (47T€0me'ﬂg/2)2 411'60’!’1’!-31)2

Since Coulomb force is long range interaction, a test particle is deflected by small angle even
by a distant field particle, which the test particle does not become very close to. As is described
in sec.1.2, the Coulomb field of a field particle is not shielded inside the Debye sphere with
the radius of Debye length Ap and there are many field particles inside the Debye sphere in the
usual laboratory plasmas (weakly coupled plasmas). Accumulation of many collisions with small
angle deflection results in large effect. When the effect of the small angle deflection is taken into
account, the total Coulomb cross section increases by the factor of Coulomb logarithm

A
1n/1:1n(?@)r_uf°1dr215~20.
b b2 T

The time derivative of the momentum p parallel to the incident direction of the electron is
given by use of the collision time 7o as follows:!?

dy _ 21
dt Tei|, ’
1 Z2eimlnd . '
L _Zemnd 2.14
Tei| dmedmivd o ( . )

where 7. indicates the deceleration time of an electron by ions.

When a test particle with the charge g, the mass m and the velocity v collides with the field
particles with the charge ¢*, the mass m* and the thermal velocity v} = (sT*/m*)¥/? in general,
the collision time of the test particle is given by"? :

1 ¢@¢"*n*InA  [qg*n*\? In A
L_a¢nnd_ — (2.15)
T Amegmmgu eom / Aw(m,/m)vin

under the assumption of v > v}. m, is the reduced mass m, = mm*/(m + m*). Taking the
average of (m/2)v? = (3/2)xT, 1/7 becomes

1 7°¢**n*In A

— = . 2.16
T 3Y212mei(m, /m1/2)(kT)3/2 (2.16)
This collision time in the case of electron with ions is
Z2 4 ;
1 _ € nlix;/l . (2.17)
Teil  31/212rweime’ " (kT)3/2
This collision time of electron with ions is within 20% of Spitzer’s result?
2en;in A
1 Ze*n;In (2.18)

Teil| Spitzer 51671 23mY  (T)3/2
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(a) (b)

Fig.2.9 Elastic collision of test particle M and field particle m in laboratory system (a) and
center-of-mass system (b).

When an ion with the charge Z and the mass m; collides with the same ions, the ion-ion collision
time is given by
1 Zie*niln A (2.19)
Ta) 31/26medml/ (kT2 . '

Electron-electron Coulomb collision time can be derived by substitution of m; — me and
Z — 1 into the formula of 7.

1 neetln A : (2.20)
Teel| 31/ 261r€%m¢1,/ 2 (kT,)%/2 ’ )

However the case of ion to electron Coulomb collision is more complicated to treat because
the assumption v; > v% is no longer hold. Let us consider the case that a test particle with
the mass M and the velocity v, collides with a field particle with the mass m. In center-of-
mass system where the center of mass is rest, the field particle m moves with the velocity of
ve = —Mug/(M 4+ m) and the test particle M moves with the velocity of v; —v. = mus/(M +m)
(see fig.2.9). Since the total momentum and total kinetic energy of two particles are conserved
in the process of elastic collision, the velocities of the test particle and the field particle do not
change and two particles only deflect their direction by the angle of # in center-of -mass system.
The velocity v¢ and scattering angle ¢ of the test particle after the collision in laboratory system
are given by (see fig.2.9)

M? 4+ 2Mmcos 8+ m?
’Ut? = ('Us - 'Uc)2 + 'Uc2 + 2('”5 - UC)UC cos = UE( (M + m)z )’

msin@
(M2 + 2Mmcosf + m2)1/2

sing =

Denote the momentum and the kinetic energy of the test particle before and after the collision
by ps, Es, and p¢, B¢ respectively, then we find
AE _ Ef—E; _ 2M

E, E.  (M+

m

)2 (1 —cosé).

When the average is taken by 6, we obtain the following relations in the case of m/M < 1:
™m

(AE 2m Ap m
i

~ My o —
ES ) - M! ( ps ) -

From the foregoing discussion, the inverse of collision time 1/7;| where a heavy ion collides

with light electrons is about m./m; times the value of 1/7,;, and is given byl?

1 me Z%*n.lnA (2.21)
Tie| i (211')1/231763711.1/2(&%)3/2- '
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When the parallel and perpendicular components of the momentum of a test particle are
denoted by py and p, respectively and the energy by E, there are following relations

B P+
2m
dp? dE  dp|

We define the velocity diffusion time 7, in the perpendicular direction to the initial momentum
and the energy relazation time 7° by

dpl _ Pl
dt 7’
df  E
dt = 7

respectively. 1/7) and 1 /7€ are given by!

I ¢ q**n*lnA _ 7*¢**n*In A

— = = 2.22
1 2medu(mv)? 2medmivd (2:22)
1 Fgin*InA _ ¢’¢**n*In A (2.23)
¢ dnedmr*u(mu?/2)  2medmm*o’ '
respectively under the assumption v > vt.
In the case of electron to ion collision, we find
1 2
~ 2 ' (2.24)
Teil TeiH . -
1 2
2 e (2.25)

€ L
Tei mj Te1|j

In the case of electron to electron collision, and ion to ion collision, we find

11 (1~21) (2.26)
Teel Tee||’ Tee|| - ZTei” , ‘
1 o 1 (2.27)
Tee Tee||

and

1 1
_— (2.28)
Tilt Tii||

1 1
——~ (2.29)
Ti¢ T ‘

respectively.
In the case of ion to electron collision we have following relations:!
1 Z2etngIn A Me

P~

Ter  (2m)32edmi 2By (kT)1/2 ™’

(2.30)
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1 Z’'n.nA 4 me 1 me2TT7 (2.31)
Te®  dme2md/}(kTu)%/2 327) 2 mi T ey T omi T '

where F; = (3/2)xT; is the kinetic energy of the ion.  The inverse of collision time is called
collisional frequency and is denoted by v. The mean free path is given by A = 3/ 2up T,

High energy neutral particle beams can be injected into plasmas across strong magnetic
fields. The neutral particles are converted to high-energy ions by means of charge exchange
with plasma ions or ionization. The high energy ions (massmy,, electric charge Zy,., energy E},)
running through the plasma slow down by Coulomb collisions with the plasma ions (m;, Zi} and
electrons (m., —e) and the beam energy is thus transferred to the plasma. This method is called
heating by neutral beam injection (NBI). The rate of change of the fast ion’s energy, that is, the
heating rate of plasma is

€ € !
dt T Tre

1 (Zwe)*(Zie)®In Any

27rf[2,m-,mbvgi

and3

dE, _de‘*ln/lne ( %niziz n 4 (meEb )3/2) 2.5

dt Amedme v My Te 3r1/2 \ mypsT,
when beam ion’s velocity v, is much less (say 1/3) than the plasma electron thermal velocity
and much larger (say 2 times) than the plasma ion thermal velocity. The first term in the right-
hand side is due to beam-ion collisions and the second term is due to beam-electron collisions
respectively. A critical energy E.. of the beam ion, at which the plasma ions and electrons are

heated at equal rates is given by

mu?2 1 n, 2?2

2/3
3 — Ecr == 14.85T6Ab (n—e Z Tl) (233)

where Ay, A; are atomic weights of the injected ion and plasma ion respectively. When the
energy of the injected ion is larger than F,, the contribution to the electron heating is dominant.
The slowing down time of the ion beam is given by

' By, _ € 3/2
TSlOWdOWn:f b—“—é“%"‘=ﬁln 1+(E) R
E., (dEp/dt) 1.5 Eo

1 Zeneetln A me (2.34)
The  (2m)V/23medme’ *(kTL)3/2 ™ '

where 7, is the energy relaxation time of beam ion with electrons.

2.7 Runaway Electron, Dreicer Field

When a uniform electric field F is applied to a plasma, the motion of & test electron is

dv 1
meE = —el — mmev,



2.8 Electric Resistivity, Ohmic Heating 19

1 etlnA
—_— = OV = ——re——— |
Toe € 2medmivd

The deceleration term decreases as v increases and its magnitude becomes smaller than the
acceleration term | — eE| at a critical value v,. When v > v, the test particle is accelerated.
The deceleration term becomes smaller and the velocity starts to increase without limit. Such
an electron is called a runaway electron. The critical velocity is given by

MeUe, _ e?nln A

% drlE (2.35)

The necessary electric field for a given electron velocity to be v, is called Dreicer field. Taking
In A = 20, we find

m’U‘Q

T =5 x 10“16%. (MKS units)

When n = 10¥m™3, E = 1V/m, electrons with energy larger than 5keV become runaway
electrons. :

2.8 Electric Resistivity, Ohmic Heating

When an electric field less than Dreicer field is applied to a plasma, electrons are accelerated
and are decelerated by collisions with ions to be an equilibrium state as follows:

Me ('Ue - Ui)
Tei

= —eF.

The current density j induced by the electric field becomes

2
€ NaTej
j — .....ene(ve..._lui) — ﬁE_
e

The specific electric resistivity defined by nj = E is*

_ Mot _ (me)'/2ZetnA gy (2.36)

 nee? 51.6mL/2¢}

—3/2
=52x107°Z InA (-’%) )

The specific resistivity of a plasma with T, = 1keV, Z =1is n = 3.3 x 1078 Qm and is slightly
larger than the specific resistivity of copper at 20°C, 1.8 x 1073 Qm. When a current density
of j is induced, the power 172 per unit volume contributes to electron heating. This heating
mechanism of electron is called Ohmic heating.

2.9 Variety of Time and Space Scales in Plasmas

Various kinds of plasma characteristics have been described in this chapter. Characteristic
time scales are a period of electron plasma frequency 27 /Il,, an electron cyclotron period 27 /2.,
an ion cyclotron period 2w/|f2, electron to ion collision time 7, ion to ion collision time 7y
and electron-ion thermal energy relaxation time 75. Alfven velocity va, which is a propagation
velocity of magnetic perturbation, is v3 = B%/(2u0pm) (pm is mass density)(see chs.5,10). Alfven
transit time Ty = L/va is a typical magnetohydrodynamic time scale, where L is a plasma
size. In a medium with the specific resistivity 5, electric field diffuses with the time scale of
R = poL?/n (see ch.5). This time scale is called resistive diffusion time.
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Characteristic scales in length are Debye length Ap, electron Larmor radius pge, ion Larmor
radius pq;, electron-ion collision mean free path A;; and a plasma size L.

The relations between space and time scales are ApJfle = vTe, pref?e = VT, oail (4| = vri;
Aei/Tei 2 3Y%vme, Aii/Ti = 3Y2vr;, L/Ty = va, where v, vr; are the thermal velocities Ve, =
T/ me, v& = &Ti/m;. The drift velocity of guiding center is vanig, ~ xT/eBL = vr(pa/L).
Parameters of a typical D-T fusion plasma with n, = 102%m™3, kT, = «T} = 10keV, B =
5T, L = 1m are followings:

2r /I, =11.1ps (II./2m = 89.8 GHz) Ap = 7T4.5 pm
27/, = 7.1ps (£2/2n = 140GHz) pae = 47.6 um
2n/16%| = 26ns  (|04]/2% = 38 MHz) pai = 2.88mm
Tei = 0.34 ms Aei = 25km
Tii = 5.6 ms /\ii =95km-
75 =03s

=013 us

™ =12 x10%s.
The ranges of scales in time and space extend to TrITe ~ 10*, Asi/Ap ~ 1.6 x 10° and the wide
range of scales suggests the variety and complexity of plasma phenomena.
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Ch.3 Magnetic Configuration and Particle Orbit

In this chapter, the motion of individual charged particles in a more general magnetic fields
is studied in detail. There are a large number of charged particles in a plasma, thus movements
do affect the magnetic field. But this effect is neglected here.

3.1 Maxwell Equations

Let us denote the electric intensity, the magnetic induction, the electric displacement and the
magnetic intensity by E, B, D, and H, respectively. When the charge density and current
density are denoted by p, and j, respectively, Maxwell equations are

2:

VxE+E—0, (3.1}
oD
V.B =0, | (3.3)
V-D=p. (3.4)
p and j satisfy the relation
. dp ,

Eq.(3.2),(3.4) and (3.5) are consistent with each other due to the Maxwell displacement current
dD/dt. From eq.(3.3) the vector B can be expressed by the rotation of the vector A:

B=VxA. (3.6)

A is called vector potential. If eq.(3.6) is substituted into eq.(3.1), we obtain

A
E+4+—]=0. ‘ ‘ )
v (B4 ) =0 (3.7)
The quantity in parenthesis can be expressed by a scalar potential ¢ and
0A
E=-V¢-—- (3.8)
Since any other set of ¢’ and A’,
A =A-Vy, ' (3.9)
P
i = —
¢ =9+ (3.10)

can also satisfy egs.(3.6),(3.8) with an arbitrary ¥, ¢’ and A’ are not uniquely determined.
When the medium is uniform and isotropic, B and D are expressed by

D =¢E, B=uH.
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e and p are called dielectric constant and permeability respectively. The value of € and g in
vacuum are
107

0= 0?.s?/kg - m® = 8.854 x 107*F/m
me

po = 4m x 107 kg - m/C? = 1.257 x 1078 H/m

—_——— =

€olt0

where c¢ is the light speed in vacuum (C is Coulomb}. Plasmas in magnetic field are anisotropic
and € and p are generally in tensor form. In vacuum, eqgs (3.2),(3.3) may be reduced to

o 1 9%4
VxVxA+ Vaf 2%1&2 = lgjJ, (3.11)
A 1 .
¢+V—at = _gp, ' (3.12)

As ¢ and A have arbitrariness of 1 as shown in egs.(3.9),(3.10), we impose the supplementary
condition {Lorentz condition)

19¢
V-A+-Z0=0. (3.13)

Then eqs.{3.11),(3.12) are reduced to the wave equations

2, 10% _ 1 : (81
v Qb (.‘2 3t2 - EOP, (314)
19°A )
VA - F57 = i (3.15)

In derivation of (3.15), a vector relation
Vx(Vxa)-V(V-a)=-Va

is used, which is valid only in (z,y, 2) coordinates. The propagation. velocity of electromagnetic
field is 1/(uo€0)'/? = ¢ in vacuum.
When the fields do not change in time, the field equations reduce to

E=-V¢, B=VxA,

v2¢=_£_p, V2A=—pj, V-A=0, V.j=0.
0

The scalar and vector potentials ¢ and A at an cbservation point P (given by the position vector
r) are expressed in terms of the charge and current densities at the point Q (given by ') by
(see fig.3.1) )

B(r) = — f AT (3.16)

d7ep R !

Ar) =12 / ‘i(-g—)dr’ (3.17)
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Qlr

\(r)

Fig.3.1 Observation point P and the location Q of charge or current.

Fig.3.2 Magnetic surface 1 = const., the normal V¢ and line of magnetic force.

where R=r — 7', R =|R| and dr’ = dz’d'd%’. Accordingly E and B are expressed by

1 R
= — | Zpdy’ N
E 47760]33” . - (318)
_bo [IXR,,
=0 P dr’. (3.19)

When the current distribution is given by a current I flowing in closed loops C, magnetic
intensity is described by Biot-Savart equation

B I faxn ’

where s and n are the unit vectors in the directions of ds and R, respectively.

3.2 Magnetic Surface
A magnetic line of force satisfies the equations

de _dy _d:_dl

3.21
B, B, B, B (3:21)

where [ is the length along a magnetic line of force (df)? = (dz)? + (dy)? + (d2)2. The magnetic
surface ¥(r) = const. is such that all magnetic lines of force lie upon on that surface which
satisfies the condition :

(Vi(r))- B =0. (3.22)

The vector Ve(r}) is normal to the magnetic surface and must be orthogonal to B (see fig.3.2).
In terms of cylindrical coordinates (r, 8, z) the magnetic field B is given by

104 ok oA 04 o 10 . 104
T r 08 oz’ ¢~ "8z or’ T ror r 86 "

In the case of axi-symmetric configuration (8/86 = 0),

B (rAs) — (3.23)

Y(r,z) = rAg(r,z) (3.24)
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satisfies the condition (3.22) of magnetic surface; B,8(rA4y)/0r+ By -0 + B;0(rAg)/0z = 0.
The magnetic surface in the case of translational symmetry (8/0z = 0) is given by

'ﬂb('ra 9) = Az('r?B) . (325)

and the magnetic surface in the case of helical symmetry, in which % is the function of r and
@ — .z only, is given by

P(r,8 — az) = A (r,8 — az) + arAg(r,0 — az) (3.26)

where « is helical pitch paranieter.

3.3 Equation of Motion of a Charged Particle

The equation of motion of a particle with the mass m and the charge ¢ in an electromagnetic
field E, B is

d?r

e

=F=q(E+d—pr). ' (3.27)
dt

Since Lorentz force of the second term in the right-hand side of eq.(3.27) is orthogonal to the
velocity v, the scalar product of Lorentz force and v is zero. The kinetic energy is given by

2 2 t

miug
= E -vdt.
2 3 )i

ny

When the electric field is zero, the kinetic energy of charged particle is conserved. The x
component of eq.(3.27) in the orthogonal coordinates (z,y, z) is written by md?z/dt? = q(E, +
(dy/dt) B,—(dz/dt)By), However the radial component of eq.(3.27) in the cylindrical coordinates
(r,8, 2) is md®r/dt? # ¢(E, + r(d8/dt) B, — (dz/dt)Bg). This indicates that form of eq.(3.27) is
not conserved by the coordinates transformation. When generalized coordinates g; (i = 1, 2, 3)
are used, it is necessary to utilize the Lagrangian formulation. Lagrangian of a charged particle
in the field with scalar and vector potentials ¢, A is given by

. 2
. mu

Lagrangians in the orthogonal and cylindrical coordinates are given by

L{@,y, 28,8, 5, 1) = 28 + 5+ 5) + q(dAe + YAy + 242) — 09,

L(r,8,z,7,0,21) = %"-(1‘-2 + (r8)? + 32) + q(FA, +70Ap + 24,) — ¢

respectively. The equation of motion in Lagrangian formulation is
d (OL\ OL |
— =}~ =0 2
dt (adi) Og; 0 ' (3.29)
The substitution of (3.28) into (3.29) in the case of the orthogonal coordinates yields

d, . O0A 99\
a;(mvm'i'qu)_Q(”'a_m_a) =0,

mimg( P (B0 @0 gDy, 04 8
— 1 ot dt 9z  dtdy dtdz) " Oz 3.’1:)
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=g(E +v x B),,

and this equation is equivalent to eq.(3.27). Lagrangian equation of motion with respect to the
cylindrical coordinates is m# = ¢(E + v x B), + m(r8)%/r and the term of centrifugal force
appears.

Canonical tra.nsformatlon is more general than the coordinates transformation. Hamiltonian
equation of motion is conserved with respect to canonical transformation. In this formulation
we introduce momentum coordinates (p;), in addition to the space coordinates (g;), defined by

_ 0L

= 2. (3.30)

and treat p; as independent variables. Then we can express ¢; as a function of (g;,p;,t) from
€q.(3.30) as follows:

The Hamiltonian H{g;, p;,t) is given by
H(qi,pi,t) = —L(qi, Gi(g5, 75, 1), £) + > _ pidi{gj, s t)- (3.32)
i ‘

The z component of momentum p; in the orthogonal coordinates and @ component pg in the
cylindrical coordinates are written as examples as follows:

Po =M + gAz, = (pz — gAz)/m,
po = mrt0 + qrAg, 8= (po — qrAg)/(mr?).

Hamiltonian in the orthogonal coordinates is |

= im ((p:r: —qAa:)2+(py_qu)2+(pz—Q‘Az)z) + gd{z, y, 2, 1)),

and Hamiltonian in the cylindrical coordinates is
i —grAa)2
7 =%{((Pf‘qf*r)2+————(p9 e +(Pz—qu)2) +4d(r,0,2,1).

The variation of Lagrangian L is given by

8L = Z( 8 +

oL . . . . .
—q,éql) = (pibq; + pibs) = (§ pi@i) + Y (Bidg; — Gidps)
i i i

T

and
=L+ pdi) =Y (6idp: — pides), 6H(qi,pi,t) = > (4:0p; — pibas)-

Accordingly Hamiltonian equation of motion is reduced to

dg; OH dp,  6H

dt  op’ dt ~ Bg’ (3:33)
Equation (3.33) in the orthogonal coordinates is

dr  p: —qA:z dp, q OA d¢

dd - m ' A&t max (p—q4) Yoe
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e T Ta

Jzx

d’z _dp, dA, _ [(U _ %) ¢ (5‘6/% + ('U'V)Az)]
=q(E+vx B), |

and it was shown that eq.(3.33) is equivalent to eq.(3.27}.
When H does not depend on t explicitly (when ¢ , A do not depend on t),

dH(gi,pi) Z (B_H% B_Hdp;)
dt dg; dt  Op; dt

y
i

H(q;,p;) = const. . (3.34)

is one integral of Hamiltonian equations. This integral expresses the conservation of energy.
When the electromagnetic field is axially symmetric, pg is constant due to @H/90 = 0 as is
“seen in eq.(3.33) and

pp = mr2@ 4+ grAp = const. (3.35)

This indicates conservation of the angular momentum. In the case of translational symmetry
(8/3z = 0), we have

p: = mz + gA, = const. . {3.36)

3.4 Particle Orbit in Axially Symmetric System

The coordinates (r*,8*, 2*) on a magnetic surface of an axially symmetric field satisfy'
= r*Ag(r*,2") = em.

On the other hand the coordinates (r, 8, z) of a particle orbit are given by the conservation of
the angular momentum (3.35) as follows;
rAg(r, z) + %ng = ? = const..

If ¢ is chosen to be e = pg/q, the relation between the magnetic surface and the particle orbit
is reduced to .

rAg(r,z) — " Ap(r*, 2"} = -2,

The distance é (fig.3.3) between the magnetic surface and the orbit is given by
d=(r—r"e, + (2 - z"e,,
5-V(rAg) = —%99.

From the relations 7B, = —8(rAp)/0z, B, = 8(rAp)/0r, we find

[—(z— 2B+ (r—7")B,| = —%ré_
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(r.2)

Fig.3.3 Magnetic surface (dotted line) and particle orbit (solid line).

\\\\

Vi

//,w‘

Fig.3.4 The dotted lines are lines of magnetic force and the solid lines are particle orbit in cusp field.

This expressnon in the left-hand side is the # component of the vector product of B, = (B;,0,B,)
and § = (r — r*,0,z — zx). Then this is reduced to

B, x &) = —T—;L-ré.-

Denote the magnitude of poloidal component By, (component within (rz) plane) of B by B,
Then we find the relation —B,d = —(m/q)ug (ve = r8) and

This value is equal to the Larmor radius corresponding to the magnetic field B, and the tan-
gential velocity vs. If ey is chosen to be em = (pg — m(rve)}/q ({rve) is the average of rug), we
find

o (vg - <”’">) | (3.37)

qB, T

Let us consider a cusp field as a simple example of axi-symmetric system. Cusp field is given
by

A, =0, Ap = arz, A; =0, (3.38)
B, = —ar, By =0, B, = 2az. (3.39)

From eq.(3.34) of energy conservation and eq.(3.35) of angular momentum conservation, we
find

5 _ Pe
mré = . aaer,
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Fig.3.5 Toroidal drift.

m,. . (pg — gar?z)? m
Fo7 )+ BT w (= Tt

These equations correspond to the motion of particle in a potential of X = (pg—qar?z)?/(2mr?).
When the electric field is zero, the kinetic energy of the particle is conserved, the region con-
taining orbits of the particle with the energy of mv3/2 is limited by (see fig.3.4)

3.5 Drift of Guiding Center in Toroidal Field

Let us consider the drift of guiding center of a charged particle in a simple toroidal field
(B, =0, B, = BoRg/R, B, = 0} in terms of cylindrical coordinates (R, ¢, z}. The  component
B, is called toroidal field and B,, decreases in the form of 1/R outward. The magnetic lines of
force are circles around z axis. The z axis is called the major azis of the torus. As was described
in sec.2.4, the drift velocity of the guiding center is given by

2
2, Vi
vG = V| ep + B R (v” -+ ?) e;.

Particles in this simple torus run fast in the toroidal direction and drift slowly in the z direction
with the velocity of

m 2, VLY (PR
Vgr = qBoRo( vi + ) (Ro)v (3.40}

This drift is called toroidal drift. Ions and electrons drift in opposite direction along z axis. As
a consequence of the resultant charge separation, an electric field E is induced and both ions
and electrons drift outward by E x B/B? drift. Consequently, a simple toroidal field cannot
confine a plasma (fig.3.5), unless the separated charges are cancelled or short-circuited by an
appropriate method. If lines of magnetic force connect the upper and lower regions as is shown
in fig.3.6, the separated charges can be short-circuited, as the charged particles can move freely
along the lines of force. If a current is induced in a toroidal plasma, the component of magnetic
field around the magnetic axis (which is also called minor azis) is introduced as is shown in
fig.3.6. This component By, is called poloidal magnetic field. The radius R of the magnetic axis
is called major radius of torus and the radius a of the plasma cross section is called minor radius.
Denote the radial coordinate in plasma cross section by ». When a line of magnetic force circles
the major axis of torus and come back to cross the plane P, the cross point rotates around the
minor axis O by an angle + in P, there is following relation:

re. By
2rR B,
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Fig.3.6 The major axis A, the minor axis M of toroidal field and rotational transform angle ¢.

The angle ¢ is called rotational transform angle and is given by

L R By
o = 7 B (3.41)

A= R/a is called aspect ratio.

3.5a Guiding Center of Circulating Particles
When a particle circulates torus with the velocity of vy, it takes T = 2n Ry /v. Accordingly
the particle rotates around the minor axis with angular velocity of
T

T  2xRg

and drifts in z direction with the velocity of vg,. Introducmg = R — Ry coordinate, the orbit
of the guiding center of the particle is given by

dz z
= ~wz — =W 4 Vg;-

dt Todt

var \ 2 2 2
(:c-i——) 42 =1r-.
W

If a rotational transform angle is introduced, the orbit becomes a closed circle and the center of
orbit circle deviates from the center of magnetic surface by the amount of

Udr muy| 2w Ui ,
A=——"=-—— |1+ 3.42
w gBpy ¢ + 22 |’ (3-42)

[
2
|A] ~ po (T)

where pq is Larmor radius. As is seen in fig.3.7, the sign of the deviation is A < 0 for the case
of vy > 0, g > 0 (ion) since vy, > 0, w > 0 and the sign becomes A > 0 for the case of v < 0
(opposit to vy > 0) ¢ > 0 (ion).

The solution is

3.5b Guiding Center of Banana Particles
In the case of |B,| > |Bp|, the magnitude of toroidal field is nearly equal to B, and

_ BoRy By -~ (_L )
B= R _1+('r/1-\3)cos.‘5’_B0 1 R{)COSG.
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ion electron

Fig.3.7 Orbits (solid lines) of guiding center of circulating ions and electrons and magnetic surfaces
{dotted lines).

Denote the length along magnetic line of force by I, and denote the projection of a location on
the magnetic line of force to (R, z) plane by the coordinates (r,8) as is shown in fig.3.8. Since
the following relations '

r6 B, ! B
W_oZp =2 _
I By 7B,

" holds, we find

B = Bg (1 — % cos(nl)) .

If v (parallel component to magnetic field) is much smaller than v, component and satisfies
the condition;

Vi T ’Uﬁ<'r 343)
v? R’ v2 R (3.43)

the particle is trapped outside in the weak region of magnetic field due to the mirror effect as
is described in sec.2.5 (The mirror ratio is (1/R)/{(1/(R + r))). This particle is called trapped
particle. Circulating particle without trapped is called untrapped particles. Since vﬁ < v3 for
the trapped particle, the r component of the toroidal drift vg, of trapped particle is given by

2

m v
P vg. sinf = —— —= sin 8.
dr ¢Bo 2R

The parallel motion of the guiding center is given by (see sec.2.4)

dvy _ pmdB
dt T m al’
2B
o) = —%%nﬁbsinml = —;—EB—zsinB.
The solution is d

: e+ 2y} =0
dt gB, | ’
rT—Tg = - Y- ' (3.44)

qu
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Fig.3.9 Banana orbit of ion

Here r = ry indicates the radial coordinate of turning point by mirror effect. Since the orbit is
of banana shape, the trapped particle is also called banena particle (see fig.3.9). The width of
banana Ay, is given by '

' m mu vy B Bg /T\Y? R\'Y2 2

3.6 Orbit of Guiding Center and Magnetic Surface

The velocity of guiding center was derived in sec.2.4 as follows:

mu? /2
qB?

vg = b+ —;—(E x b} + (bx VB) + ;%Tﬁ(b x (b-V)B) - (3.46)

fm = mvf_/éB) = const.
When the electric field F is static and is expressed by E = —V¢, the conservation of energy

' %(’uﬁ +0})+gp=W
holds. Then vy is expressed b)(
9 1/2

w=t(2) W -gp-pmB) o (3.47)

Noting that v) is a function of the coodinates, we can write

V x (my;b) = myV x b+ V(my) x b

1
=myV x b+ U—”(—qVq.‘; — mVB) x b
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and
m'uJ_/2

ngx(mv“b) “be+ =(Exb)+ (bx VB).

Then eq.(3.46) for vg is reduced to

2
v muv m
ve = yyb+ (q—'l';v x (muyb) — Eﬁv x b) + &—"(b x (b V)B)

, 2
= upb+ LY x (muyb) — (¥ x b— b x (b- V)b)
= b+ GV x (myb) — 5 :

As the relation V(b-b) = 2(b-V)b+2b x (Vx b) = 0 ((b-b) = 1) holds (see appendix
Mathematical Formula), the third term in right-hand side of the equatlon for vg becomes
( )=(Vxb)—(Vxb),=(Vxb)=(b-(Vxb))b. Since Vx B =BV xb+VBxb=pj,
we have b- V x b = pojj/B. The ratio of the third term to the first one, which are both parallel
to the magnetic field, is usually small. If the third term can be neglected, eq.(3.46) for vg is
reduced to

drg _ v ( M)
G=pvx(a+ gB) | (3.48)

The orbit of guiding center is equal to the field line of magnetic field B* = V x A* with the
vector potential :

* my|
A = — .
A+ B B

By reason analogous to that in sec.3.2, the orbit surface of drift motion of guiding center is given
by

rAp(r, z) = const. ' (3.49)

in the case of axi-symmetric configuration.

3.7 Effect of Longitudinal Electric Field on Banana Orbit

In the tokamak configuration, a toroidal electric field is applied in order to induce the plasma
current. The guiding center of a particle drifts by E x B/ B2, but the banana center moves in
different way. The toroidal electric field can be described by
0A,

at

in (R, i, z) coordinates. Since angular momentum is conserved, we can write

E,= -

R(mRyp + qA,) = const.

Taking the average of foregoing equation over a Larmor period, and using the relation

) B
(Rp) = =)

we find

B,
R (m'u"? +gA ) = const. (3.50)



3.7 Effect of Longitudinal Electric Field on Banana Orbit 33

Fig.3.10 Coordinate system for explanation of Ware’s pinch.

For particles in banana motion (v < v, ), v) becomes 0 at the turning points of the banana
orbit. The displacement of a turning point (R, Z) per period At is obtained from

7]
0= A(RA,(R,Z)) = ﬁn"—t?—-R}-L,9 + At—RA,
or ot
where r is the radial coordinate of the magnetic surface. The differentiations of RA,, = const.
with respect to ¢ and @ are zero, since RA, = const. is the magnetic surface. By means of the
relation

lg(RA )= l(@B(RAq,) _(‘?“Z_a(RA,p))
Ror ¥ R\8r 6R or 0Z

=cos#Bz —sinBg = B,
we obtaine the drift velocity

Ar Eg

—_—= 3.51

At Bp (3:51)
When the sign of B, produced by the current induced by the electric field E,, is taken account
(see fig.3.10), the sign of Ar/At is negative and the banana center moves inward. Since |B,| <
[B,| ~ B, the drift velocity of banana center is (B/B)? times as fast as the the drift velocity
E,Bp /B? of guiding center of particle. This phenomena is called Ware’s pinch.
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Ch.4 Velocitg Space Distribution Function and
Boltzmann’s Equation

A plasma consists of many ions and electrons, but the individual behavior of each particle can
hardly be observed. What can be observed instead are statistical averages. In order to describe
the properties of a plasma, it is necessary to define a distribution function that indicates particle
number density in the phase space whose ordinates are the particle positions and velocities. The
distribution function is not necessarily stationary with respect to time. In sec.4.1, the equa-
tion governing the distribution function f{g;,p;,t) is derived by means of Liouville's theorem.
Boltzmann’s equation for the distribution function f(x,v,¢) is formulated in sec.4.2. When the
collision term is neglected, Boltzmann’s equation is called Vlasov’s equation.

4.1 Phase Space and Distribution Function

A particle can be specified by its coordinates (2, v, z), velocity (vz,vy,v;), and time ¢t. More
generally, the particle can be specified by canonical variables g1, ¢2, 43, p1, P2, P3 and t in phase
space. When canonical variables are used, an infinitesimal volume in phase space
A = 8q10qa8q3dp1p20ps is conserved (Liouville’s theorem). The motion of a particle in phase
space is described by Hamilton’s equations

d_(_]i _ aH(q_;prst) % 6H(q.7:pj‘:t)

at e dat  da - @
The variation over time of A is given by

dA d{s. d(a
T ( (dfl)fs + (dpl 591) dq20padqsdps + -
d oH o°H

—dg; =& = ———4g¢;,
dt (Bp.) Opidg
d P (BH ) 0°H o°H
= dgi)  9g:0p: Pis
dA d*H J*H

= - A=0. .
t 21: (61?1-6‘% aqiﬁpe) (42)
Let the number of particles in a small volume of phase space be éN

N = F(q,;,p.g, t)Jqu ! (43)

where §q = 8¢16q20q3, 8p = 6p16p2dps, and F(gi, ps, t) is the distribution function in phase space.
If the particles move according to the equation of motion and are not scattered by collisions,
the small volume in phase space is conserved. As the particle number NV within the small phase
space is conserved, the distribution function (F' = §N/A) is also constant, i.e.,

F F i
d ,,,6 Z(@qu, 0de) oOF Z(@H@F BHBF) 0. (4.4)

TR o dt Bpdt/) Bt op: 00 8q: Bp:



4.2 Boltzmann’s Equation and Vlasov’s Equation 35

dq ép

aq &p
Fig.4.1 Movement of particles in phase space.

In the foregoing discussion we did not take collisions into account. If we denote the variation of
F due to the collisions by (§F/dt)con, eq.(4.4) becomes

OF C./BHOF OHOF 6F
2 ; (B_M_e - a_méa) - (5)@1‘ (4.5)

4.2 Boltzmann’s Equation and Vlasov’s Equation

Let us use the space and velocxty—space coordinates z1, z2, T3, ¥1, Ve, v3 instead of the canonical
coordinates. The Hamiltonian is

H= 5:;(;; - qA)? + q¢, (4.6)

pi = my; + in, | (4.7

gi = T; ' _ ' (4.8)
and

T | (49)

% _ _gg _ zk: (Px ;qu)q%:f gi_ (4.10)

Consequently eq.(4.5) becomes

3
04, 06 ( oF )
_ . 411
§ k + QX; (g Yk Ox; 83’.‘,) 8;0, ot coll ( )

By use of eqs.(4.7) (4.8), independent variables are transformed from (g;, p;, t) to (z;,v;,t) and

6Uj (:L'k,pk; t) 1

= _61:':

Op; m
av_‘f(mkapk:t) — _E_%
dz; m Oz;’
Ovi(zk, Pr,t) g B4,

ot  m 8t
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We denote F(zi,pi,t) = F{zi, pi(z;,v;,t),t) = f(zj,v5,t)/m>. Then we have m3F (z;,pi, t) =

f(=zj, vj(zi, pi, t), t) and

8 of 8v; Of 1
3 ===
m B t) = ErS f(mj,UJ(Ih:ph7 Z dv; Op; T Bu;m
a af Bf 3'0.;
m -3""—F(:L'h,’ph,t) = —"'f(-":uvt(mh’phst) t + Z a’Ui Oz,

d4;

aﬂik Z dv; ( ) Oz
o a . af 8f [~q\ OA;
3 _ R = 24 e B O Wdalt}
m atF(:Dhuphat) atf(mh 'Ut(xh:phyt):t) at + ; 67}1‘ (m) Bt -

Accordingly eq.(4.11) is reduced to
O | 208 (0) 0 -, (01 5 OF (1) 0
+ ; ov; (Tn— ot + . Oz, Z du; \m ] Oz
(o 94y _ 8\ a Of (g ) |
Uk Bzs ox; Oz; | m 3‘01 ot coll ’
of Of , n~(_0A -, 0Ai <~ OAx 3¢ ¢ 0f
S +z( S S ami)maw

Since the following relation is hold

0Ag

aAi _ 3A,, _
;vka—mi = ;vkt—ﬁ: + (v x(V x 4)),, = ;Uka_mk + (v x B);.

we have

] 5
+Z' +Z—(E+ xB)B{ (6_{)@1{

-

8f

dat

) coll

(4.12)

This equation is called Boltzmann’s equation. The electric charge density p and the electric

current j are expressed by

p=> Q] fdviduadus,
i,e

j= Zt;/vfdvldvzdvg.
ie

Accordingly Maxwell equations are given by

1
V-E_ngffdv,

_};EVXB_GU-__FZQ/.dev

OB
VxE_-E,

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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V-B=0. (4.18)

When the plasma is rarefied, the collision term (8f/t).on may be neglected. However, the
interactions of the charged particles are still included through the internal electric and magnetic
field which are calculated from the charge and current densities by means of Maxwell equations.
The charge and current densities are expressed by the distribution functions for the electron and
the ion. This equation is called collisionless Boltzmann’s equation or Vlasov’s eguation.

When Fokker-Planck collision term! is adopted as the collision term of Boltzmann’s equation,
this equation is called Fokker-Planck equation (see sec.15.9).
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Ch.5 Plasma as Magnetohydrodynamic Fluid

5.1 Magnetohydrodynamic Equations for Two Fluids

Plasmas can be described as magnetohydrodynamic two fluids of ions and electrons with mass
densities py;, Pme, charge density p, current density j, flow velocities Vi, V., and pressures p;,
pe- These physical quantities can be expressed by appropriate averages in velocity space by
use of the velocity space distribution functions f;(r,v,t) of ions and electrons, which were
introduced in ch.4. The number density of ion n;, the ion mass density pm;, and the ion flow
velocity Vi(r,t) are expressed as follows:

ni(r, t) = [ fi(r, v, t)dv, (5.1)

pmi(rit) = mini(r, t)! (52)

_ Jufilr,ot)dy 1
Vir,t) = [fr v, tydv  n(r. ¢

) f'vfi('r,v,t)dv. (5.3)

We have the same expressions for electrons as those of ions. Since magnetohydrodynamics
will treat average quantities in the velocity space, phenomena associated with the shape of the
velocity space distribution function (ch.11) will be neglected. However the independent variables
are r,t only and it is possible to analyze geometrically complicated configurations.

Equations of magnetohydrodynamics are followings:

One

at + v * (neVe) == 0, (54)
on;
5 TV (Vi) =0, (5.5)
dV,
nemew =—Vpe—ene(E+V.xB)+ R, (5.6)
dv; '
Mimi—= = ~Vp; + Zeni(E+V;x B) - R. (5.7)

Here R denotes the rate of momentum (density)} change of the electron fluid by the collision with
the ion fluid. The rate of momentum change of the ion fluid due to the collision with electron
fluid is —R. The change of the number n(z,y, z,t)AzAyAz of particles within the region of
Az AyAz is the difference between the incident particle flux n(z,y, 2, t)Ve{z, y, 2, ) AyAz into
the surface A in fig.5.1 and outgoing particle lux n(x + Az, y, z,t)Vo(z + Az, y, z,t) AyAz from
the surface A’, that is,

(n(z,y, 2,1)Va(z,y, 2,t) — n(z + Az, 9, 2, t)Va(z + A, 9, 2, 1)} Ay Az

_ AnVvy)

B Az AyAz.
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n(z + Az)Vy(z + Az)

nz, )V (2,1}
Fig.5.1 Particle flux and force due to pressure

When the particle fluxes of the other surfaces are taken into accout, we find (5.4), that is

an (a(nm L 0% | (nr)

—A = .
e TAyAz = p 3y 52 )A;t:AyAz

The term —Vp in eqs.(5.6),(5.7) is the force per unit volume of plasma due to the pressure
p by the following reason. The force applied to the surface A in fig.5.1 is p(x,y, 2,t)AyAz and
the force on the surface A’ is —p(z + Az, y, 2,t) AyAz. Therefore the sum of these two forces is

. a:
(~p(z + Az,y,2,1) +plz,y, 2, 1) Ayde = ~ = AsAyAz
in the z direction. When the effects of the pressure on the other surfaces are taken account, the
resultant force due to the pressure per unit volume is
_ (619 . O Op, )

+_

P e

where &, §, 2 are the unit vector in z, y, z directions respectively. The second term in right-hand
side of eqs.(5.6),(5.7) is Lorentz force per unit volume. The third term is the collision term of
electron-ion collision as is mentioned in sec.2.8 and is given by

R=—nme(V.— V) vy (5.8)

where v, is coulomb collision frequency of electron with ion.

Let us consider the total time differential in the left-hand side of equation of motion. The
flow velocity V is a function of space coordinates r and time t. Then the acceleration of a small
volume of fluid is given by

dV(r,t) _oV(r)
dt ot (

_ oV (r,t)

vir Ot

+ (V(r,t) - V)V (r,1).

Therefore the equations of motion (5.6),(5.7) are reduced to

oV

MM ( 5 +{(Ve- V)V | =-Vp. —en.(E+V.x B+ R (5.9}
Vi

;M (%+(V V)V) =-Vp + Zeni(E + V x B) — R. (5.10)

Conservation of particle (5.4},(5.5), the equations of motion (5.9), (5.10) can be derived from
Boltzmann equation (4.12). Integration of Boltzmann equation over velocity space yields eqgs.(5.4),
(5.5). Integration of Boltzmann equation multiplied by mwv yields eqs. (5.9),(5.10). The process
of the mathematical derivation is described in Appendix A.
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5.2 Magnetohydrodynamic Equations for One Fluid

Since the ion-to-electron mass ratio is m;/m. = 1836A (A is atomic weight of the ion), the
contribution of ions to the mass density of plasma is dominant. In many cases it is more con-
venient to reorganize the equations of motion for two fluids to the equation of motion for one
fluid and Ohm’s law.

The total mass density of plasma py, the flow velocity of plasma V', the electric charge
density p and the current density 7 are defined as follows:

Pm = MeMe + NN, {(5.11)
V= nemeVep+ nim;Vi, | (5.12)
p = —ene + Zen;, (5.13)
J=—eneVe+ ZeniVi. ' | | (5.14)

From egs.(5.4),{5.5), it follows that

Opm _ '

Y +V - (pnV)=0, (5.15)
dp .

_5t—+v‘-7_0‘ (5.16)

From eqs.(5.9) (5.10), we find

pm?a—t‘{' + neme(Ve . V)Ve + nimi(Vi . V)Vi

=-Vi{p.+p)+pE+3xB. ' (5.17)
The charge neutrality of the plasma allows us to write ne ~ Zn;. Denote Ane = n. — Zn;, we
have
meZ

€
mj

Pm = MM (1+%Z), P=pi+p, V=Vi+ (Ve— Vi),

p=—elAn,, JF=—en({Ve.—V,).

Since m,/m; < 1, the second and third terms in left-hand side of eq.(5.17) can be written to be
(V-A)V. Since Ve =V — j/en. =~ V — j/en., eq.(5.9) reduces to

] 1 R me 0] medV
E+(v- B Vpe — e = e 0 T T2 1
+ ( e) 8 + ENg Pe ETe e2ne Bt [ at (5 8)
By use of the expression of specific resistivity n, (see sec.2.8) the collision term R is reduced to
R=n. (%) (—ene)(Ve ~ Vi) = neenj. (5.19)
e

Equation (5.18) corresponds a generalized Ohm’s law. Finally the equation of motion for one
fluid model and a generalized Ohm’s law are give by

v
P (W +{(V. V)V) =-Vp+pE+jxB, (5.20)
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j 1 . Me 33 e BV
E+(v-2L)xB =R 9 MOV
t ( ene) X B+ ene Vpe = 1] en. 0t e 0
(/| < 1) (5.21)

The equation of continuity and Maxwell equations are

-

Opm

e +V-(pmV) =0, (5.22)
%te+v-j=0, | - (5.23)
VxE= —‘%B, (5.24)
ﬁ%ws:;‘+%, (5:25)
V-D=p, ' (5.'26)
vV-B=0. : _ (5.27)

From eqs.(5.25),(5.24), it follows V x V x E = —p083 /0t — ugeg0* E/3t2. A typical propagation
velocity of magnetohydrodynamic wave or perturbation is Alfven velocity va = B/(topm)!/?
as is described in sec.5.4 and is much smaller than light speed ¢ and w?/k% ~ v% < ¢2. Since
|V x(8B/8t)| = |VxVx E| ~ k*|E|, and eg|0?E/0t?| ~ w?|E|/c?, the displacement current,
dD /6t in (5.25) is negligible. Since the ratio of the first term (m./e)8; /8¢ in right-hand side
of eq.(5.21) to the term (j x B) in left-hand side is w/f2, the first term can be neglected, if
|w/ 2] < 1. The second term (m./e)8V /Ot in the right-hand side of eq.(5.21) is of the order of
w/ {2 times as large as the term V' x B in the left-hand side. Therefore we may set the right-
hand side of eq.(5.21) nearly zero. When the term j x B is eliminated by the use of eq.(5.20),
we find

A""E m; dV

1
E+VxB—-—Vp—nj= .
TV en pi—ni Tle e dt

The ratio of (m;/e)dV /dt to V x B is around |w/f2i|, and Ane/ne < 1. When |w/2i} < 1, we
find

' ‘ 1
E+V xB- ani =7n7. (|w/Z K1) (5.28)

5.3 Simplified Magnetohydrodynamic Equations

When |w/§2i] € 1, [w/k| < ¢, and the ion pressure term Vp; can be neglected in Ohm’s law,
magnetohydrodynamic equations are simplified as follows:

E+V x B =nj, (5.29)

. Pm (%—‘:Jr(v-vw) = -Vp+jxB, S (5.30)
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Y x B = uoj, (5.31)
aoB
E=—-"— .32
V x 5 (5.32)
V-B=0(, (5.33)
Opm
Bt +(V -V)pm+paV -V =0. (5.34)

We may add the adiabatic equation as an equation of state;

d
— v = 0
dt(ppm ) =0,

where the quantity + is the ratio of specific heats and «v = (2 + §)/4 (4 is the number of degrees
of freedom) is 5/3 in the three dimensional case § = 3. Combined with eq.(5.34), the adiabatic
equation becomes

a .
Ep +(V-V)p+7pV -V =0. (5.35)
In stead of this relation, we may use the more simple relation of incompressibility

V.- V=0 (5.36)

if |(dp/dt)/p)| < |V -V|. From eqs.(5.31),(5.32), the energy conservation law is given by

1 o { B2
“V(ExB)+—|—|+E-j=0. 5.37
" ( ) &(2”0) 3 (5.37)

From eq.(5.29), the third term in the right-hand side of eq.(5.37) becomes
E j=n?+({xB)-V. (5.38)
By use of eqs.(5.30),(5.34), Lorentz term in eq.(5.38) is expressed by

. 0 pmV?
(JXB)'V—a( 5

PmV?
2

1+ V- ( V)+V.Vp

From eq.(5.35), it follows that
dp
V- (pV) = 5 +(v—1)pV-V

and

a P P
V.V :-(—)+v-(——+ )v.
P=5 pogy S P

Therefore the energy conservation law (5.37) is reduced to

O fpmV?® p _ B 2 pmV? P
V(EXH)-I—E( 5 +m+ﬂ +nj°+V- 2 +m+p V =0. (5.39)
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The substitution of (5.29) into (5.32) yields

aB—Vx(VxB)——any—Vx(VxB)—I— —AB (5.40)

ot Ho

0B

5= (V-V)B-B(V-V)+(B-V)V + N—AB (5.41)
0

Here we used vector formula for V x (V' x B) (see appendix) and V x (V x B) = —~AB (valid
only in the case of orthogonal coordinates). The quantity n/po = vm is called magnetic viscosity.
The substitution of (5.31) into (5.30) yields

dv

P dt = 2ug

B? 1 :
-V (p_|_ _) + EO-(B -V)B. (5.42)
The equation of motion (5.42) and the equation of magnetic diffusion (5.41) are fundamental
equations of magnetohydrodynamics. Equation (5.33) V - B = 0, equation of continuity (5.34)
and equation of state (5.35) or (5.36) are additional equations.
The ratio of the first term to the second term of the right-hand side in eq.(5.40), Ry,, defined
by

Vx(VxB) _ VB/L VL
|AB(n/po)l ~ (B/L?)(n/m) 7

is called magnetic Reynolds number. The notation L is a typical plasma size. Magnetic Reynolds
number is equal to the ratio of magnetic diffusion time g = poL?/n to Alfven transit time
T = L/vp (it is assumed that v & v,), that is, Ry, = Tr/7u. When Ry, < 1, the magnetic
field in a plasma changes according to diffusion equation. When R, > 1, it can be shown that
the lines of magnetic force are frozen in the plasma. Let the magnetic flux within the surface
element AS be AP, and take the z axis in the B direction. Then A& is

R | (5.43)

AP = B-nAS = BAzAy.
As the boundary of AS moves, the rate of change of AS is
d d oV,

a-i(AI) = EE(I + Az —z) = Vo{z + Az) — V() = o Az,
d v, OV,
S(48) = (8:!: By)A z4y.
The rate of change of the flux A is
(a7~ Bas. L as) - (G +BE-V)-(B-V)V) as= LAB(45). (540
z 0

(see eq.(5.41)). When R, — o0, n — 0, the rate of change of the flux becomes zero, i.e.,
d(A®)/dt — 0. This means the magnetic flux is frozen in the plasma.

5.4 Magnetoacoustic Wave

As usual, we indicate zeroth-order quantities (in equilibrium state) by a subscript (0 and 1st-
order perturbation terms by a subscript 1, that is, pm = pmo+pPm1, P=po+p1, V=0+V, B =
By + B;. The case of n = 0 will be considered here. Then we find the lst-order equations as
follows:

apml

5 TV (PmV)} =0, (5.45)
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ov . .
pmﬂﬁ +Vp = jg x B, +7; % By, (546)
)
;’; (V-V)po+ypoV -V =0, (5.47)
% =V x (V x Byp). (5.48)

If displacement of the plasma from the equilibrium position rg is denoted by £(ro, t), it follows
that

£(ro,t) =T — 7,

Y
Ve | (5.49)

The substitution of (5.49) into egs.(5.48),(5.45),(5.47) yields

By =V x (§ x Bo), , (5.50)
poj, =V x By, (5.51)
pm1 = =V - (pmo§), (5.52)
p1=-§-Vpo — 1PV - €. (5.53)

Then equation (5.46) is reduced to

32
Pmo atg = V(£ Voo + ypeV - €) + —(V x Bg) ®x By 4+ — i (V x B1) x By. (5.54)

Let us consider the case where By = const. pg = const., and the displacement is expressed by
£(r,t) = £, expi(k - r — wt), then eq.(5.54) is reduced to

—pmow?€; = —ypol(k - €1)k — pg " (k x (k x (€, x By))) x Bo. (5.55)
Using the vector formula a x (b x ¢} = b(a-¢) — c¢(a - b), we can write eq.(5.55) as
((k - By)® — #owzpmo) €+ ((BS + povpolk — (k- BD)BO) (k- &) —(k-Bo)(Bo-& )}k =0.

If the unit vectors of k, By are denoted by k= k/ k, b= By/By, and the nota.tidns V = w/k,
v3 = BZ/(10pmo), 8 = po/(B§/2mm), cosf = (k - b) are introduced, we find

2
(cos? 6 — Z—%)ﬁl + ((1 + ﬁ) - cosﬂb) (k-€)~cosf(b-&)k=0. (5.56)

The scalar product of eq.(5.56) with k and b, and the vector product of k with eq.(5.56), yield

2
1+ - ) ) = cosblb-81) =
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B o V2
“2—C039(k €1) — = (b-&) =0,
VA

v? -~
(cos?0 — —-)b-(k x &) =0
Va
The solutions of these equations are magnetoacoustic wave. One solution is

V2% =12 cos? 6, ’ (&, -k) =0, (&, - Bp) = 0. (5.57)

Since £, of this solution is orthogonal to k and By, this is called torsional Alfvén wave (see
sec.10.4). The other solutions are given by

(%)4 ~(1+ %3 (%) + ﬁcos g =0, (5.58)
By (kx &) =0.

Since €, of these solutions are coplaner with k and By, these solutions are compressional mode
If the velocity of sound is denoted by ¢2 = ypo/pmo, €q.(5.58) becomes

VA4 (v} + )V +viccos?6 =0
~and

VE = ('UA +¢2) + (w3 + c2)? - 4'u cZ cos 6)1/2) . (5.59)

Mln—-

1
V2= 3 (vi +¢2) — ((v] + c2)? — 4w} 2 cos? 0)1/2) . (5.60)
The solution of eq.(5.59) is called compressional Alfvén wave (see sec.10.4) and the solution of

eq.(5.60) is called magnetoacoustic slow wave. Characteristic velocity

=2
HOPm0

is called Alfvén velocity. The plasma with zero resistivity is frozen to the magnetic field. There
is tension B2/2up along the magnetic field line. As the plasma, of mass density pm, sticks to the
field lines, the magnetoacoustic waves can be considered as waves propagating along the strings
of magnetic field lines (see sec.10.4).
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Ch.6 Equilibrium

In order to maintain a hot plasma, we must confine and keep it away from the vacuum-
container wall. The most promising method for such confinement of a hot plasma is the use of
appropriate strong magnetic fields. An equilibrium condition must be satisfied for such magnetic
confinement systems.

6.1 Pressure Equilibrium

When a plasma is in the steady state, magnetohydrodynamic equation (5.30) Iyields the equi-
librium equation

and
V x B = upj, (6.2)
V.-B=40Q, (6.3)
V-j=0. (6.4)

From the equilibrium equation (6.1), it follows that

B-Vp=0, | (6.5)

i-Vp=0. (6.6)

Equation (6.5) indicates that B and Vp are orthogonal, and the surfaces of constant pressure
coincide with the magnetic surfaces. Equation (6.6) shows that the current-density vector j
is everywhere parallel to the constant-pressure surfaces. Substitution of eq.(6.2) into eq.(6.1)
yields

v(p+%)=(B-V)E=BZ(—%n+aBTf&). (6.7)

The following vector relations were used here;
Bx{(VxB)+(B -V)B= V(B*/2), (B-V)B= BY[(b-V)b+ b({b-V)B)/B].

R is the radius of curvature of the line of magnetic force and n is the unit vector directed toward
a point on the line of magnetic force from the center of curvature. { is the length along the field
line. We find the right-hand side of eq.(6.7) can be neglected when the radius of curvature is
much larger than the length over which the magnitude p changes appreciably, i.e., the size of
the plasma, and the variation of B along the line of magnetic force is much smaller than the
variation of B in the perpendicular direction. Then eq.(6.7) becomes

B? B?

Pt o~

20 2p0’
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where By is the the value of the magnetic field at the plasma boundary (p=0).
When the system is axially symmetric and 8/8z = 0, eq.(6.7) exactly reduces to

8 B? + B} B2 | |
o e 6.8
or (p T 2p0 THo (68)

By the multiplification of eq.(6.8) by 72 and the integration by parts we obtain

B? + B} 1 pof  B?
+ =2 = — + = | 27rdr
(p 2m0 ) __ ma? Jo P 2o

ie.,
(BZ) _ Bi(a) + Bj(a)
{p) + S Pet o : (6.9)

( ) is the volume average. As B2/2uq is the pressure of the magnetic field, eq.(6.9) is the
equation of pressure equilibrium. The ratio of plasma pressure to the pressure of the external
magnetic field By

P _ n(Te + ’I‘l)
Bf/2um — B§/2u
is called the beta ratio. For a confined plasma, J is always smaller than 1, and is used as a figure

of merit of the confining magnetic field. The fact that the internal magnetic field is smaller than
the external field indicates the diamagnetism of the plasma. :

8 (6.10)

6.2 Equilibrium Equation for Axially Symmetric and Translationally Symmetric
Systems

Let us use cylindrical coordinates (r, ¢, 2} and denote the magnétic surface by ¥». The magnetic
surface 9 in an axisymmetric system is given by (see (3.24))

Y =r1Ap(r, 2) (6.11)

where (r, ¢, z) are cylindrical coordinates and the » and z components of the magnetic field are
given by

rB, = -2 rB, = (6.12)

o = o

The relation B - Vp = 0 follows from the equilibrium equation and is expressed by

- _Opop  awdp _

‘ 8z 0r ' Or 0z
Accordingly p is a functon of v only, i.e.,
p = p(¥). ' (6.13)

Similarly, from 7 -Vp=0and V x B = pj , we may write
_Opd(rB,) Opd(rBy) _
dr 0z gz or

This means that rB, is a function of 4 only and

0.

rB, = %ﬂb) (6.14)
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1
1(4)

Fig.6.1 Magnetic surfaces ¢ = rA, and I(y)

? r
&)

Equation (6.14) indicates that (1)) means the current flowing in the poloidal direction through
the circular cross section within ¥ = rA, (fig.6.1}. The r component of j x B = Vp leads to
the equation on 1 : ‘

26‘p(1,b) #o 612(’1’)
T =0

{818 &
L) = (’"5;;:5; +@) v

This equation is called Grad-Shafranov equation. The current density is expressed in term of
the function of the magnetic surface as

_ —1oI(¥) . _ 1 oI(y)

AR W Yo 27 o 8r

. 616¢+162 _ Ly
Jo = drrdr roz?] uor

L{y) + (6.15)

where

1
= (u r’p + oy 2(12))

or

. I
j= %B +p're,, | (6.16)

L{) + porj, = 0.

The functions p(y) and I%(1) are arbitrary functions of 1. Let us assume that p and I are
quadratic functions of ¢ . The value 1); at the plasma boundary can be chosen to be zero
(s = 0) without loss of generality. When the values at the boundary are p = ps, I 2 =12 and
the values at the magnetic axis are ¥ = 1, p = po, I> = I3, then p and I? are expressed by

2

p(¥) = ps + (po —ps)%,
4]

20,0\ — 72 2 _ 2¢’_2
FFiy) =L+ (I — IJ)—
¥
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The equilibrium equation (6.15) is then reduced to
L{xp) + (ar? + By = 0,

_m {g-12)

o= 2opo-p) g
S dm? 2

¥

Since

| .
fv%(muﬁ)*f’dvZQNOf‘,(p—ps)dV+fT°2[V—~——( — ) av,

1 _ 1 1 v 2 0
fv VLAV = /S Sy - ndS j; S(V)2v = jv (B? + B2)dv
eq.(6.15) of equilibrium equation is reduced to
_ [ 1 2 (p2 . R
/@‘Pﬂ)dv = / % (Bsov - Btp +(Br + Bz)) dv.
This is the equation of pressure balance under the assumption made on p(¥) and I{(3).

~ The magnetic surface 1, the magnetic field B and the pressure p in translationally symmetric
system {8/0z = () are given by

1!):‘42(7"9):

18y .
Br—;ﬁ, BB— 3’1’" Bz—.zﬂf("»b)!
p=p(¥).

The equilibrium equation is reduced to

18 [ ap\ , 18%  8p(y) pi o) _
FE(’"E)J“FM&?”” oy T8 Ay
A /
J~"-“-—IB+pez,

27
A+ ppj. = 0.

It is possible to drive the similar equilibrium equation in the case of helically symmetric system.

6.3 Tokamak Equilibrium!

The equilibrium equation for an axially symmetric system is given by eq.(6.15). The 2nd and
3rd terms of the left-hand side of the equation are zero outside the plasma region. Let us use
toroidal coordinates (b,w,) (fig.6.2). The relations between these to cylindrical coordinates

Rgsinhb _ Rpsinw

=—" " = —
coshb — cosw’ coshbh — cosw
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Fig.6.2 Toroidal coordinates.

The curves b = by are circles of radius a = Rjgsinh b, centered at » = Rgcothbg, z = 0. The
curves w =const. are also circles. When the magnetic-surface function 4 is replaced by F,
according to
~ 21/2(cosh b ~ cosw)1/?
the function F satisfies
O’F OF &°F 1
— — 4+ — 4+ —F =
L I W

outside the plasma region. When F' is expanded as

F = Xg,(b) cos nw,

the coefficient g, satisfies

dzgn dgn 2 1 _
W—cothbﬁ — (n — Z) gn = 0.

There are two independent solutions:

1 d 1 d
2 " 2 e
(n - Z) gn = sinh bﬁQn_lfg(cosh b), (n - 1) fn = sinh bﬁP —1/2(cosh b).

P,(z) and Q,(z) are Legendre functions. If the ratio of the plasma radius to the major radius

a/Rg is small, i.e., when €% > 1, then g,, and f, are given by

1 2 9
=2 q=-z  fo= b rina-2), fi= 2
m 37

If we take terms up to cosw, F' and 3 are
F = cogo + dofo + 2(c191 + di fr) cos w,

F
v= 21/2(cosh b — cosw)!/2

~ e 21+ e b cosw)F.

Use the coordinates p,w’ shown in fig.6.3. These are related to the cylindrical and toroidal
coordinates as follows:

Rgsinh b
cosh b — cosw

Rgsinw

. !
coshb — cosw

r= Rp+ pcosw’ =
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Fig.8.3 The coordinates r, z and p,w’

When b is large, the relations are

W = w, —€—~eb.

2Ro

Accordingly the magnetic surface 1) is expressed by
2
2 4
+ [(co + —do(b +1n4 - 2)) e+ (é—;dleb - cle_b)] COSw

d’l
. =dg (In-SFR—2)+(2R (1 @—l)pﬂ-h—ﬁ-th)cosw

In terms of ¥, the magnetic-field components are given by

V _—. ' 3 . . -—-l a
rB, = ——az', rB; o
O _ N
rB, = __paw” rB, = 5

From the relation

, —
_..@ = Tﬁwr ~ R—HDIp

P T 2mp

y -

the parameter dy can be taken as dj = poI,R/2m. Here I, is the total plasma current in the ¢
direction. The expression of the magnetic surface is reduced to

7 I,
= Holoft (1 88 _ 2) (”0 (1 8% _ 1) pr iy th)cosw’ (6.17)
2 P 4 P P

where Ry has been replaced by R. In the case of a/R <« 1, the equation of pressure equilibrinm
(6.9) is

(0) = P = o ((B)a + (B2 + BY)a - (BL)).

Here { )} indicates the volume average and p, is the plasma pressure at the plasma boundary.
The value of B? + B2 is equal to B2,. The ratio of (p) to (BZ,)/2ug is ca.lled the poloidal beta
ratio B,. When p, =0, 3, is

— (B2) 2B,y
Bz, rs 1+ B'*’,(

ﬁp =1+ ‘Pv Bapv B‘,o)-. (618)
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B,
By

8<1

1

Y

Fig.6.4 Diamagnetism (8, > 1) and paramagnetism (8, < 1)

Fig.6.5 Displacement of the plasma column.
Po(p") = Yo(p) — Yp(p)A cosw, p' = p— Acosw.

B, and B,, are the toroidal magnetic fields in the plasma and the vacuum toroidal fields
respectively. When B, is smaller than By, the plasma is diamagnetic, 8, > 1. When B, is
larger than B, the plasma is paramagnetic, 3, < 1. When the plasma current flows along
a line of magnetic force, the current produces the poloidal magnetic field B, and a poloidal
component of the plasma current appears and induces an additional toroidal magnetic field.
This is the origin of the paramagnetism.

When the function (6.17) is used, the magnetic field is given by

10y _ —poly ( polp SR 1 ( b )
By = In _ — —_ ,
rdp  2mp + iR p R he p° )) cosw

1oy el SR ) 1( h1)). '
B, = an’_(tler(l -1 +R h2+P2 sinw'.

The cross section of the magnetic surface is the form of

(6.19)

W(p,w") = Yo(p) + Y1 cosw’.

When A = — /4 is much smaller than p, the cross section is a circle whose center is displaced
by an amount (see fig.6.5)

2 8R 2 '
Ap) =L (ln-p———l)+ o+ ).

Let us consider the parameters hy and hs. As will be shown in sec.6.4, the polmdal component
B, of the magnetic field at the plasma surface (r = a) must be

B, {a,w') = B, (1 + %A cos u') : (6.20)
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at equilibrium. a is the plasma radius and

L .
A=fp+5-1 \ (6.21)

and f; is the poloidal beta ratio

__»p
Bo = (B/2m) (6.22)

and & is ’
_ 1 W;’;gf“’ . | (6.23)

The parameters h,; and hy must be chosen to satlsfy B, =0and B, = B,(1+ (a/R)Acosw’)
at the plasma boundary, i.e.,

i - @feasg)
=2 A+2) hy= -2 (10204 g 2 (6.24)
Accordingly % is given by _
_M( %_)_“ﬂ_fp P (A 1) _a , ‘
Y= o In p 2 ™ lna +{A+3 1 7 pCosw . (6.25)
'The term hgpcosw’ in 3 brings in the homogeneous vertical field
hy
B, =—
z R 2

which is to say that we must impése a vertical external field. When we write P = hapcosw' so
that 1 is the sum of two terms, ¥ = 9 + 9., 1. and ¢, are expressed. by

— 80 (18R g 1) peons

e = pm (l +A 5 ) Peosw ‘ (6.26)
polpR ( 8R ) polp, ( 8R ) a? ( 1) ;

= — - — -1 — A+ = . .

Py 5 In p 2]+ ™ In > p+ e + 5 ) | cosw (6.27)
These formulas show that a uniform magnetic field in the z direction,
by, 8R 1) | |

B; = R (l — +A 3 (6.28)

must be applied in order to maintain a toroidal plasma in equilibrium (fig.6.6). This vertical
field weakens the inside poloidal field and strengthens the outside poloidal field.

The amount of B {eq.6.28) for the equilibrium can be derived more intuitively. The hoop
force by which the current ring of a plasma tends to expand is given by

aLlr2

_ 1,01,
"OR 2

Fy
Lplp=const. 2°F BR

where L, is the self-inductance of the current ring:

Lp=ugR(nﬁ+%——2)
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Fig.6.6 Poloidal magnetic field due to the combined plasma current and vertical magnetic field.

T

Fig.6.7 Equilibrium of forces acting on a toroidal plasma.

Accordingly, the hoop force is

pol? (. 8R zi
B 2o (18R,

The outward force F, exerted by the plasma pressure is (fig.6.7)
F, = (p)ma®2m.

The inward (contractive) force Fig; due to the tension of the toroidal field inside the plasma is

. BQ
Fg = —-ift—"i?fr?az
. 2
and the outward force Fgs by the pressure due to the external magnetic field is
32
F B2 = ﬂ?ﬂ' 20,2.
2100

The force Fi acting on the plasma due to the vertical field B, is
FI = IPB J_Q’:T R

Balancing these forces gives
poli (. 8R B, (B}
I — LA | 2.2 b 2 —
— ( +2 )+27ra. ((p)+2u0 e +2wRI,B; =0,

and the amount of B, necessary is

_uofp( 8R 1)
=—">1In LR -
Bi=— p\lntg-1+6-3),
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Fig.6.8 Volume element of a toroidal plasma.

where A = 3, +1;/2 — 1. Eq.(6.9) is used for the derivation.

6.4 Poloidal Field for Tokamak Equilibrium

The plasma pressure and the magnetic stress tensor are given by?

B2 B.B
Tog = [P+ 5 | 8ap — =2,
ﬂ_ (p 2#0) op Lo

Let us consider a volume element bounded by (w,w + dw), (g, + dy}, and (0,a) as is shown
in fig.6.8. Denote the unit vectors in the directions r,z,¢ and p,w by er, e;, e, and e, e,,
respectively. The relations between these are : -

Oy _ _o 9% _,
Odw P B TV
{(Here w is the same as ' of sec.6.3). Let dS,, dS.,, dS, be surface-area elements with the normal

vectors e,, e, e,. Then estimate the forces acting on the surfaces dS, (@), dS,(p+dy) ; dS.(v),
dS. (w + dw); and dS,{a). The sum F, of forces acting on dS, () and ds ((p +dy) is given by

€, = €, COSW + &, sinw, e, = €, Co5Ww — e, sinw,

de, de,, de,

= —dwdzp[ w (ewsinw — e, cosw) — e(p smw) pdp.

When the forces acting on dS,(w) and dS,{w + dw) are estimated, we must take into account
the differences in e, T, dS, = (R+ pcosw) dpdyp at w and w + dw. The sum F,, of forces is

F, = —dw‘d(p/ (TWi (e, (R + pcosw))
JO aw

(e, (R+ pcosw))

a d
+TW‘P% (E(P (R + pcos w)) + Twpé:}"

BTww aTquP aTWP
G Re, + —Reg, + E—Rep) dp

Ow
= dwdy (Rep/ wadp) + dwdy [ep (cosw/Tﬁwpdp—i- R/T(l) )
0
aT'H

—I—euJ (smw / T pdp— R / > dp)}

(1)
+dwdype, (sinw [ oPrdp — R / W’d )

+
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(1)
+dwdy (—ewR/T(l)dp-— ePR/ )
' a
= dwdyp (Rep f Tgwdp)
0
oTL)
+dwdge, (coswa&,pdp—i— R/ (T‘f,ﬂ - —3-‘:)‘3—) dp)
TS
+dwdype,, | sinw / Tgwpdp— R / T“(,,lc',) + v dp

aT
+dwdpe, (smw f T pdp— R ] l'"pd )

As B,(a) = 0, the force F, acting on dS,(a) is

Fp,=—e,T,(R+ acosw)adpdw = ep(;Tnga - (T!S},)Ra +'T£pa2 cosw)). .

The equilibrium condition F, + F,, + F, = 0 is reduced to

fde)

a 2sinw

BT sinw
(1) Wt _ 0 _ 0
f Top + w )dp— R ](T“’“" T‘W)pdp,

BT(I)
dw )

cmwfﬂ&+ﬂimw+Rf(ﬂB
From T « sinw, cosw, it follows that 9TV /9uw? = —TW), So eq.(6.30) is
BT(I) () _ cosw 0 _ g0
] " Bw - T dp R f(Tww - :pr.p)pdp-

Using this relation, we can rewrite eq.(6.31) as

T(l)(a) —cosw (—Tgp(a) + a2_2j(; T‘g¢.pdp) .

Thp and T,, are given by

B B B2 B?
T SoZe poppe e
=Pt et Ty T TP G T 2

From eq.(6.14}, B, is

ol () _ pol{(h) (1 _ P
2rr 2rR

B, =

When B,(a) is written as B,(a) = Bs + BY”, eqs.(6.33) and (6.34) yield the expression

(1 B2
(1)( ) BaB. W(a)2icosw.
#o 2p0

dp —T%a% cosw — T{DRa = 0.

P
Ecosw—i— ) = B,(p) (1 = g COsw + ) .

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)
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On the other hand, eqs.(6.9) and (6.32) give T,g},)(a) as

2 Bl.(a) (B2)
Mgy =2 _ B; _ Beila) (B2) (By)
T, (a) 7 COsw ( Pa S ™ + (p) + 200 200

B Bé’,v(a))

a B?
= —cosw | —Li+ 2({p) — pa} —
(2uo ({p) — pa) o

R
where [; is the normalized internal inductance of the plasma per unit length (the internal induc-
tance L; of the plasma per unit length is given by poli/4n). Accordingly, BY must be

i 24t ((P) pa) )
(1 _ = SR ™ Pa)
B RB cCOSw ( + Bg 1].

B, is w component of the magnetic field due to the plasma current I, i.e.,

#olp

Ba=_21ra'

When the poloidal ratio 8 (recall that this is the ratio of the plasma pressure p to the magnetic
pressure due to B,) is used, B( ) is given by

L
BLI) = %Ba cosw (5 + Bp — 1) : (6.35)

6.5 Upper Limit of Beta Ratio

In the previous subsection, the value of B, necessary for equilibrium was derived. In this
derivation, (a/R)A < 1 was assumed, i.e.,

are

The vertical field B for plasma equilibrium is given by

8R 1
B, =B, ﬁ(ln_+A_§)

The direction of B, is opposite to that of B,, produced by the plasma current inside the torus, so
that the resultant poloidal field becomes zero at some points in inside region of the torus and a
separatrix is formed. When the plasma pressure is increased and 3, becomes large, the necessary
amount of B is increased and the separatrix shifts toward the plasma. For simplicity, let us
consider a sharp-boundary model in which the plasma pressure is constant inside the plasma
boundary, and in which the boundary encloses a plasma current I,. Then the pressure-balance
equation is

B? 32 2,
4 T apty 2 6.36
20 2u0 T 2w : (6:36)

The ¢ components B, B; of the field outside and inside the plasma boundary are proportional
to 1/r, according to eq.(6.14). If the values of B,,, B, at r = R are denoted by Bgv, Bgi
respectively, eq.(6.36) may be written as :

2
B = 2u0p — (B3 - (B) (7 ) -

T
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The upper limit of the plasma pressure is determined by the condition that the resultant poloidal
field at r = rm, inside the torus is zero,

2 . .
2hopmax—mgt = (Bpv) — (BR). | (6-37)
As r is expressed by r = R + acosw, €q.(6.37) is reduced (with (rmin = R~ a)) to

Tglil‘l a w

B:i = 2N0Pmax (1 - 7‘_2) = SﬂﬂpmaxR cos? 5
Herea/R « 11is assumed. From the relation § Buadw = polp, the upper limit ﬁ" of the poloidal
beta ratio is

? R R
~ 0.5—. _ .

ﬁ; 16 a a _ (6.38)
Thus the upper limit of G5 is half of the aspect ratio R/a in this simple model. When the
rotational transform angle . and the safety factor g; = 27/ are introduced, we find that

=7
B, R\2r/ Rg’

so that
2 9 .
P P Bw a
o B2/2u0  BZ/2u0 (qu) (Rqs> P (6.39)
Accordingly, the upper limit of the beta ratio is
0.5a
= . : 6.40)
=g | (6.40)

6.6 Pfirsch-Schliiter Current®

When the plasma pressure is isotropic, the current j in the plasma is given by eqgs.(6.1) and
(6.4) as

:u=§><w

g . B /B
V-3"=-V-JL=—V:(§XV19)m—VpAVx(ﬁ).

ThenJ” is
| 4 Hod VB x B
dj) (VB x b)

where s is length along a line of magnetic force. In the zeroth-order approximation, we can
put B < 1/R, p = p(r), and 8/9s = (90/0s)0/06 = (./(2nR))3/08, where ¢ is the rotational
transform angle. When s increases by 2w R, # increases by . Then eq.(6.42) is reduced to
54
¢ _J..I.l. = _.a_p.i sin &

2rR 80  OrRB
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Fig.6.9 Pfirsch-Schliiter current 7 in a toroidal plasma.

ie.,

97 4r Op . 4m dp
% LB 6 81119 = 356— cos . (643)

This current is called the Pfirsch-Schiiiter current (fig.6.9). These formulas are very important,
and will be used to estimate the diffusion coefficient of a toroidal plasma. The Pfirsch-Schliiter
current is due to the short circuiting, along magnetic-field lines, of toro1dal drift polarization
charges. The resultant current is inversely proportional to ¢.

Let us take the radial variation in plasma pressure p(r) and ¢ to be

p(r) = po (1 - (E)m) )
o) = 1o (5)21—4

respectively; then j) is

= _dmmpo (t)m_zH-SCOSG
I Buwa \a '

Let us estimate the magnetic field B? produced by Jj- As a/R is small, B? is estimated from
the corresponding linear configuration of fig.6.9. We utilize the coordinates (r,#',¢) and put

# = —0' and j = j¢ (v is assumed not to be large). Then the vector potential A7 = (0,0, AP ¢)
for B? is given by

19 aAﬁ 1 0247 a
ror 67' ta 1"2 69'2 = THoX:

When A‘?(r, ¢') = AP(r)cos?, and parameters s = m — 2l + 3, a = 4rmpoug/(Biy) =
mBoB/(w/27) (Bo is beta ratio) are used, we find

10 (08) & _ary
ror TBT 2 a\a/)

In the plasma region (r < a), the vector potential is

- 542
5 _ ar
AL = (((s 3y + 67') cos ¢’
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and AP, outside the plasma region (r > a) is
AP = %cos ¢,

where § and v are constants. Since B?, Bg, must be continuous at the boundary r = a, the
solution for B? inside the plasma is

s+1
ﬂ:—_—q——_- z) - — S+3 1 /
B GToE—1 ((a 5 siné,
(6.44)

841
g___ o 9 (f) _ s+3 ,
Bgr (S+2)2 ] ((3"‘ ) a) ) cos @

and the solution outside is

2
B _ a 51 (g) i
B =Gz \7) =%
s _ - s+1 (3)2 .
Bo=Grap=1 2 \r)
(B, = r~10A./06', By = —0A;/Or). As is clear from eq.(6.44), there is a homogeneous
vertical-field component
. . —(s+3)a —(m — 20+ 6)m 8 3
B, = - B=- Y B
G221~ a(m-Ax - wem. - ™V emn?

This field causes the magnetic surface to be displaced by the amount A. From eq.(3.42), A is
given by

A  —27B, (2m)’8 3
D fm, ) —m—3

=B A o/2m)”
f(m,1) is of the order of 1 and the condition A< a/2 gives the upper limit of the beta ratio:
la /t\2
6.3 (3) -
This critical value is the same as that for the tokarnak.

6.7 Virial Theorem

The equation of equilibrium 7 X B = (V x B) x B = Vp can be reduced to

0 dp :
— Ty — — = .
21.: oz; k™ Bz 0 _ (6.45)
where
1 1., .
T = —(BiBr — 5 B“dit)- (6.46)
Ko 2

This is called the magnetic stress tensor. From the relation (6.45), we have

B? B(B-n)\ .. .
fs((pf%)n——_—m ) dS =0 (6.47)
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where n is the outward unit normal to the closed surface surrounding a volume V.
Since the other relation

Z 5% (T (Tik — pdix)) = (Thw — P) + 7k Z 6(3:,- (Tix — pix) = (Tex — P)

holds,it follows that

B? _ B2 .o _(B-m)}(B-n)
A PO PR PR

This is called the virial theorem. When a plasma fills a finite region with p = 0 outside the
region, and no solid conductor carries the current anywhere inside or outside the plasma, the
magnitude of the magnetic field is the order of 1/r>, so the surface integral approaches zero as
the plasma surface approaches infinity (r — 0). This contradicts that the volume integral of
(6.48) is positive definite. In other words, a plasma of the finite extent cannot be in equilibrium
unless there exist solid conductors to carry the current.

Let us apply the virial theorem (6.48) and (6.47) to a volume element of an axisymmetric
plasma bounded by a closed toroidal surface S; formed by the rotation of an arbitrary shaped
contour l;. We denote the unit normal and tangent of the contour 1y by n and I respectively and
a surface element of the transverse cross section by dS,. The volume and the surface element
are related by

dV = 2rrdS,.
‘The magnetic field B is expressed by
B = Bge,+ B,

where B, is the poloidal field and B, is the magnitude of the toroidal field and e, is the unit
vector in the ¢ direction.
Let us notice two relations

[’r“(r -n)dS; = (a + 3)/7‘"dV (6.49)
/' o @ 10 a+1
r (e,.-n)dSt=fV-(r e,)dV=/;Er dV = (0 +1)
/ re=D4v = 27 f r*dS, | (6.50)

where e, is the unit vector in the r direction. Applying (6.48} to the full torus surrounded by
S, we get

B2 + B? | B2 + B? .
2p0 2p0 Lo
B B?—B? B.B, B,* |

because of By, = Bjl + B,n (see fig.6.10a). When the vacuum toroidal field (without plasma) is
denoted by B, this is given by Byo = pol/(2nr), where I is the total coil current generating
the toroidal field. By use of (6.50), (6.51) reduces to*

B2+ B2 - B2
f (3p+ P’ v 0} 9rrdS,

21
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(2) o (b)

Fig.6.10 Integral region of Virial theorem (a) (6.48) and (b) (6.47).

~ Bf-BX\ . BuBi
-/((p+—2u0 )( )= == )) ds;. (6.52)

Applying eq.(6.47) to the sector region surrounded by ¢ = 0, = Ay and S (see fig.6.10b)
and taking its r component gives* -

2 pg? 2 . .
Ao p+B———"’ dS¢,+A /’ erB_ (n,er)_(B e )(B - n) 45, = 0
20 Ho 27 2u0 Ho

B2 - BL+ B2 ? - B2 BB
27r[ p+ —= L 0 dS(P:-/ ;p-i—L (n-e)— l"(t'e,.) ds, = 0.
2ug 20 Ho .

(6.53)

Egs. (6.52) and {6.53) are used to measure the poloidal beta ratio (6.18) and the internal plasma
inductance per unit length (6.23) of arbitrary shaped axisymmetric toroidal plasma by use of
magnetic probes surrounding the plasma.
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Ch.7 Diffusion of Plasma, Confinement Time

Diffusion and confinement of plasmas are among the most important subjects in fusion re-
search, with theoretical and experimental investigations being carried out concurrently. Al-
though a general discussion of diffusion and confinement requires the consideration of the vari-
ous instabilities (which will be studied in subsequent chapters), it is also important to consider
simple but fundamental diffusion for the ideal stable cases. A typical example (sec.7.1) is clas-
sical diffusion, in which collisions between electrons and ions are dominant effect. The section
7.2 describe the neoclassical diffusion of toroidal plasmas confined in tokamak, for both the
rare-collisional and collisional regions. Sometimes the diffusion of an unstable plasma may be
studied in a phenomenological way, without recourse to a detailed knowledge of instabilities. In
this manner, diffusions cansed by fluctuations in a plasma are explained in secs.7.3 and 7.4.

The transport equation of particles is

%n(aé,t) LV (n(r )V (r,8) = 0 | (7.1)

provided processes of the ionization of neutrals and the recombination of ions are negligible (see
ch.5.1). The particle lux F = nV is given by

n(r,t)V(r,t) = —=D(r,t)Vn(r,t)

in many cases, where I is diffusion coefficient. (Additional terms may be necessary in more
general cases.) .
Diffusion coefficient D and particle confinement time 7, are related by the diffusion equation
of the plasma density n as follows:
o
V- (D¥Vn(r,t)} = —n(r,t).
: at
Substitution of n(r,t) = n(r) exp(—t/r,) in diffusion equation yields

V- (DVn(r)) = —%n(r)_

When D is constant and the plasma column is a cylinder of radius a, the diffusion equation is
reduced to

Logen 1,
ror \ ar/ D'rpn_ '

The solution satisfying the boundary condition n(a) = 0 is

24r t
n = ngJy o exp -
P

and the particle confinement time is

2 2

o= a N a.
P 242D " 58D

where Jy is the zeroth-order Bessel function. The relationship (7.2) between the particle con-
finement time 7, and D holds generally, with only a slight modification of the numerical factor.

(7.2)
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This formula is frequently used to obtain the diffusion coefficient from the observed values of
the plasma radius and particle confinement time.

The equation of energy balance is given by eq.(A.19), which will be derived in appendix A,
as follows:

a3 3 ov;
g (EnnT) +V- (EﬂTnv) +V-q-Q—pV"U—iZjHij6—%j- (7-3)

The first term in the right-hand side is the heat generation due to particle collisions per unit
volume per unit time, the second term is the work done by pressure and the third term is viscous
heating. The first term in the left-hand side is the time derivative of the thermal energy per
unit volume, the second term is convective energy loss and the third term is conductive energy
loss. Denoting the thermal conductivity by kt, the thermal fluz due to heat conduction may be
expressed by

q = —krV(sT).
If the convective loss is neglected and the heat sources in the right-hand side of eq.(7.3) is zero,
we find that

% (gnnT) -V -6V {T)=0.

In the case of n = const., this equation reduces to

% (gnT) =V. (%T-V(RT)) .

When the thermal diffusion coefficient xt is defined by

RT
XT = —»
n

the same equation on T is obtained as eq.(7.1). In the case of yt = const., the solution is
24 t a?
T = koo (== -1y, S — 74
A ( a ’") exp( m) T 5802/3)xr (74)

The term Ty is called energy confinement time.

7.1 Collisional Diffusion (Classical Diffusion)

T.l1a Magnetohydrodynamic Treatment

A magnetohydrodynamic treatment is applicable to diffusion phenomena when the electron-
to-ion collision frequency is large and the mean free path is shorter than the connection length
of the inside regions of good curvature and the outside region of bad curvature of the torus; i.e.,

Ve < 27rR’

Vei [

= 1 1 (nTe)lm
Vei <0 Vo = R21rrvTe T R2m \ m.

where vy, is electron thermal velocity and v,; is electron to ion collision frequency. From Ohm'’s
law (5.28)

1 .
E—i—va—ani:nJ,
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Fig.7.1 Electric field in a plasma confined in a toroidal field. The symbols ® and ©® here show the
direction of the Pfirsch-Schiiiter current.

the motion of plasma across the lines of magnetic force is expressed by

nvl.z % ((nE— %}-V'n) x b) - m;;'ﬂ%

= ; (( E- £vn) X b) — (p0e)’vei (1 + %) Vn | (7.5)

where poe = vTe/ 26, Ve = (.-:Te/me)l/2 and 77 = Melei/€? ﬁe (see sec.2.8).
If the first term in the right-hand side can be neglected, the particle diffusion coefficient D is
given by

T .
D = (pae)ve (1 + ) (7.6)
The classical diffusion coefficient Dg; is defined by
nT, Ben
Dei = (pge) v = ——25 = I (7.7)

c1B? " po’
where T = neez/(meue;), = 1/20'J_.

However the first term of the right-hand side of eq.(7.5) is not always negligible. In toroidal
configuration, the charge separation due to the toroidal drift is not completely cancelled along
the magnetic field lines due to the finite resistivity and an electric field E arises (see fig.7.1).
Therefore the E x b term in eq.(7.5) contributes to the diffusion. Let us consider this term.
From the equilibrium equation, the diamagnetic current ‘

. b 13p
JJ_—"EXVP, JJ'_E(?_T
flows in the plasma. From V-7 = 0, we find ¥V - Jy = —V -j,. By means of the equation
B = By(1 — (r/R)cos ), jj may be written as (see eq.(6.43))
2n 1 Ip
—M 2 9P 7.
= . By or cos 6. , (7.8)

If the electric conductivity along the magnetic lines of force is ), the parallel electric field is
Ey = jy/o|. As is clear from fig.7.1, the relation

Es _ By

—_— e

E, By
holds. From By/By = (v/R)(+/2m), the # component of the electric field is given by

Eg= cosf. (7.9)

Bop _R2r1. 2R(27r)213p

Bg = ?T‘t_ﬂ;]” - O'” r 5 Bo or
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Fig.7.2 Magnetic surface (dotted line) and drift surfaces (solid lines).

Accordingly eq.(7.5) is reduced to

nVr = ~n—o — (Pqe) vei (1 + Te) o

R 2r\? nxT, T

=—{Z.9({Z2 14
(r 2( ; ) a"Bg cosﬁ( +Rc039)
nxT, T 2 T\ On
+——0J_B§ (1+Ec059) ) * (1+Fe) "

Noting that the area of a surface element is dependent of 8, and taking the average of nV; over
8, we find that

1 o r
(nV) = %/o nV, (1 + Ecosa) 46
_ nkT, T 20 (2«)2 an
- (1+ Te) (1+ (7)) e (7.10)
Using the relation o, = o) /2, we obtain the diffusion coefficient of a toroidal plasma:
nT, T 2«)2 -
= — — ; A1
Dps. o B2 (1+Te) (1+( . (7.11)

This diffusion coefficient is (1 + (27/:)?) times as large as the diffusion coefficient of eq.(7.2).
This value is called Pfirsch-Schliiter factor!. When the rotational tranform angle +/2r is about
0.3, Pfirsch-Schliiter factor is about 10.

7.1b A Particle Model

The classical diffusion coefficient of electrons
Dei = (PQe)QVei

is that for electrons which move in a random walk with a step length equal to the Larmor radius.
Let us consider a toroidal plasma. For rotational transform angle ¢, the displacement A of the
electron drift surface from the magnetic surface is (see fig.7.2)

2
A ~ ineT. . (712)
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The & signs depend on that the direction of electron motion is parallel or antiparallel to the
magnetic field (see sec.3.5). As an electron can be transferred from one drift surface to the other
by collision, the step length across the magnetic field is

a= (=) e (7.13)
Consequently, the diffusion coefficient is given by

Dpgs = Ay = (?)2 (poe) Vei, (7.14)
thus the Pfirsch-Schliiter factor has been reduced (|27 /¢] 3> 1 is assumed).

7.2 Neoclassical Diffusion of Electrons in Tokamak
The magnitude B of the magnetic field of a tokamak is given by
RBy

B = m =B()(1—Et COSG), (715)
where
€ = %. (7.16)

Consequently, when the perpendicular component v, of a electron velocity is much larger than
the parallel component v, i.e., when

2
(2>
v R+r

vy > 1
o 1/2°
Y| et/

that is,

(7.17)

the electron is trapped outside of the torus, where the magnetic field is weak. Such an electron
drifts in a banana orbit (see fig.3.9). In order to complete a circuit of the banana orbit, the
effective collision time 7.¢ = 1/veg of the trapped electron must be longer than one period 7, of
banana orbit ‘

R /2x R 2
"y ()= el (%) | (7-18)

The effective collision frequency vog of the trapped electron is the frequency in which the con-
dition (7.17)} of trapped electron is violated by collision. As the collision frequency ve; is the
inverse of diffusion time required to change the directon of velocity by 1 radian, the effective
collision frequency v.g is given by '

1

Veff = —Vei- (7.19)
€t )

Accordingly, if veg < 1/n,, i.e.,

3/2 : 1/2
_ VL& N a3l KTe)
Ve < 1 = 5 (271_) =& g (_271')_ (me (7.20)
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the trapped electron can travel the entire banana orbit. When the trapped electron collides, it
can shift its position by an amount of the banana width (see sec.3.5(b))
my| L Y B 12R2m (2?T)

% poe€y ——
¢ [

-1/2
= = . 7.21
eBp eB v, By T oL ‘& Pl ( )

4,

As the number of trapped electrons is e:/ % times the total number of electrons, the trapped-
electron contribution to diffusion is

: 2r\? _ 1
Dgs. = E:/zﬂzbueﬂ = E:/2 (T) € I(Pﬂe)2al’ei
- 27\ 2 ‘
= € 32 (T) (pe)*Vei- (7.22)

This diffusion coefficient, introduced by Galeev-Sagdeev,? is €, /% = (R/r)3/? times as large as
the diffusion coefficient for collisional case. This derivation is semi-quantitative discussion. The
more rigorous discussion is given in ref.2.

As was discussed in sec.7.1, MHD treatment is applicable if the electron to ion collision
frequency is larger than the frequency v, given by

1 . 1 /¢ w1, 1/2
w5 () (52) - (7.23)

‘When the electron to ion collision frequency is smaller than the frequency

v =& vp, (7.24)

the electron can complete a banana orbit. The diffusion coefficients are witten by

271' 2 2

Dpg = - (Poe) Veis  Vei > Vp, (7.25)
_as2 {212 9 3/2

Dgs. = ¢ (T) (PQe) Vei, MYoi <1 =€ LUp. (7.26)

If v is in the region 1, < vg < v , it is not possible to treat the diffusion phenomena of
electrons in this region by means of a simple model. In this region we must resort to the drift
approximation of Vlasov’s equation. The result is that the diffusion coefficient is not sensitive
to the collision frequency in this region and is given by?3

21\ ?
D, = (T) (pae)?vp,  Vp > Vei > o =€, b ' (7.27)

The dependence of the diffusion coefficient on the collision frequency is shown in fig.7.3. The
region Ve > 1 is called the MHD region or collisional region. The region v > Vg > 1 is
the platau region or intermediate region; and the region ve; < 1y, is called the banana region or
rare collisional region. These diffusion processes are called neoclassical diffusion. There is an
excellent review® on neoclassical diffusion.

The reason that the electron-electron collison frequency does not affect the electron’s particle
diffusion coefficient is that the center-of-mass velocity does not change by the Coulomb collision.

The neoclassical thermal diffusion coefficient x1. is the same order as the particle diffusion
coefficient (xre ~ De). Although ion collision with the same ion species does not affect the
ion's particle diffusion coefficient, it does contribute thermal diffusion processes, if temperature
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[2Y “» Y

Fig.7.3 Dependence of the diffusion coeflicient on collision frequency in a tokamak. v, = (¢/27)vre/R,
Vp = €' Vp.

gradient exists. Even if the ions are the same species with each other, it is possible to distinguish
hot ion (with high velocity) and cold ion. Accordingly the ion’s thermal diffusion coefficient in
banana region is given by xti ~ €, (2rn/1)2p4v, and x1; ~ (mi/me)Y/2Die (Die ~ De).
Therefore ion’s thermal diffusion coefficient is about (m;i/m.)/? times as large as the ion’s
particle diffusion coefficient.

7.3 Fluctuation Loss, Bohm Diffusion, and Stationary Convective Loss

In the foregoing sections we have discussed diffusion due to binary collision and have derived
the confinement times for such diffusion as an ideal case. However, a plasma will be, in
* many cases, more or less unstable, and fluctuations in the density and electric field will induce
_collective motions of particles and bring about anomalous losses. We will study such losses here.

Assume the plasma density n{r,t) consists of the zeroth-order term ng(r,t) and lst-order
perturbation terms 7 (r,t) = ng exp i(kr — wit) and

k

Since n and ng are real, there are following relations:
fiig = (Rg)*, m_p=nl, w_p=—wi.

where * denotes the complex conjugate. wy, is generally complex and wy = wy, + v and
W_fr = —Wkry Y-k = Yk

The plasma is forced to move by perturbation. When the velocity is expressed by

Virt)=> Vi=> Viexpi(k 1~ wyt) (7.29)
R %

then V_, = VI and the equation of continuity
dn

5 V- (aV)=0

may be written as

9 o7 . .
2o 4 ﬂ-I-V-(ZnoVk-I-ZHka')ﬂO-
ot 3 ot . Py,

When the first- and the second-order terms are separated, then

TSV TnVi =0, (7.30)
Ing R
%o v (z nkw) =0, (7.31)

k k!
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Here we have assumed that the time derivative of ng is second order. The time average of the
product of eq.(7.30) and 7i_; becomes

Yelnw|* + Vng - Re(niV _x) + nok - Im(n Vi) = 0, (7.32)
wkrlnk|2 + Vng - Im(ngV_i) — nok - Re(niy Vo) = 0.
If the time average of eq.(7.31) is taken, we find that
% +V. (Z Re(neV _i) exp(?*ykt)) = (. (7.33)
The diffusion equation is
dn
‘5?0 =V - (DVny)
and the outer particle fiux I' is
I'=—-DVngy= ZRe(nkV_k) exp 2y,t. ' (7.34)
k

Equation (7.32) alone is not enough to determine the quantity Vng-Re(nyV _) exp 2vf. Denote
Br = nok - Im(nxV _i)/ Vno - (Re(nyV _i}); then eq.(7.34) is reduced to

2
D|Vngf? = > Yl exp 2yxt

1+ 5

and .
D= Z S L. el 1 (7.35)

VroP 1+ Br

This is the anomalous diffusion coefficient due to fluctuation loss.

Let us consider the case in which the fluctuation E, of the electric field is electrostatic and
can be expressed by a potential ¢. Then the perturbed electric field is expressed by

Ek = --Vq;k = —ik - P expi{kr — wit).
The electric field results in an E; x B drift, ie.,
Vi = (Ei x B)/B® = —i(k x b)¢x/B (7.36)

where b = B/B. Equation (7.36) gives the perpendicular component of fluctuating motion. The
substitution of eq.(7.36) into eq.(7.30) yields

bxk) b
B Wi

iy = Vng - ( (7.37}
In general Vng and b are orthogonal. Take the z axis in the direction of b and the z axis in
the direction of —Vn, i.e., let Vn = —k,npE, where x, is the inverse of the scale of the density
gradient and & is the unit vector in the x direction. Then eq.(7.37) gives

ﬁ,,rc I‘En

I ed;k wk erf)k
_ ¢, _ y Koy —— e
ny eBuwp kT,  wy kT,

where k, the y (poloidal) component of the propagation vector k. The quantity

(kTe)

Wg = kyln——".
Wk " eB
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is called the drift frequency. If the frequency wy is real (ie., if v = 0), 7ix and ¢ have the
same phase, and the fluctuation does not contribute to anomalous diffusion as is clear from
eq.(7.35). When v > 0, so that w is complex, there is a phase difference between 7 and ¢
and the fluctuation in the electric field contributes to anomalous diffusion. (When 7 < 0, the
amplitude of the fluctuation is damped and does not contribute to diffusion.) Using the real
parameters Ay, oy of wg = wi, +Hiyy = wi A expiog (Ag > 0, oy are both real), V' is expressed
by

w1, ‘;Ek

Vi= eB KT,

= —i{k X b)%%f{k expiog.

Then the diffusion coefficient may be obtained from eq.(7.34) as follows:

* 2
D= Z %"’—Ak sin ay e exp 2yt
= S ng
2
T,
= (Z Ey—Ak sin ay, i3 exp 27kt) fle : (7.38)
& nn no EB

The anomalous diffusion coefficient due to fluctuation loss increases with time (from egs. (7.35)
and (7.38)) and eventually the term with the maximum growth rate ~; > 0 becomes dominant.
However, the amplitude |7} will saturate due to nonlmear effects; the saturated amplitude will
be of the order of

Then eq.(7.35) becomes

_ | Bl L w | | '
D= B (7.39)

Mo

When the nondimensional coefficient inside the parentheses in eq.(7.38) is at its maximum of
1/16, we have the Bohm diffusion coefficient

1 kT,

B= 168" (7.40)

It appears that egs.(7.39) and (7.40) give the largest possible diffusion coefficient.

When the density and potential fluctuations 7, ¢ are measured, V. can be calculated,
and the estimated outward particle flux I" and diffusion coefficient D' can be compared to the
values obtained by experiment. As the relation of 7ix and ¢ is given by eq.(7.37), the phase
difference will indicate whether w, is real (oscillatory mode) or v; > 0 {growing mode), so that
this equation is very useful in interpreting experimental results.

Next, let us consider stationary convective losses across the magnetic flux. Even if fluctuations
in the density and electric field are not observed at a fixed position, it is possible that the plasma
can move across the magnetic field and continuously escape. When a stationary electric field
exists and the equipotential surfaces do not coincide with the magnetic surfaces ¢ = const., the
E x B drift is normal to the electric field E, which itself is normal to the equipotential surface.
Consequently the plasma drifts along the equipotential surfaces (see fig.7.4) which cross the
magnetic surfaces. The resultant loss is called stationary convective loss, The particle flux is
given by
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¥=const,

Fig.7.4 Magnetic surface ¢ = const. and electric-field equipotential ¢ = const. The plasma moves
along the equipotential surfaces by virtue of E x B.

E .
Ii= nofy. - (7.41)

The losses due to diffusion by binary collision are proportional to B~%; but fluctuation or

convective losses are proportional to B~!. Even if the magnetic field is increased, the loss due
to fluctuations does not decrease rapidly.

7.4 Loss by Magnetic Fluctuation

When the magnetic field in a plasma fluctuates, the lines of magnetic force will wander
radially. Denote the radial shift of the field line by Ar and the radial component of magnetic
fluctuation 8 B by 4B, respectively. Then we find

L
Ar = ] bydl,
0

where b, = 6B,./B and [ is the length along the line of magnetic force. The ensemble average of
(Ar)? is given by

(ar)?) = </0Lbrdl fOLb,.dl’> - </0Ld£_/0Ldl’br(l) b.,(l’)>
= <fOL di f_f_lds b(1) b (L + s)> ~ L(bf) leorr,

where o i8
(bt ds)
(b2)

If electrons run along the lines of magnetic force with the velocity vre, the diffusion coefficient
D, of electrons becomes?

~ ((Ar)z) L, B (53,- 2
D, = At At brﬂcorr = vTelcorr ?) .

We may take l.orr ~ R in the case of tokamak and [, ~ a in the case of reverse field pinch
(RFP, refer sec.17.1).
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Ch.8 Magnetohydrodynamic Instabilities

The stability of plasmas in magnetic fields is one of the primary research subjects in the area
of controlled thermonuclear fusion and both theoretical and experimental investigations have
been actively pursued. If a plasma is free from all possible instabilities and if the confinement
is dominated by neoclassical diffusion in the banana region, then the energy confinement time

Tg is given by

. (3/2a? _ (3/2) (i)zea/z (1)2 L
5.8xa.s. 5.8 \ 2« Poi

Vii
where a is the plasma radius, pp; is the ion Larmor radius, and 1y is the ion-ion collision
frequency. For such an ideal case, a device of a reasonable size satisfies ignition condition. {(For
example, with B =5T,a = 1m, T; = 20keV, +/27 = 1/3, and inverse aspect ratio ¢ = 0.2, the
value of nTg ~ 3.5 x 10°%¢cm=3 - sec.)

A plasma consists of many moving charged particles and has many magnetohydrodynamic
degrees of freedom as well as degrees of freedom in velocity space. When a certain mode of
perturbation grows, it enhances diffusion. Heating a plasma increases the kinetic energy of the
charged particles but at the same time can induce fluctuations in the electric and magnetic
fields, which in turn augment anomalous diffusion.

Therefore, it is very important to study whether any particular perturbed mode is stable
(damping mode) or unstable (growing mode). In the stability analysis, it is assumed that the
deviation from the equilibrium state is small so that a linearized approximation can be used. In
this chapter we will consider instabilities that can be described by linearized magnetohydrody-
namic equations. These instabilities are called the magnetohydrodynamic (MHD)} instabilities or
macroscopic instabilities. '

A small perturbation F(r,t) of the first order is expanded in terms of its Fourier components

F(r,t) = F(r) exp(—iwt) W= W+ W

and each term can be treated independently in the linearized approximation. The dispersion
equation is solved for w and the stability of the perturbation depends on the sign of the imaginary
part w; (unstable for w; > 0 and stable for w; < 0). When w, # 0, the perturbation is oscillatory
and when w; = 0, it grows or damps monotonously. -

In the following sections, typical MHD instabilities are introduced. In sec.8.1, interchange
instability and kink instability are explained in an intuitive manner. In sec.8.2 the magne-
tohydrodynamic equations are linearized and the boundary conditions are implemented. The
stability criterion is deduced from the energy principle, eqs.(8.45) ~ (8.48). In sec.8.3, a cylindri-
cal plasma is studied as an important example; and the associated energy integrals are derived.
Furthermore, important stability conditions, the Kruskal-Shafranov limit, eq.(8.66), and the
Suydamn criterion, eq.(8.97) are described. Tokamak and reversed field pinch configurations are
taken approximately as cylindrical plasmas, and their stabilities are examined. In this chap-
ter, only the most common and tractable magnetohydrodynamic instabilities are introduced;
it should be understood that there are many other instabilities. General reviews of plasma
instabilities may be found in ref.1.

8.1 Interchange, Sausage and Kink Instabilities

Let us study simple examples of instabilities intuitively before discussing the general linear
theory of instabilities.
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Fig.8.1 lon and electron drifts and the resultant electric field for interchange instability.

8.1a Interchange Instability _

Let z = 0 be the boundary between plasma and vacuum and let the z axis be taken in the
direction of the magnetic field B. The plasma region is £ < 0 and the vacuum region is z > 0.
It is assumed that the acceleration g is applied in the z direction (see fig.8.1). Ions and electrons
drift in opposite directions to each other, due to the acceleration, with drift velocities

_MgxB
Cleli e B2 °

mgx B

YT T TR

Let us assume that, due to a perturbatlon the boundary of the plasma is displaced from the
surface ¢ = 0 by the amount

dz = a(t) sin(kyy).

The charge separation due to the opposite ion and electron drifts yields an electric field. The
resultant E x B drift enhances the original perturbation if the direction of the acceleration
g is outward from the plasma. From fig.8.4b we see that this is the same as saying that the
magnetic flux originally inside but near the plasma boundary is displaced so that it is outside
the boundary, while the flux outside moves in to fill the depression thus left in the boundary;
because of this geometrical picture of the process, this type of instability has come to be called
interchange instability. As the perturbed plasma boundary is in the form of flutes along the
magnetic lines of force (fig.8.4b), this instability is also called flute instability.
The drift due to the acceleration yields a surface charge on the plasma, of charge density

= o(t) cos(kyy)d(z) (8.1)

(see fig.8.1). The electrostatic potential ¢ of the induced electric field E = —V¢ is given by

&8¢ d¢ . .
LEWE( ax) —a,. (8.2)

The boundary condition is

o(52).0 (43) 0=

0 =d-0.
Under the assumption k, > 0, the solution ¢ is
a(t)

= m cos{kyy) exp(—ky|z|). (8.3)
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The velocity of the boundary d(8z)/dt is equal to E x B/B? at z = 0, with E found from the
potential (8.3). The velocity is

da(t t .
20 k) = 2D sinlh) (8.4
(0 +€L)B
The charge flux in the y direction is
| = Pmd
nejvg, ;| B
where pn, = nM. Accordingly the changing rate of charge density is
( ) ——= cos(kyy) = pmg t)— sin(k,y) : (8.5)
and
d? mgk,
2 Pmgky (8.6)

EtT B (60 + EJ_)Bza.

The solution is in the form a o« exp~t; the growth rate -y is given by

_ Pm 1/2 k 1/2 ' 8.7
T= m (gky) /<. (8.7)
In the low-frequency case (compared with the ion cyclotron frequency), the dielectric constant
is given by

p—"‘) > € (8.8)

€] = 60(1 + BzEO

as will be explained in ¢h.10. Accordingly the growth rate v is?
= (gky)'/%. (8.9)

When the acceleration is outward, a perturbation with the propagation vector k& normal to the
magnetic field B is unstable; i.e.,

(k-B)=0. (8.10)

However, if the acceleration is inward (g < 0), -y of eq.(8.9) is imaginary and the perturbation
is oscillatory and stable.

The origin of interchange instability is charge separation due to the acceleration. When the
magnetic lines of force are curved, as is shown in fig.8.2, the charged particles are subjected to
a centrifugal force. If the magnetic lines of force are convex outward (fig.8.2a), this centrifugal
acceleration induces interchange instability. If the lines are concave outward, the plasma is
stable. Accordingly, the plasma is stable when the magnitude B of the magnetic field increases
outward. In other words, if B is a minimum at the plasma region the plasma is stable. This is
the minimum-B condition for stability.

The drift motion of charged particles is expressed by

_Exb b (v1/2) + v}
w=—p-tgx|9t— g n)tub

where 7 is the normal unit vector from the center of curvature to a point on a line of magnetic
force. R is the radius of curvature of line of magnetic force. The equivalent acceleration is

= (8.11) .
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Fig.8.3 Charge separation due to the difference in velocities of ions and electrons.

The growth rate becomes v = (a/R)Y%(vy/a) in this case. Analysis of interchange instability
- based on the linearlized equation of motion (8.32) with the acceralation term is described in
ref.1 :

For a perturbation with propagation vector k normal to the magnetic field B, i.e., (k-B) = 0,
another mechanism of charge separation may cause the same type of instability. When a plasma
rotates with the velocity vp = E,/B due to an inward radial electric field (fig.8.3), and if the
rotation velocity of ions falls below that of electrons, the perturbation is unstable. Several
possible mechanisms can retard ion rotation. The collision of ions and neutral particles delays
the ion velocity and causes neutral drag instability.

When the growth rate v ~ (gk,)/? is not very large and the ion Larmor radius g, is large
enough to satisfy

iy2 s T

the perturbation is stabilized®. When the ion Larmor radius becomes large, the average pertur-
bation electric field felt by the ions is different that felt by the electrons, and the E x B/B?
drift velocities of the ion and the electrons are different. The charge separation thus induced has
opposite phase from the charge separation due to acceleration and stabilizes the instabiltity.

8.1b Stability Criterion for Interchange Instability, Magnetic Well

Let us assume that a magnetic line of force has “good” curvature at one place B and ‘bad”
curvature at another place A (fig.8.4). Then the directions of the centrifugal force at A and B
are opposite, as is the charge separation. The charge can easily be short circuited along the
magnetic lines of the force, so that the problem of stability has a different aspect. Let us here
consider perturbations in which the magnetic flux of region 1 is interchanged with that of region
2 and the plasma in the region 2 is interchanged with the plasma in the region 1 {interchange
perturbations, fig.8.4b). It is assumed that the plasma is low-beta so that the magnetic field is
nearly identical to the vacuum field. Any deviation from the vacuum field is accompanied by an
increase in the energy of the disturbed field. This is the consequence of Maxwell equation. It
can be shown that the most dangerous perturbations are those which exchange equal magnetic
Auxes, as follows.
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{(a) (b)

Fig.8.4 Charge separation in interchange instability. (a)} The lower figure shows the unstable part A
and the stable part B along a magnetic line of force. The upper figure shows the charge separation due
to the acceleration along a flute. (b) Cross section of the perturbed plasma.

The energy of the magnetic field inside a magnetic tube is

Qu = f dro— = f dlSQJuo (8.12)

where [ is length taken along a line of magnetic force and § is the cross section of the magnetic
tube. As the magnetic flux @ = B - § is constant, the energy is

&? rdl
M2 5

The change 6Qy in the magnetic energy due to the interchange of the fluxes of regions 1 and 2

is
1 o [ dl 2j'dl)_( 5 [ di 2/dl))
JQM 2#0 ((45 g + @ 5 Py S + & LS . (8.13)

If the exchanged fluxes ¢, and $3 are the same, the energy change G is zero, so that pertur-
bations resulting in ¢; = ¢, are the most dangerous.
The kinetic energy @), of a plasma of volume V is

nlV  pV

y-1" 4-1 (8.14)

Qp =

where +y is the specific-heat ratio. As the perturbation is adiabatic,
pVT = const.

is conserved during the interchange process. The change in the plasma energy is
1
8Qp = 7'—_—1'(13"2])2 ~-piVi + P —szz)-

where pf is the pressure after interchange from the region V; to V2 and p) is the pressure after

po
interchange from the region V3 to Vy. Because of adiabaticity, we have p) = p (%;-) , Py =

-
pg(‘—]jf) and 4¢), becomes

1 Vi\?Y Va
0Qp = ﬁ(pl('lb) Vo — W1 +P2(v ) V1 — pzvz) (8.15)
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Fig.8.5 Specific volume of a toroidal field.
Setting
p2 = p1 + dp,

Vo =V, + 6V

we can write dQ), as

§V)? '
0Q, = opdV + 'yp( V) : (8.16)
Since the stability condition is 6@y, > 0, the sufficient condition is

dpdV > 0.

Since the volume is

dl
V-/dlS-@fE

the stability condition for interchange instability is written as

5p5/—>0

Usually the pressure decreases outward (dp < 0), so that the stability condition is

d! ' ' »
afﬁ <0 Gy

in the outward direction?. The integral is to be taken only over the plasma region.
Let the volume inside a magnetic surface ¢ be V and the magnetic flux in the toroidal direction
 inside the magnetic surface 1 be . We define the specific volume U by

dv
U= (8.18)

If the unit vector of the magnetic field B is denoted by b and the normal unit vector of the
infinitesimal cross-sectional area dS is denoted by n, then we have

dV = f > (b n)iSdl, d® =Y (b-n);B;dS;.

When the magnetic lines of force close upon a single circuit of the torus, the specific volume U

is
}( (Z(b-n)idSi) dl zZ(b-n),—B,-dSi j{ %’i

i

Z(b . 'n),;B,;dS,' - Z(b . n)iBidS,-
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Fig.8.6 Sausage instability.

As the integral over [ is carried out along a small tube of the magnetic field, E(b -n);dS;B; is

L]
independent of ! (conservation of magnetic flux). As }{ dl/B; on the same magnetic surface is
constant, UV is reduced to

dl
U_}(J-B-_

When the lines of magnetic force close at N circuits, U is

1 dl

v=%| B (8.19)

When the lines of magnetic force are not closed, U is given by

1 d!
= 1 — —_.
v Ngrnoo N /v B
Therefore, I/ may be considered to be an average of 1/B. When U decreases outward, it means
that the magnitude B of the magnetic field increases outward in an average sense, so that the
plasma region is the so-called average minimum-B region. In other word, the stability condition
for interchange instability is reduced to average minimum-B condition;

w _dv

2
dé  d&° (8.20)

When the value of U/ on the magnetic axis and on the outermost magnetic surface are Up and
U, respectively, we define a magnetic well depth —AU/U as
AU Up—U,
u U

(8.21)

8.1c Sausage Instability
Let us consider a cylindrical plasma with a sharp boundary. Only a longitudinal magnetic
field B,, exists inside the plasma region and only an azimuthal field Hp = I./27r due to the
plasma current I, exists outside the plasma region. We examine an azimuthally symmetric
perturbation which constricts the plasma like a sausage (fig.8.6). When the plasma radius a is
changed by da, conservation of magnetic flux and the current in the plasma yields
20a

0B, = —B,—,
a
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I

Fig.8.7 Kink instability.

4By = —ngg.
a

- The longitudinal magnetic field inside the plasma acts against the perturbation, while the exter-
nal azimuthal field destabilizes the perturbation. The difference dpy, in the magnetic pressures
“is

B2 .
BZ > T" (8.22)

This type of instability is called sausage instability.

8.1d Kink Instability

Let us consider a perturbation that kinks the plasma column as shown in fig.8.7. The configu-
ration of the plasma is the same as that in the previous subsection (sharp boundary, an internal
longitudinal field, an external azimuthal field). Denote the characteristic length of the kink by
A and its radius of curvature by R. The longitudinal magnetic field acts as a restoring force on
the plasma due to the longitudinal tension; the restoring force on the plasma region of length A
is
B2 L,

2#'0 ma E

The azimuthal magnetic field becomes strong, at the inner {concave) side of the kink and
destabilizes the plasma column. In order to estimate the destabilizing force, we consider a
cylindrical lateral surface of radius A around the plasma and two planes A and B which pass
through the center of curvature (see fig.8.7). Let us compare the contributions of the magnetic
pressure on the surfaces enclosing the kink. The contribution of the magnetic pressure on the
cylindrical surface is negligible compared with those on the planes A and B. The contribution
of the magnetic pressure on the planes A and B is

> B2 X Ba) A A
Bé A _Bpla) 2 A A
j; 2#027rrdr>< 3R %0 wa na x 7
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Accordingly
—2 _>nZ - (8.23)

is the stability condition®. However, the pressure balance
B} _Bj
2u0  2po

p+

holds, so that perturbations of large A are unstable. This type of instability is called kink
instability.

In this section, a cylindrical sharp-boundary plasma has been analyzed in an intuitive way.
The stability of a cylindrical plasma column will be treated in sec.8.2 in more general and
systematic ways. E

8.2 Formulation of Magnetohydrodynamic Instabilities

8.2a Linearization of Magnetohydrodynamic Equations

The stability problems of plasmas can be studied by analyzing infinitesimal perturbations of
the equilibrium state. If the mass density, pressure, flow velocity, and magnetic field are denoted
by pm. p.V, and B, respectively, the equation of motion, conservation of mass, Ohm’s law, and
the adiabatic relation are

v OPm

v __ : <« B (pn V) =
Pmat Vp+ix B, ot +V (P V) 0,

E+VxB=0, (%Jrv-v)(pp;ﬁ —0

respectively (v is the ratio of specific heat). Maxwell’'s equations are then

0B
VXE=—E, VXB=]J;0_?', vV -B=0.
These are the magnetohydrodynamic equations of a plasma with zero specific resistivity (see
sec.5.2). The values of pn, p, V', and B in the equilibrium state are pmo, pe, Vo = 0, and By
respectively. The first-order small quantities are pm1, p1, V1 =V, and B;. The zeroth-order
equations are

Voo =JgxBo, VxBp=pojy, V- -Bo=0.

The first-order linearized equations are

9pm

Pl L 7 (pmoV) = 0, (8.24)

Gt

av . .

pmoﬁ- -+ Vpl =79 X B + 31 X Bo, (825)
7]
% + (V- V)pg+vpeV -V =0, . (8.26)
a8,
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If displacement of the plasma from the equilibrium position g is denoted by £(ro, t), it follows
that

E(ro,t) =7 —mq, v-4d

&Im
le

Equation (8.27) is reduced to

0B; _ ot
WnVX(ﬁXBO)

and
Bl V x (E X Bg) . (828)

From poj = V x B, it follows that
toj, = V x By. A (8.29)

Equations (8.24) and (8.26) yield

pm1 = —V - (pmo§) (8.30)

p1=—£- Vpo—1poV - . | (8:31)
The substitution of these equations into eq.(8.25) gives

¢

Pmo5z = V(€ Vo + 7m0V - €)+;;(V><Bo)><31+ (VXBI)XBO

By - B

=-V (pl + ) + E((BO . V)Bl + (B1 . V)Bg) (832)
This is the linearized equation of motion in terms of £.

Next let us consider the boundary conditions.” Where the plasma contacts an ideal conductor,
the tangential component of the electric field is zero, i.e., n x E = 0. This is equivalent to
n x (§ x Bg) = 0, n being taken in the outward direction. The conditions (£ - n) = 0 and
(B1-n) =0 must also be satisfied. At the boundary surface between plasma and vacuum, the
total pressure must be continuous and

p—po+ B|2n - Bg,in - Begx - Bg,ex
2p0 2p0

where Bin, Bo,in give the internal magnetic field of the plasma and By, Boex give the external
field. The boundary condition is reduced to

Bln Bln+ VBIH
oV € + 20 (B1 #0(5 )Bo,in)

_ Boex - (Biex+ (£ V)Boex)
Ho

when B, (r), Bex(r) and p(r) are expanded in € = r —rg (f(r) = fo(ro) + (£ - V)folr) + f1).
From Maxwell’s equations, the boundary conditions are

(8.33)

1o - (Bo,in — Bo,ex) = 0, (8.34)

ng X (Boin — Boex) = oK (8.35)
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where K is the surface current.
Ohm’s law yields

Ein+V x Bojn=0 (3.36)

in the plasma. As the electric field E* in coordinates moving with the plasma is E* = E+V x By
and the tangential component of the electric field E* is continuous across the plasma boundary.
The boundary condition can be written as

Ei+(V X Boex)i =0 (8.37)

where the subscript t indicates the tangential component. Since the normal component of B is
given by the tangential component of E by the relation V x E = —8B/8t, eq.(8.37) is reduced
to

(nO ' Bl,ex) =Ny - V X (& X BO,ex)- _ (838)

The electric field E.x and the magnetic field B, in the external (vacuum) region can be
expressed in terms of a vector potential:

A ,
Ee,=—%, Biox=VxA, V- -A=0

If no current flows in the vacuum region, A satisfies

VxVxA=0. (8.39)

Using the vector potential, we may express eq.(8.37) as

g X (—% +V x BO,ex) = 0.

For ng - Bojn = 1+ Boex = 0, the boundary condition i$

ng X A= —£,B0ex. (8.40}
The boundary condition at the wall of an ideal conductor is

nxA=0. (8.41)

The stability problem now becomes one of solving eqs.(8.32) and (8.39) under the boundary
conditions (8.33),(8.38),(8.40) and (8.41). When a normal mode £(r,t) = £(r)exp(—iwt) is
considered, the problem is reduced to the eigenvalue problem pow?g = F(£). If any eigenvalue
is negative, the plasma is unstable; if all the eigenvalues are positive, the plasma is stable.

8.2b Energy Principle®

The eigenvalue problem is complicated and difficult to solve in general. When we introduce
a potential energy associated with the displacement £, the stability problem can be simplified.
The equation of motion has the form

2 ——
pmo%g =F(¢)=-K-¢. (8.42)

This equation can be integrated:

1 —-
/Pmo(at) dr+§/£-K£d'r-—const.
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The kinetic energy T' and the potential energy W are

EZ/pmo(at) dr, E%fﬁ-fﬁdr:—%[&-F

respectively. Accordingly if
W >0

for all possible displacements, the system is stable. This is the stability criterion of the energy
principle. W is called the energy integral.

It is possible to prove that the operator K is Hermite opera.tor (self-adjoint operator).57
A displacement n and a vector potential @ are introduced which satisfy the same boundary
conditions as £ and A, i.e,,

ng x Q= — M Boex
at the plasma-vacuum boundary and
ng X Q =0

at the conducting wall. By substitution of eq.(8.32), the integral in the plasma region V4, is seen
to be

[ n-Redr= [ (3po(V (V&) + (V)€ Tpo) + --(V x (n x Bo)) - ¥ x (€ x Bo)
Vin Vi Ho

n

~Ln x (Vx Ba))- ¥ x (€ x Bo)) r

By, - B in
+ [ g (B ij" ° )—YPO(V'ﬁ)—(ﬁ'Vpo))dS- (8.43)

Next let us consider the surface integral in eq.(8.43). Due to the boundary condition ng x Q =
— 1By ex, we find that

[, 1Boex BrexdS = [ naBoe(V x 4)dS = = [ (mo x @) (V x A)dS
5 .

Vix

—Lng-(Qx(VxA))dS= V- (Q x (V x A))dr

:/ (VxQ)-(VxA)—Q -V x(VxA))dr

ax

va (V x Q) - (V x A)dr.

From the boundary condition (8.33), the difference between the foregoing surface integral and
the surface integral in eq.(8.43) is reduced to '

/ (Bo,in ' Bl,in - BO,ex . Bl,ex
Tin
Ho

— (V- €) - (€ V)Po)ds

2

Bgex BO in )
= € - V) — — —— — ds
Ln (€ )( 0 2 PP

V) (Bgex Bgin )
= nen 5 —— = = ds
fsn ¢ on\ 2o 2po
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where the relation ng x V(pg + BZ,,/2p0 — B§ . /210) = 0 is used. The integral region Vi is
the region outside the plasma. Finally, the energy integral is reduced to

/%nn-f?«ﬁdf"—“/Wn(vpo(v'ﬂ)(v'ﬁ)?%(vx('?XBo))'VX (€ x By)

+(V'n)(€-Vpo)—%(nx(VxBo))-Vx(exBo))de-l;fv (Vx@)-(Vx A)dr

o Bg ex Bg in )
n— - = ds. 44
+ [5' T]nf on ( 2#0 2,ug Po (8 )

The ene::g;y integral W is divided into three parts Wp, Ws, and Wy, the contributions of the
plasma internal region Vi, the boundary region S, and the external vacuum region Ve, i.e,

— 3 ), & Redr =W, + W+ W, (5.45)
Wp = %]v.., ('YPO(V -€)2 + ulo(v x (€ x Bg))?* + (V- &)(£ - Vo)

(€ % (Y  Bo)) -V x (¢ x Bo) )dr

1 B? ,
=3 (——m(v £) - € (jox B Jdr, (8.46)
Vin \ 0

BOex Bgin ’

— Z%in _ o Y48 4
o= [ &5 ( B~ 5 —m) dS, (8.47)
Wy = — f (VxA)zdr—/ By 4, C (848)

V' 20 S N 2p0 '

The stability condition is W > 0 for all possible £&. The frequency or growth rate of a perturbation
can be obtained from the energy integral. When the perturbation varies as exp(—iwt), the
equation of motion is

W pmok = EE. _ ‘ (8.49)

The solution of the eigenvalue problem is the same as the solution based on the calculus of
variations 8(w?) = 0, where

wzzfﬁ'f?ﬁd'f‘

[ pmofldr (8:50)

As K is a Hermitian operator, w? is real. In the MHD analysis of an ideal plasma with zero

resistivity, the perturbation either increases or decreases monotonically, or else the perturbed
plasma oscillates with constant amplitude.

The energy integral (8.46) can be further rearranged to the more illuminating form. The
reduction of the form is described in appendix B. The energy integral of axisymmetiric toroidal
system is also described in appendix B.
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8.3 Instabilities of a Cylindrical Plasma

8.3a Instabilities of Sharp-Boundary Configuration: Kruskal-Shafranov Condition

Let us consider a sharp-boundary plasma of radius a, with a longitudinal magnetic field
Bo, inside the boundary and a longitudinal magnetic field B.. and an azimuthal magnetic
field By = upl /(27r) outside. By, and Be, are assumed to be constant. We can consider the
displacement

&(r) exp(imb + ikz) (8.51)

since any displacement may be expressed by a superposition of such modes. Since the term in
V - ¢ in the energy integral is positive, incompressible perturbation is the most dangerous. We
examine only the worst mode,

vV-£=0. (8.52)
The perturbation of the magnetic field By = V x (€ x By) is
By = 1kBy,£. (8.53)

The equation of motion (8.32) becomes

K2B2.\ . By-B
(—wzpmo + 02)5 = —v(m + = 1) = —Vp*. (8.54)
Ho Ho
As V- £ =0, it follows that Ap* =0, i.e,,

2 1d m? . |
(FJF;E_(;C%??_))IJ(T):O_ (8.55)

The solution without singularity at r = 0 is given by the modified Bessel function I,(kr), s
that p*(r) is

p(r) = p*(é)%.

Accodingly, we find
kp*(a
Inn(ka .

2
W Pmo —

Mo

As the perturbation of i:he vacuum magnetic field By, satisfies V xB=0and V-B =0, By
is expressed by B, = V. The scalar magnetic potentlal 1 satisfies Ay = 0 and ¥ — 0 as
r — oo. Then

P = CIIEZ—E::% exp(tm@ + ikz). | | | (8.57)

The boundary condition (8.33) is

1 B? B}
m+—By-B; = —B "B+ (V) ( ——O-Po)
Ko 2p0 20

- uiB ‘Bio+ (¢ V)(‘i"o)
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zA

AB,

Fig.8.8 Sharp-boundary plasma.

As By < 1/7 , p*(a) is given by
B}

i m
*(a) = ~—(kBez; + —Bp)C —- a). 8§58
P'(@) = = (kBux + TBo)C L) (5.58)
The boundary condition (8.38) is reduced to
K} (ka) . m
Ckma—) = Z(kBez + ;Bﬂ)gr(a) (859)

From eqs.(8.56), (8.58) and (8.59), the dispersion equation is

w? _ B,  (kBe:+(m/a)Bo)* I(ka) Km(ka) B 1 Iy(ka) (8.:60)

k2 popmo HoPmok? In(ka) K} (ko)  popmo (ka) Im(ka) '
The 1st and 2nd terms represent the stabilizing effect of By, and B., (Km/K), < 0). If the
propagation vector k is normal to the magnetic field, i.e., if

(k- B.) = kB, + %Be —0

the 2nd term (stabilizing term) of eq.(8.60) becomes zero, so that a flutelike perturbation is
indicated. The 3rd term is the destabilizing term.

(i) The m = 0Mode with B,, = 0 Let us consider the m = 0 mode with B.; = 0.
This configuration corresponds to that of the sausage instability described in sec.8.1c. Equation
(8.60) reduces to

BZ,k* B3 Ij(ka)
2 0z g 1o
w = 1l 5——7——. 8.61
H0Pmo ( Bi, (ka)Ip(ka) (8.61)
Since Ij(z)/xIp(z) < 1/2, the stability condition is

B3, > B3/2.
(ii) The m = 1Mode with B,, =0 For the m = 1 mode with B,. =0, eq.(8.60) is

2 1.2 B2 !
2o Bk (1) B 1 L(k) Kifka)) ©.62)
10Pmo Bg, (ka) Ii(ka) K{(ka) '
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For perturbations with long characteristic length, eq.(8.62) becomes

B2 k? Bg\? 1

2 0z [}

ot = Dok 1_( )m— . 8.63
H0Pm0o ( By, ka) ( )
This dispersion equation corresponds to kink instability, which is unstable for the perturbation
with long wavelength (refer (8.23)).

(iii) Instability in the Case of |B.,| > |Bs| When |B.,| > |By|, the case |ka| <€ 1
predominates. Expanding the modified Bessel function (m > 0 is assumed), we find

2
m
popmow® = k*BZ, + (kBez + %”-BQ) - zﬁlr:?g. (8.64)

w? becomes minimum at dw/8k = 0, i.e., k(BZ, + B2) + (m/a)ByBe..
= 0. In this case, w? is

B? m? B3 B 1-75 )
2 [ . 0z g
Whin = -m| = m|m -1}, 8.65
1oPmoa® (sz + Bg, HoPmoa® ( 2-0 (8.65)

where 3 is the beta ratio. Accordingly, the plasma is unstable when 0 < m < (2 — 8)/(1 - 3).
For a low-beta plasma only the modes m = 1 and m = 2 become unstable. However, if

By

(3—2)2 < (ka)? (8.66)

is satisfied the plasma is stable even for n = 1. Usually the length of the plasma is finite so
that k cannot be smaller than 27/L. Accordingly, when
By
B,

2ra

L

the plasma is stable. This stability condition is called the Kruskal- Shafranov condition.®®
When a cylindrical conducting wall of radius b surrounds the plasma, the scalar magnetic
potential of the external magnetic field is

_ K (kr) I (kr) ) ) .
D (Cl Btk + e Im(ka)) exp(imf + ikz) (8.57")

instead of eq.(8.57). The boundary condition Bje, = 0 at r = b yields
c I, (kb)K(ka)
ca K (kbIn(ka)

The dispersion equation becomes

w® _ B, (kBe +(m/a)By)* I, (ka)

k2 popmo 1o Pmok? Im(ka)
(Km(ka)l,'n(kb) - Im(ka)K,’,n(kb))
K (ka)Il (kb) — I', (ka) K], (kb)
B 1 I (ka)
" popmo (ka) Im(ka)

Expanding the modified Bessel functions under the conditions ke < 1,kb < 1, we find

1+ (a/b)*™

' 2 22
m =k*B MR A,
10 POl 0z + 1— (a/b)gm

m m
(kBe: + ;Bg)z - ng.
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The closer the wall to the plasma boundary, the more effective is the wall stabilization.
In toroidal systems, the propagation constant is k = n/R where n is an integer and R is the
major radius of the torus. If the safety factor ¢, at the plasma boundary r=a

aBe;

= 67

“= RB, (8.67)
is introduced, (k- B} may be written as

B
(k : B) = (kBez + EBG) = u (Qr.l + Z'n") .
a a n

The Kruskal-Shafranov condition (8.66) of m = 1, n = —1 mode can then be expressed in terms
of the safety factor as

g > 1. ' (8.68)

This is the reason why g, is called the safety factor.

8.3b Instabilities of Diffuse-Boundary Configurations

The sharp-boundary configuration treated in sec.8.3a is a special case; in most cases the
plasma current decreases gradually at the boundary. Let us consider the case of a diffuse-
boundary plasma whose parameters in the equilibrium state are

po(r),  Bo(r) = (0, By(r), B:(r))-

The perturbation £ is assumed to be
& = &(r) exp(imb -+ ikz).

The perturbation of the magnetic field By = V x (& x Bg) is

Bir = i(k - Bo)é;, ' (8.69)

Big = ikA — a‘!;(g,.B,,), (8.70)

Bi=-(28+ 1406 8) (8.71)
where

(k- Bo) = kB, + 1:’-39, (8.72)

A= 2B, — £.B5 = (£ x Bo)r. (8.73)

Since the pressure terms ypo(V -£)2 + (V- €)(& - Vo) = (v — Dpo(V - €)% + (V -}V - pot) in the
energy integral are nonnegative, we examine the incompressible displacement V - £ = 0 again,
ie.,

%;—T(rg,,) + iTmﬁe +ikg, = 0. (8.74)

From this and eq.(8.73) for A, & and £, are expressed in terms of £, and A as

itk B)to = ik - 2 L re,), (8.75)
~itk-B)e. = 8 1 P O e (8.76)
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From pgjo = V x By, it follows that

4B,
) dBy Bg 1d
= B

HoJo dr r. rdr . (rBe)-

The terms of the energy integral are given by
1 . 1 .« 7
Wp = Z/v (’YPOlV'-ﬁl2 +{(V-£€)(€-Vpo) + u_olBllz — & (Jg x Bl‘))dr
1 1 2 . .
= 7 [(-n(V O+ —IBi — do(By x €) Jar,
Ho
2p0

. 1 2 a (Bg,ex BO in )
Ws = 4]s|€"' an\ 20 Po 45,

1
Wy = —f B, [2dr.
dpo Sy,
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(8.77)

(8.78)

(8.79)

(8.80)

(8.81)

¢ and £; can be eliminated by means of eqgs.(8.75) and (8.76) and dB,./dr and dBp/dr can

be eliminated by means of eqs.(8.77) and (8.78) in eq.(8.79). Then W, becomes

A N
Vin ko

dé, 6B , 5 def

By 1
Be—— + &, y — — —_ B,
o ar +& (HOJ r ) +#0 r * dr.

+ ‘u—ORe(z'kA* (Bgiﬁ + (quz - —) &) W:A* (5"32 +rB. cilfr))

+QRG(§:j0z( Bgc(ifr ‘“‘T‘”z +ikA))dr.

The integrand of W, is reduced to

1 m2 ikBg((d&, /dr) — & /1) — im(B./r)((dé/dr) + (&/m))|*
ILE (k2 -+ r_2) * }A + k2 + (m2/'f‘2)

_|__
Ho

& &)

dr T

£ 6
dr

Bj

k-B .B B?
+(( ) 2.7 9) |£r|2
Ho

_ [tk Bo((d /dr) — (§/7)) — im(B./r)({d&-/dr) + (&/r))I*
po(k? + (m?/r?))

Accordingly, the integrand is a minimum when

A=§B; —ﬁsza
=gy (8- 78.) G - (k804 T8) %),

Then W, is reduced to

T a . ,.. T r/T 2 2 \
W, = 5;;] (](k Bo)(dér/dr) + h(&/r)* | ((k-Bo)z—z‘u"f_—B")lérlz)rdr (8.82)

k? + (m/r)?
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where

h=kB, — ?Bg.

Let us next determine Ws. From eq.(6.8), it follows that
(d/dr){po + (B2 + BZ)/2ut0) = —B3/{ruo). B} is continuous across the boundary r = a, so that

d B2+B2\ d (B2 +BY%
— o+ 22 ) = — | 2 ).
dr 240 dr 240

Accordingly we find
Ws =0 (8.83)

as is clear from eq.(8.80).

The expression for Wy can be obtained when the quantities in eq.(8,82) for W, are replaced
as follows: § — 0, B, — B, = Bs(= const.), By = By = Baa/r, Bir = i(k - Bo){r = Berr =
i(k - Bep)nr. This replacement yields

T [P m Baa\?,
wom (25

B ) B ) B ) B )l L
k? + (m/r)? '

(8.84)

- By partial integration, W), is seen to be

_m o f rk-By)? |dg,
Wp‘mfo (k2+(m/r)2

dr

2 2 2 2nR2
2 Tk Bs — (m/a‘) Ba 2
+ gl )dr . w CIOTNCED

1(kB; — (m/r)Bp)*? o 2Bpd(rBy) d [k?BZ—(m/r)’B}
—z k-Bg)?- 200070 © z . (8.
S B A i el R By g (8.:86)
Using the notation { = rBey, = ir(k - Beg)n, we find that
T [t 1 &P 1.,
W= EE] (r(k2 ¥y ar| T )d'"‘ (587
The functions £ or ¢ that will minimize W}, or Wy are the solutions of Euler’s equation:
d { r(k-Bp)? d¢.
— | —_—_— ] = = <
dr (k2 + (m/r)? dr 9r=0, r=a, (8.88)
d 1 ey 1
dr (r(k2 + (m/r)?) d_r) T e (8.89)

There are two independent solutions, which tend to & o #™~1, =™ ! as r — 0. As &, is finite
at 7 = 0, the solution must satisfy the conditions

r— 0, gr x ,rm—l’
r=a, (@ =ia(kB,+ TB,)&a)

r=b, ¢(b) =0.
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Using the solution of eq.(8.89), we obtain

'y 1 b

d¢

W S G o, (8.90)
The solution of eq.(8.89) is
A (k) Ko (kB) — K (kr) T, (kb) m
‘= “T1 (ka) K" (kb) — K., (ka)I!,(kb) (kBs + - Ba) &r(a)- - (8.91)

The stability problem is now reduced to one of examining the sign of W, + Wy.. For this we use

R IAG

»

2
d'r +g|€!"12)dr+Wa:
r k?B2 — (m/a)?B2

“ =G B (may @ ( (892
_om -1 d¢ .,
M ey Fl )
where
_ r(kB. + (m/r)By)? '
=7 (m/)? (8.93)
_ 1(kB, — (m/r)By)? m . \?
; k2 T (m/r)2 +7r (sz -+ ?Bg)
2By d(rB d {k*B?—(m/r)’B}
B TB (d're) T dr ( k? + Efmn;rgz 9) ) (8.94)

When the equation of equilibrium %(#0?*‘32 /2) = —B2/r is used, eq.(8.94) of g is reduced to

2k? dpg m 2k2
g —Wﬂoﬁ + r(kB, + ?Bg)
(2k?/r)(K* B} — (m/r)’B§)

(k% + (m/r)?)?

+ (m/r)? = (1/r)?
k2 + (m/r)?

(8.95)

8.3¢ Suydam’s Criterion

The function f in the integrand of W;, in the previous section is always f > 0, so that the
term in f is a stabilizing term. The 1st and 2nd terms in eq.(8.94) for g are stabilizing terms,
but the 3rd and 4th terms may contribute to the instabilities. When a singular point

foc(k-Bg)?=0

of Euler’s equation (8.88) is located at some point r = ry within the plasma region, the contri-
bution of the stabilizing term becomes small near r = rg, 80 that a local mode near the singular
point is dangerous. In terms of the notation

2B dpg

2 g
r—Top =2, f—a.’z:, g:ﬂ, ﬁ:——#o_ ,
Bg dr [y

_n dB, ng)2 _ rBZB? (,&’)2 . _ Bg
o= k27‘3 +.m2 (kr dr + sz +m—a_7'— r=rg B B? ﬁ r=rg ’ #= -
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Euler’s equation is reduced to

o 2 d{r

dT( )_661'_0-

The solution is
&=cz™ ™ oz (8.96)
where n; and ns are given by

1/2
ny = 14(1 +24ﬁ/a) .

When a + 43 > 0, n; and ne are real. The relation ny; + ng = 1 holds always. For n; < na, we
have the solution z7™, called a small solution. When n is complex (n = v & ¢4), & is in the
form exp((—+v F19)Inx) and &, is oscillatory.

Let us consider a local mode &, which is nonzero only in the neighborhood ¢ around r = rg
and set

n?—n—— =0,
!

r—rg=gt, &(r)=£@1), £(1)=6(-1)=0.

- 1
W, = —:¢ f (at2
P 2ug Ja

Since Schwartz’s inequality yields

/‘11 Hle f_ll |éf2dt > I f_ 11 et

Then W, becomes
d¢|?

4 ﬁlfP)dt + O(e?).

(i |g.adt)2

1 1
W, > -2—2(a+4ﬁ)j;1 1€t

The stability condition is &« + 48 > 0, i.e.,

z(ﬁ)z 2u0 dpo
BZ dr

>0 8.97
; (897)

4
r{ii' /i) is called shear parameter. Usually the 2nd term is negative, since, most often, dpo/dr <
0. The 1st term ({i'/fi)? represents the stabilizing effect of shear. This condition is called
Suydam’s criterion.'® This is a necessary condition for stability; but it is not always a sufficient
condition, as Suydam’s criterion is derived from consideration of local-mode behavior only.

Newcomb derived the necessary and sufficient conditions for the stability of a cylindrical plasma.
His twelve theorems are described in ref.11.

8.3d Tokamak Configuration

In this case the longitudinal magnetic field B; is much larger than the poloidal magnetic field
By. The plasma region is r € a and the vacuum region is @ < r < b and an ideal conducting
wall is at r = b. It is assumed that ka < 1, kb <« 1. The function ¢ in eq.(8.90) for Wy is

A{mBg + kaBy) o ™
T 0 (7 )

(from eq.(8.91)), and Wy becomes

(=

_m (mB, + kaBs)? , _ 1+ (a/b)?™
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Fig.8.9 The relation of the growth rate v and ng, for kink instability (-2W/(r£2B2/u) =
v2a?({pmo) 1o/ B2)). After V. D. Shafranov: Sov. Phys. Tech. Phys. 15, 175 (1970).

From the periodic condition for a torus, it follows that

2
% = —2rR (n is an integer)

so that (k- B) is given by

a(k - B) = mB, + kaB, = mB, (1 _ %)

in terms of the safety factor. The W, term in eq.(8.92) is reduced to

2 2
k2B? - (T) B? = (kBs + EBG) 2B, (kBs + TBG)
a a a a

(Y (-2 -

Accordingly, the energy integral becomes

W, + Wy = 5 —B2€2(a) ((1 - n::)2 (L mk) =2 (1 B nqa))

2u0 m

) e

The 1st term of eq.(8.98) is negative when

2 . Ngg

- 1 (8.
15 < m < (8.99)

The assumption ng,/m ~ 1 corresponds to ka ~ mB,/Bs. As B,/Bs < 1, this is consistent
with the assumption ka < 1. When m = 1, (m? — 1)/m? in the 2nd term of eq.(8.95) for g
is zero. The magnitude of g is of the order of k%r?, which is very small since kr < 1. The
term in f(d&-/dr)? can be very small if & is nearly constant. Accordingly the contribution of
the integral term in eq.(8.98) is negligible. When m = 1 and a?/b* < ng, < 1, the energy
integral becomes negative (W < 0). The mode m = 1 is unstable in the region specified by
eq.(8.99) irrespective of the current distribution. The Kruskal-Shafranov condition for the mode
m = 1 derived from the sharp-boundary configuration is also applicable to the diffuse-boundary
plasma. The growth rate 4% = —w? is

n_ W _ 1 B 2(1 - nga)?
y2 o~ J{omo|€[2/2)dr — {pmo) moa? (2(1 — Nga) — m) ) (8.100)
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mol€[227rd
{(pmo) = fpwzlf §|3 (;T)r T

The maximum growth rate is v2,_, ~ (1—a?/b%)B2/(uo{p)a?). When m # 1, (m?-1)/m? in the
2nd term of eq.(8.95) for g is large, and g ~ 1. Accordingly, the contribution of the integral term
to W, must be checked. The region g < 0is given by x1 < x < x2, when x = —krB; /By = ng(r)
and

2 2k?r? m2(m? — 1) porp} 2
R — % M T — g [ 0 . 3.101
Xpz=m m{m? — 1) " m(m? — 1) (1 2k?r? B3 ( )

Since kr < 1, the region ¢ < 0 is narrow and close to the singular point ng(r) = m and the
contribution of the integral term to W, can be neglected. Therefore if ng;/m is in the range
given by eq.(8.99), the plasma is unstable due to the displacement §.(a) of the plasma boundary.
When the current distribution is j(r) = jo exp(—#?r?/a?) and the conducting wall is at infinity
(b = o0}, ¥? can be calculated from eq.(8.100), using the solution of Euler’s equation; and the
dependence of 72 on g, can be estimated. The result is shown in fig.8.9.

When the value of ng, /mn is outside the region given by eq.(8.99), the effect of the displacement
of the plasma boundary is not great and the contribution of the integral term in W}, is dominant.
However, the growth rate 2 is k%r? times as small as that given by eq.(8.100), as is clear from
consideration of eq.(8.101).

8.3¢ Reversed Field Pinch!?

The characteristics of the Reversed field pinch is that B, and B; are of the same order of
magnitude, so that the approximation based upon ke <« 1 or B, < B; can no longer be used.
As is clear from the expression (8.82) for W, the plasma is stable if

By . Bpd, .. 1d .,
2p0js—- = 27 3 (rBo) = 5 (rBe)" <0 . (8.102)

is satisfied everywhere. This is a sufficient condition; however, it can never be satisfied in real
cases. When the expression (8.95) for g is rewritten in terms of P = rB,/By (27 P is the pitch
of the magnetic-field lines), we find

2(kr)2uo dpo Bi/r

9= et dr T 2 G ™

X (kP'((m2 + k202 — (m? — k3 D) + m((m® + k222 - (m? + 3k2r2)))‘. (8.103)

When m = 1, g becomes

2(kr)?uo dpo | (kr)*Bi/r 2,2 2 2

= e LR A’ A — 1 P k —_ . .

9= T (fr)? ar (1+(kr)2)2(kP+ J(kP(3 4+ k*r®) + (k*r® = 1)) (8.104)
The 2nd term in eq.(8.104) is quadratic with respect to P and has the minimum value

% k2r? B 4Bg k2r?
dr 1+ k?r? r (1 +k2r2)2(3 + k2r2)’

g(r) > 2uo

The condition g(r) > 0 is reduced to

réodpo 2
Bg dr {1+ k2r2)(3 + k?r?)

(8.105)
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- Fig.8.10 Dependence of pitch P(r) on r, and the region ¢,{P,r) < 0. The displacements &,(r) of the
‘unstable modes are also shown. Parts a-d are for & < 0.

(dpo/dr must be positive). Accordingly if the equilibrium solution is found to satisfy the con-
~ dition (8.105) near the plasma center and also to satisfy the condition (8.102) at the plasma

boundary, the positive contribution of the integral term may dominate the negative contribution
from the plasma boundary and this equilibrium configuration may be stable. Let us consider
the 2nd term of eq.(8.104):

k*rB} 2,2 2,2 _
This term is positive when
kP < —1 or kP> (1-k*r%)/(3+ k*r?). (8.107)

The point kP = -1 is a singular point. The region g; < 0 is shown in the P,r diagrams of
fig.8.10a-d for given k (< 0). 75 is a singular point. Several typical examples of P(r} are shown
in the figure. It is clear that &.(r) shown in (b) and (c) makes W negative. The example (d) is
the case where the longitudinal magnetic field B, is reversed at » = ry. If k (> 0) is chosen so
that kP(0) < 1/3 and if the singular point r; satisfying kP(r;) = —1 is smaller than r = b (i.e.,
rs does not lie on the conducting wall r = b), the plasma is unstable for the displacement &.(r)
shown in fig.8.10d’. The necessary condition for the stability of the reverse-field configuration is

—P(b) < 3P(0). (8.108)

This means that By cannot be very small compared with B, and that the value of the reversed

B, at the wall cannot be too large.
When m = 1, eq.(8.82) for W, yields the sufficient condition of stability:

By
2p0je—" < ——(1 + kP)?. (8.109)
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The most dangerous mode is k = —1/P(a). With the assumption By > 0, the stability condition
becomes

pojs < %% ( ?8 + 1) . (8.110)

Accordingly if the condition
‘ P(r)
P(a)

is satisfied at small r and j. is negative at r near the boundary, this configuration may be stable.
Let us consider limitations on the beta ratio from the standpoint of stability. For this purpose
the dangerous mode kP(a) = —1 is examined, using eq.(8.82) for W,,. The substitution

> 1 (8.111)

&ir)=¢ 0<r<a—s¢, &(r)=0 r>ate

into eq.(8.82) yields

W, = il —¢2 /0 dr( 2Bg—(T‘Bg)+(k7‘B +mBa)

(krBz — mBg)?
210 T

m? + kir?

When m = 1, then W, is

W, = __g2/ ( 239—(r59) +2k2r2B? 4 2B -
0

20

k*r?(krB. — By)*
14 k22 '

Since the last term in the integrand is always negative, the integration of the other three terms
must be positive, i.e.,

™

5 2 (—Bg(a) + 2k? / rB;fdr) > 0.
1o 0

Using kP(a) = ~1 and the equilibrium equation (6.9),

2 fa B? B? + B}
2 Jo (#0100 + 7) rdr = (uopo + — 5 .

we can convert the necessary condition for stability to

a’B(a) > 4;1,0/ rppdr
0

ie.,

u0\ 2
By = (ﬂ) i / pordr < 1. (8.112)
BB

Next let us study the stability of the mode mn = 0 in the reversed field pinch. It is assumed
that B, reverses at r = r1. The substitution

Er)=M 0<r<m—¢, &(ry=0 r>rm+te

into eq.(8.82) yields

_ T e [" 2_op 4 2,2 g
W, = 2#0,\ fo rdr (4Bz 2Bodr(TB9) + k“r‘BZ ).
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Using the equilibrium equation {6.8), we obtain the necessary condition for stability:
1 202 o 2
py TiBy(r1) > 8 _L rpodr — dripg(ry).
If po(r1) ~ 0, we have the condition

B < % (8.113)

8.4 Hain-Liist Magnetohydrodynamic Equation
When the displacement £ is denoted by
£(r,6,z,t) = E(r)expi(mb + kz — wt)
and the equilibrium magnetic field By is expressed by
B(r) = (0, Bo(r), B.(r))

the (r, 8, z) components of magnetohydrodynamic equation of motion are given by

o = (uo’rP(V §)+ B2 < (ré,) + 4D (6o B, —5;39))

L
—(F2+ra%; (%’i) )sr—Zz‘k?(@Bz—@B@), | (8.114)

BgB

— pigprw’éy = i?’yugp(vl- €) + iDB, ——(rgr) + 2ik g — H?B,(&B, — £.Bp), (8.115)

. : 1d ., B2
~popm’€: = ikyuop(V - €) ~ iDBo~ (&) — 2ik—26 + H*Bo(6oB, — £.Bs)  (8.116)

where

2
F=?Bg+sz:(k.B), Dz?gz_kf;a, sz(?) ey

1d im L
V&= o (rdr) + =6 + kg
When &g, £, are eliminated by eqgs.(8.115),{8.116), we find

T L VT 2 ald .
e ( X (Hopmw (Tpop + BY) — yuopF~)~ 3 (&)

d (Bg) 4k* B}

+ Hopmw® — F* = 2By 2 (opmw” B — yu0pF?)

d QkBg m 2 2 9
rir (o (B = kBo) (opmr* (yuap + B) — vuonF?) ) |6

=0 ‘ (8.117)
where A is

A = piphw — popmw H* (yuop + B?) + yuopHF?2.
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Fig.8.11 Ballooning made

This equation was derived by Hain-Liist.> The solution of eq.(8.117) gives &.(r) in the region
of 0 < r < a. The equations for the vacuum.region a < 7 < @y, (G is the radius of wall) are

VxB; =0, V-B =0
so that we find
B; =V, N =0
and

P = (bIn(kr) + cKm(kr)) exp(imb + ikz),

By, = %‘f = (b1, (kr) + cK, (kr)) exp{iml + ikz). (8.118)

By, in the plasma region is given by
By, = i(k - B)t, = iF¢,
and the boundary conditions at r = a are
Bix(a) = iF&(a), (8.119)
1-(@) = i(F'¢(a) + F& (a)), (8.120)

and the coefficients b,c can be fixed.

To deal with this equation as an eigenvalue problem, boundary conditions must be imposed on
£»; one is that & o ™! at r = 0, and the other is that the radial component of the perturbed
magnetic field at the perfect conducting wall Bir(a.,) = 0. After finding suitable w? to satisfy
these conditions, the growth rate 4% = —w? is obtained.

8.5 Ballooning Instability

In interchange instability, the parallel component k| = (k- B)/B of the propagation vector is
zero and an average minimum-B condition may stabilize such an instability. Suydam’s condition
and the local-mode stability condition of toroidal-system are involved in perturbations with
kj = 0. In this section we will study perturbations where k| 3 0 but |k /k,| < 1. Although
the interchange instability is stabilized by an average minimum-B configuration, it is possible
that the perturbation with k) # 0 can grow locally in the bad region of the average minimum-B
field. This type of instability is called the ballooning mode (see fig.8.11).
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The energy integral dW is given by

6W=—2%/((Vx(§x30))2~(§x(Vng))-Vx(ngo)

+y10p0(V - §)? + 1oV - £)(€ - Vipg))dr.

Let us consider the case that £ can be expressed by

By x V¢

£= B2 (8.121)

where ¢ is considered to be the time infegrai of the scalar electrostatic potential of the perturbed
electric field. Because of

ExByg=V.¢

- the energy integral is reduced to

W = ﬁf((v x Vi ¢)? - ((B" . Vfgg’) - ”"j")v X V.o

 ymopo(V - £) + uo(V - €)(E - vpo))dr
'V - ¢ is given by

V-&:V.(—B"—gg@) V¢V x (§§)=v¢-(( gz)xB'{-%V){B)

The 2nd term in () is negligible compared with the 1st term in the low beta case. By means of
Voo = jo X By, W is expressed by

W = -l_/(v XV, 4)% + HoVpo - (§2J.¢’ x By) (BO : VB>2< Vltp)
0 0

_ po(Jo - Bo)

B2 Vi¢:V xVié+vropo (V ( _ ) (Bo x Vﬂﬁ))z

Bj

0T (Box9.8) (g (L), (Ho x Vs #)or.

Let us use z coordinate as a length along a field line, » as radial coordinate of magnetic surfaces
and # as poloidal angle in the perpendicular direction to field lines. The 7,6, z components of
Vo, B, and V¢ are approximately given by

Vpo = (63,0,0), B =(0, Be(r), Bo(1—rRI\(2))),

6 = (06/0r.0/r06,06/0z),  B(r,6,2) = B(r, z)Re(expimé).
R.(z) is the radius of curvature of the line of magnetic force:

Rcl(z) = % (—w +cos 27r%) .
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When R.(z) < 0, the curvature is said to be good. If the configuration is average minimum-B,
w and Ry must be 1 > w > 0 and Ry > 0. Since By/By, /Ry, r/L are all small quantities, we
find .

Vi$=Vé-Vp~Re (a_¢ ey o) ,

ar’
_ (-imadp %
VX(VJ_(b)wRe( r 51W70)?

Box V.¢é~Re (_”""Boqs,Bga"5 0)

r or’

and §W is reduced to

_ 1 m?ag(ra)\ B 2
W = ﬂ/"? (( Ep ) ) (p(r, z}) )27rrdrdz

where —py/ph = rp and 8 = po/(B3/2u). The 2nd term contributes to stability in the region
R.(z) < 0 and contributes to instability in the region of R¢(z) > 0. Euler’s equation is given by

d*¢ B
dz2? + rpRc(2)

R. is nearly equal to B/|VB|. Equation (8.122) is a Mathieu differential equation, whose
eigenvalue is

é=0. (8.122)

w = F(BL?/2x%r,Ry).
Since

F(z)=z/4, 21, Flz)=1-z7Y? 131,

we find the approximate relation

4w 27r2'rpRg

Be~ Tiawyi—wy 12

Since w is of the order of rp, /2Ry and the connection length is
L =~ 2w Ro(2m /1)

(¢ being the rotational transform angle), the critical beta ratio 3. is

L 2 ?"p
e~ [ — —=1. 12
() (%) @129
If 8 is smaller than the critical beta ratio f;, then §W > 0, and the plasma is stable. The
stability condition for the ballooning mode in the shearless case is given by!®

B < B

In the configuration with magnetic shear, more rigorous treatment is necessary. According to
the analysisi®1718 for ballooning modes with large toroidal mode number 3> 1 and m —ng ~ 0
(see appendix C), the stable region in the shear parameter S and the measure of pressure gradient
a of ballooning mode is shown in Fig.8.12. The shear parameter S is defined by

_rdg
5= gdr
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1.0 |

0.0

Fig.8.12 The maximum stable pressure gradient & as a function of the shear parameter S of ballooning
mode. The dotted line is the sta.blhty boundary obtained by imposing a more restricted boundary
condition on the perturbation.!®

where g is the safety factor (g = 2w /«: ¢ rotational transform angle) and the measure of pressure
gradient o is defined by

__CR dp
B/ 2po dr

The straight-line approximation of the maximum pressure gradlent in the range of large positive
shear (S > 0.8) is @ ~ 0.65 as is shown in Fig.8.12. Since

1 1 (e : 1 1 dp 2
= 2 _—
b B§/2,u07ra?/(; plardr Bl o ar” O

the maximum ballooning stable beta is

lqu)
g= OGR(asjo Sprtdr).

Under an optimum q profile, the maximum beta is given by!?

a
max ~ 0.28
g R

— (@>?) | (8.124)

where g, is the safety factor at the plasma boundary. In the derivation of (8.124) g, > 2, g =1
are assumed. _

It must be notified that the ballooning mode is stable in the negative shear region of S, as is
~ shown in fig.8.12. When the shear parameter S is negative (q(r) decreases outwardly), the outer
lines of magnetic force rotate around the magnetic axis more quickly than inner ones. When
the pressure increases, the tokamak plasma tends to expand in a direction of major radius
(Shafranov shift). This must be counter balanced by strengthening the poloidal field on the
outside of tokamak plasma. In the region of strong pressure gradient, the necessary poloidal
field increases outwardly, so on outer magnetic surfaces the magnetic field lines rotate around
the magnetic axis faster than on inner ones and the shear parameter becomes more negative'®,

In reality the shear parameter in a tokamak is positive in usual operations. However the
fact that the ballooning mode is stable in negative shear parameter region is very important to
develope tokamak configuration stable against ballooning modes.
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Since
T Bg 1 po /""
Re = By = Bgonr j(r)2mrdr

the profile of safety factor g(r} is

-q(l—r) = Eg—o (m~2 f 327rrd'r) = EOB_R ()

Therefore a negative shear configuration can be realized by a hollow current profile. The MHD
stability of tokamak with hollow current profiles is analyzed in details in ref.20.

8.6 7n; Mode due to Density and Temperature Gradient

Let us consider a plasma with the density gradient dng/dr, and the temperature gradient
dTwo/dr, dTjo/dr in the magnetic field with the z direction. Assume that the ion’s density
becomes n; = n;g + #; by disturbance. The equation of continuity

an;

'B-E"FUI Vn +niV-v=0

is reduced, by the linearization, to
. . 0Ong .
—twh; -+ U + notkyo) = 0. (8.125)

It is assumed that the perturbation terms changes as expi(kerf + ky2 — wt) and ke, k| are the
6 and z components of the propagation vector. When the perturbed electrostatic potential is
denoted by @, the E x B drift velocity is & = Eg/B = zkgqb/ B. Since the electron density
follows Boltzmann distribution, we find

e eq5
e KL (8.126)
The parallel component of the equation of motion to the magnetic field
dyj
nym; —— at = —Vupi - enV“qb
is reduced, by the linearization, to
—iwnimiﬁ” = —’ik“ (B + enoqg). . (8.127)
Similarly the adiabatic equation
a
5 ) v %) = 0
is reduced to
. . o 2 4T dn
—iw (E -~ §-”—i) _iked (TH 24 _ 0. (8.128)
i 3 B To 3 ng :

Let us define the electron drift frequencies wy,,w¥,, and the ion drift frequency wy;, wr; by

. _ke(K-Te)% . _ kg(£T;) dn;
eBn, dr’ ™7 eBp; dr’

ne —
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o= ke d(rT%) wh = ke d(xT})
Te™ "eB dr eB dr
The ratio of the temperature gradient to the density gradient of electrons and ions is given by
_dTe/dr n.  dInT. o dTi/dr = dInTi

e = T. dng/dr dlnn.’ = T, dnifdr dlnn;
respectively. There are following relations among these values; .

_ ___I:'l_ * ¥ * £ . #
Wy = T Whes Wre = Nelpe, Wy = Thy;
e

Then equations (8.125),(8.126),(8.127),(8.128) are reduced to

i Yl Wne €
ng  w/k  w kI
fle e
ng kT,

Y

wiky mi(wl/ku)2 (qu * %) ’

156D
po 3n0)  w \" 3L

Charge neutrality condition 7;/ng = 7ie/ng yields the dispersion equation?!

.
_Whe [ vm ) (T b “ﬁe(._E))_
1= (w/k”) (T-f3+w mo3)) ="

(v4; = kTi/m;). The solution in the case of w € w}_ is

2
= —ki 2.(i—-).
||UT1. i 3

The dispersion equation shows that this type of perturbation is unstable when 7; > 2/3. This
mode is called n; mode.

When the propagation velocity [w/ k||| becomes the order of the ion thermal velocity vy, the
interaction (Landau damping) between ions and wave (perturbation) becomes important as will
be described in ch.11 and MHD treatment must be modified. When the value of #; is not large,
the kinetic treatment is necessary and the threshold of 7; becomes ;¢ ~ 1.5.
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Ch.9 Resistive Instability

In the preceding chapter we have discussed instabilities of plasmas with zero resistivity. In
such a case the conducting plasma is frozen to the line of magnetic force. However, the resistivity
of a plasma is not generally zero and the plasma may hence deviate from the magnetic line of
force. Modes which are stable in the ideal case may in some instances become unstable if a finite
resistivity is introduced. :

Ohm’s law is

ni=E+V x B. (9.1)

For simplicity we here assume that E is zero. The current density is § = V x B/n and the
J x B force is

B(V.B)-VB?
- :

When 7 tends to zero, this force becomes infinite and prevents the deviation of the plasma
from the line of magnetic force. When the magnitude B of magnetic field is small, this force
does not become large, even if  is small, and the plasma can deviate from the line of magnetic
force. When we consider a perturbation with the propagation vector k, only the parallel (to k)
component of the zeroth-order magnetic field B affects the perturbation, as will be shown later.
Even if shear exists, we can choose a propagation vector k perpendicular to the magnetic field
B:

F,=jxB= (9.2)

(k-B)=0. - | - 9.3)

Accordingly, if there is any force Fg, driving the perturbation, this driving force may easily
exceed the force Fs, which is very small for a perturbation where (k- B) = 0, and the plasma
becomes unstable. This type of instability is called resistive instability.

9.1 Tearing Instability

Let us consider a slab model in which the zeroth-order magnetic field By depends on only z
and B is given as follows;

By = Boy(z)ey + By, (z)e,. : (9.4)
From Ohm’s law (9.1} we find

%—?:—VXE:VX((VXB)—T]j):VX(VXB)-l-MiAB (9.5)
0

where 7 is assumed to be constant. It is assumed that the plasma is incompressible. Since the
growth rate -of the resistive instability is small compared with the MHD characteristic rate (in-
verse of Alfven transit time) and the movement is slower than the sound velocity, the assumption
of incompressibility is justified and it follows that

V-V =0 (9.6)
The magnetic field B always satisfies
V.-B=)0. (9.7)
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The equation of motion is

dVv

1
=Y -2 B —
P ”O(V x B) x Vp

= lo ((BD -V)B; + (B, -V)By - zf—g) - Vp. (9.8)

Let us consider the perturbation expressed by fi(r,t) = fi(z)exp
(i{kyy + kz2) + 7t). Then eq.(9.5) reduces to

. n { 8 2 .

where k% = k2 + k2. The first term in the right-hand side of eq.(9.8) becomes (Bo V)B, =
i(k - Bo)B. The rotation of eq.(9.8) is

LopayV X V =V x (i(k . Bo)By + (Blz%) Bo) . (9.10)

Equations (9.6),(9.7) reduce to
a-Bl;l:

Bz + ik Bly + ik B]_z = 0 (9.11)
%Vm + ik, V, + ik, V, = 0. (9.12)

Multiply k, and z component of €q.(9.10) and multiply k. and the y component and take the
difference. Use the relations of egs.(9.11) and (9.12); then we find

9? ) I _ ,
Hopm (@ - kz) Vo =itk Bol (_3? B k2) By, —i(k - Bo)"Biz (9-13)

where ! is differentiation in z. Ohm’s law and the equation of motion are reduced to egs.(9.9)
and (9.13). It must be notified that the zeroth-order magnetic field By appears only in the form
of (k - Bp). When we introduce a function

F(z) = (k- Bo) ' (9.14)

the location of F(z) = 0 is the position where resistive instabilities are likely occurred. We
choose this position to be z = 0 (see fig.9.1). F(z) is equal to (k- Bp) ~ (k- By)'z near z = 0.
As is clear from egs.(9.9) and (9.13), B)y is an even function and V; is an odd function near
z = 0. The term |ABj¢} ~ Juokyjiz| can be large only in the region |z} < €. Since the growth
rate of resistive instability is much smaller than MHD growth rate, the left-hand side of the
equation of motion {9.13) can be neglected in the region || > ¢ and we have

d2 Bl F*
T kz o= —
dz? B = F

B, o >e. C (9.15)

The solution in the region x > 0 is

T 3
By, = e ** ( f ek dg / (F"/F)Byge " dn + A)
Lt v} [o ]
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| Bro

Fig.9.1 Zeroth-order magnetic configuration and magnetic islands due to tearing instability. Profiles of-
By, and V are also shown. '

. and the solution in the region z < 0 is

® 3

By, = " ( f e~ 2k g f (F"/F)Byge* dy + B) .
oo o0

Let us define A’ as the difference between B}, (+¢) at £ = +¢ and B}, (—¢) at z = —¢ as follows;

r_ i:n (+€) - iz.(—e)
A = ) . (9.16)

Then the value of A’ obtained from the solutions in the region |z| > ¢ is given by

A = 2k - ﬁo-) ( / ; + f °°) exp(—k|z|)(F" /F) Bya dz. (9.17)

For a trial function of
F(LE):FS:‘E/LS (lml <Ls)y F($)=F5$/|$| (:’5> |Ls|)

we can solve eq.(9.15) and A’ is reduced to

A,_(z_a)e—'—’a+(1—2a)~3(l_a)
T\L /e —(1-2a) L \a

Here @ = kL, was used and Ls is shear length defined by Ls = (F/F’);—¢. For more general cases
of F(z), Biz{z) has logarithmic singularity at £ = 0, since F//F « 1/z generally. Referene 2
describes the method to avoid difficulties arising from the corresponding logarithmic singularity.

Equations (9.9) and (9.13) in the region |z| < € reduce to

’B1z 2 | THo O
o (k + T) By, = —z?F 2V, (9.18)
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2 AV Y
9 ‘2’*’ — [ k*+ (—FJ—H) Ve=1i (F’a:-—L — ) Bi,. (9-19)
Oz PmnY Pm? HoPmY

The value of A’ obtained from the solution in the region |z| < ¢ is given from eq.(9.18) as
follows;

aBlz(+E) - aBl:c(_“:"‘)
dr dx

£
- Enﬂ [ ((7 + %k"’) B, — z‘F'mv;) dz. (9.20)
~E

The value A’ of eq.(9.20) must be equal to the value of A’ of eq.(9.17). This requirement gives
the eigenvalue v and the growth rate of this resistive instability can be obtained.! However we
try to reduce the growth rate in qualitative manner in this section. In the region |z| < €, it is
possible to write

A’ X le(U) =

8?By; A'By,
Ox? e
. It is assumed that the three terms of eq.(9.9), namely the term of induced electric field (the

left-hand side), the V' x B term (the first term in the right-hand side) and Ohm’s term (the
second term) are the same order:

vBip ~ 12D (9.21)

vYBig ~ iF'eV,. (9.22)
Then eq.(9.21) yields

y ~ %%' (9.23)
Accordingly

A >0 (9.24)

is the condition of instability. In order to get the value of v, the evaluation of ¢ is necessary.
Equation (9.13) reduces to

-V, A'Big
uopmv( )~ iF'e 51 (9.25)

If the terms V., By., are eliminated by egs.(9.21), (9.22) and (9.25), we find

e (uoo?) (& )(Pm#)ﬂ?as’

(@) 10 () ) e (i) o

where the physical quantities

poa’

‘T’ 7
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e
B Bo/(ﬁopm)m

are the resistive diffusion time and Alfvén transit time respectively. A non-dimensional factor

TA

S =Tmr/TA

is magnetic Reynolds number and a is a typical plasma size. Accordingly the growth rate « is
given by

¥ =

n_a . _ (&) (k- By)a? Y5 (a5 [ (k- Boya?\* 1
= %Ay = T - —. (9.27)
Hoa® & TR TA TA

By 853/5 By

Since this mode is likely break up the plasma into a set of magnetic islands as is shown in fig.9.1,
this mode is called tearing instability.!

The foregoing discussion has been based on the slab model. Let us consider this mode in a
toroidal plasma. The poloidal and the toroidal components of the propagation vector k are m/r
and —n/R respectively. Accordingly there are correspondences of k, ++ m/r, and k, < ~n/R,
and

n

(k*Bo)=?Bg—§Bz=§Bg(-T£-—-q), qE%—.
Therefore weak positions for tearing instability are given by (k- Bg) = 0 and these are rational
surfaces satisfying g(rs) = m/n. The shear is given by ‘
, -n_ dg (k- By)'r? rs\ q'"s
b Bof = Bt g =on(F)
The tearing mode is closely related to the internal disruption in tokamak and plays important

role as is described in sec.16.3.

It has been assumed that the specific resistivity 7 and the mass density p, are uniform and
there is no gravitation (acceleration) g = 0. If 5 depends on z, the resistive term in eq.(9.5)
becomes V x (nV x B)/ug. When there is temperature gradient (%' # 0), rippling mode with
short wavelength (kLs > 1) inay appear in the smaller-resistivity-side (high-temperature-side) of
z = 0 position. When there is gravitation, the term pg is added to the equation of motion (9.8).
If the direction of g is opposit to Vo, (g is toward low-density-side), gravitational interchange
mode may appear.’

9.2 Resistive Drift Instability

A finite density and temperature gradient always exists at a plasma boundary. Configurations
including a gradient may be unstable under certain conditions. Let us consider a slab model.
The directon of the uniform magnetic field is taken in the z direction and Bg = (0,0, Bp). The
T axis is taken in the direction of the density gradient with the positive direction outward from
the plasma. The pressure is pg = po(z), (see fig.9.2). The zeroth-order plasma current is j, =
(0,pp/ Bo, 0) and we assume that the flow velocity and the electric field are zero Vo =0, Eg =0
in the zeroth order. The flow velocity due to classical diffusion is neglected here. Electron
inertia and ion motion along magneitc lines of force are also neglected. The usual relations in
this configuration are

v
Mn%—t =jx B-Vp, (9.28)

. _
E+V xB=nj+—(jx B~ V), (9.29)
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N

N

Fig.9.2 Slab model of resistive drift wave.

In
B +V.-(nV)=0, (9.30)
V-j=0 ~ (9.31)

where M is the ion mass. In this configuration, electrostatic perturbations are considered here.
The 1st-order electric field E; is expressed by the electrostatic potential E; = —V¢; and the
1st-order magnetic field perturbation is zero By = 0 (8B/0t = V x E). The characteristics of
electrostatic perturbation will be explained in ch.10 in detail. For simplicity the ion temperature
is assumed to be zero T} = . Let us consider the mode

ny = ny(x) expilky + kjz — wt),
$1 = ¢1(z) expilky + kyz — wi).
Equations (9.28),(9.29) reduce to
—twMnogVy1 = j; x By — kT.Vn,, (9.32)

41 % Bo— KTV = eng(~Vy + V1 x By — njy). (9.33)
Equations (7.32),(7.33) yields

(M .

iw (—-e—) Vi=V¢ — Vi x By +1nj,. (9.34)

When 7 is small (ve < §2.), the contribution of 77 can be neglected in eq.(9.34), i.e., we may

write
. ( )kqﬁz _( ﬁa) ky1
Vo = szo’ Yy = %) By’ Va= w/ By

£2, is as usual, the ion cyclotron frequency ({2, = —ZeB/M)}. The wave frequency w was assumed
to be low (w/f%)? < 1. The z,y component of eq.(9.32) and the z component of eq.(9.33) are

: ., KTeny - . _ O kTG ( ) ed , zk” ( )
r = — P + kn z —
J i Bg Jv = am Bo o .Q Bg J en T 0 6(}‘51

Since eq.(9.31) is j, + ikjy + tk)j. = 0, and eq.(9.30) is —iwny +n4 Ve
+n0ikVy + ﬂgiku‘fz = 0, we find

k2kT. k2B
|| L e g e 2 $1
“en ng + ( n — ik eno-—g) B, = 0, (9.35)
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4

2
n (=K K nbk) ¢
n0+(ﬂi tol 202 2=, (9.36)

The dispersion equation is given by the determinant of the coefficients of eqs.(9.35),(9.36):

(3 (3) () 2 (- ) () o o
12 9] k ngen eBy (2 M w? ' k nper eBy £ ng o .

" where 71 = mele;/ne?, By/(ngen) = 12 /vei. The drift velocities vy;, vg. of ions and electrons due
“to the density gradient Vng are given by

o —(kT;Vno/ng) x b _ —KT, (——nf,) .

eBy "~ eBpy \ mp
oo — (kT.Vno/ng) x b KT, (—n{]) .
de = eBo a BB{) o v

The drift frequencies of ions and electrons are defined by w* = kvg; and w; = kvg. respectively.
As ng/ng < 0, wi > 0 and wf = —(T/Te)wf < 0. Since w) = k(—np/no)(kTe/mi2,), the
dispersion equation is reduced to

2 k2 , 2 ' 2
w ) wTe i\ 2.5 (k”) (w) A28 (k”)
— ) —i|14(kpg)?t — —= Ly (0 — — -] =0 .38
(w;) z( +.( pa) = o7 w2) e \ 1) &) T % (9.38)
pa is the ion Larmor radius when the ions are assumed to have the electron temperature 7.

Denote w/w; = z+iz, and —(£2.92 /veiws)(ky/k)* = y* and assume (kpg)z—(nTe/M)(kﬁ/wz) <
1. The dispersion equation is then

(z +iz)? +iy*(z +iz) — iy® = 0. (9.39)

The dependence of the two solutions x;(y),z1(y) and za(y), z2(y) on y  (k;/k), is shown in
fig.9.3. As z3(y) < 0, the mode corresponding to z2(y), z2(y) is stable. This wave propagates in
the direction of the ion drift. The solution z;, z; > 0 propagates in the direction of the electron
drift and it is unstable. If the value of (k| /k) is adjusted to be y >~ 1.3, the z; value becomes
maximum to be z; ~2 0.25 and the growth rate is Imw = 0.25w?. If n is small, the wavelengh
of the most unstable wave becomes long and the necessary number of collision to interrupt the
electron motion along the magneitc line of force is maintained. If the lower limit of k) is fixed
by an appropriate method, the growth rate is

Vit k 2
Im(w/w?) ~y 2 = Qe'“;[ (k_”)
e 1
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and the growth rate is proportional to 7 o< v;. This instability is called resistive drift instability
or dissipative drift instability. '

If the ion’s inertia term can be neglected, eq.(9.35) reduces to ni/ng = e¢/xT. and the
dispersion equation becomes w? — wkvge — kﬁTe /M = 0. The instability does not appear. This
instability originates in the charge separation between electrons and ions due to ion inertia. The
charge separation thus induced is neutralized by electrons motion along the lines of magnetic
force. However, if the parallel motion of electrons is interrupted by collision,i.e.resistivity, the
charge separation grows and the wave becomes unstable.>* This instability is therefore also
called collisional drift instability.

The mechanism of charge separation between ions and electrons can be more easily understood
if the equations of motion of the two components, jon and electron, are used. The equations of
motions are ‘

0=—ikn kT, + thkgreng — eng(Ve x B) — 2ngmeve(Ve—Vi)y, (9.40)

M% —z'w)Vi = —z‘knl%ﬂ - ik¢1en0 + eno(V; X B) + nomevei(Ve — Vl)" (9.41)

From these equations we find

Vel = _Z';Te (b x k) (:—; - z";}) : (9.42)
Vie= g (bx B2+ 258} (220 )b x Vi), (9.44)
Vi = kuicf, 2—; (9-45)

where it has been assumed that |V | > |V;| and where ¢; = xT./M has been used. The
continuity equation n/dt + V - (nV') = 0 for ions and electrons yield

b x ik
~iwny + V- ( : no¢1) + (b V)(noVey) =0,
_ b x ik M(=iw) k25T, [ny  Ze¢r ikijc?
ZLUH1+V ( B n0¢1)+m—263 (n_0+n_i'",) g + w ZTL]_—O

From the equations for electrons, it follows that

my _ Y +ikjRTe/ (movei) (@) (9.46)

ng W +iklr‘|’nTe/(mevei) kT, '
and from the equations for ions, it follows that

1 wr + bw _Zeqf’l )

=2 = L A7

no w(l+b)— kﬁcﬁZ/u ( xT; (9.47)

where b = k2(pg)2. Charge neutrality gives the dispersion equation, which is equivalent to

eq.{9.38),

we + ikﬁ”Te/(meVei)  wy — (ZTe/T)bw
w + ikﬁnTe/(mevei) ~ w(l+b)— kic2Zfw’

(9.48)



References : 115

Ion’s motion perpendicular to the magnetic field has the term of y directon (the second term in
the right-hand side of eq.(3.44)) due to ion’s inertia in addition to the term of z direction.
In collisionless case, eq.(9.38) becomes

(14 (kpn)?)w? — wiw — cgkﬁ = 0. (9.49)

The instability does not appear in the collisionless case in the framework of MHD theory. How-
ever the instability may occur even in the collisionless case when it is analyzed by the kinetic
theory (see app.B). This instability is called collisionless drift instability.

References

1. H. P. Furth and J. Killeen: Phys. Fluids 6, 459 (1963)
2. H. P. Furth, P. H. Rutherford and H. Selberg: Phys. Fluids 16, 1054 (1973)
A. Pletzer and R. L. Dewar: J. Plasma Phys. 45, 427 (1991)
3. 5. 8. Moiseev and R. Z. Sagdeev: Sov. Phys. JETP. 17, 515 (1963),
Sov. Phys. Tech. Phys. 9, 196 (1964)
4. F. F. Chen: Phys. Fluids 8, 912 and 1323 (1965)



116 10 Plasma as Medium of Electromagnetic Wave - - -

Ch.10 Plasma as Medium of Electromagnetic Wave
Propagation

A plasma is an ensemble of an enormous number of moving ions and electrons interacting with
each other. In order to describe the behavior of such an ensemble, the distribution function was
introduced in ch.4; and Boltzmann’s and Vlasov’s equations were derived with respect to the
distribution function. A plasma viewed as an ensemble of a large number of particles has a large
number of degrees of freedom; thus the mathematical description of plasma behavior is feasible
only for simplified analytical models.

In ch.5, statistical averages in velocity space, such as mass density, flow velocity, pressure,
etc., were introduced and the magnetohydrodynamic equations for these averages were derived.
We have thus obtained a mathematical description of the magnetohydrodynamic fluid model;
and we have studied the equilibrium conditions, stability problems, etc., for this model in chs.
6-9. Since the fluid model considers only average quantities in velocity space, it is not capable of
describing instabilities or damping phenomena, in which the profile of the distribution function
plays a significant role. The phenomena which can be handled by means of the fluid model are
of low frequency (less than the ion or electron cyclotron frequency); high-frequency phenomena
are not describable in terms of it.

In this chapter, we will focus on a model which allows us to study wave phenomena while
retaining the essential features of plasma dynamics, at the same time maintaining relative sim-
plicity in its mathematical form. Such a model is given by a homogeneous plasma of ions and
electrons at 0K in a uniform magnetic field. In the unperturbed state, both the ions and elec-
trons of this plasma are motionless. Any small deviation from the unperturbed state induces
an electric field and a time-dependent component of the magnetic field, and consequently move-
ments of ions and electrons are excited. The movements of the charged particles induce electric
and magnetic fields which are themselves consistent with the previously induced small perturba-
tions. This is called the kinetic model of a cold plasma. We will use it in this chapter to derive
the dispersion relation which characterizes wave phenomena in the cold plasma.

Although this model assumes uniformity of the magnetic field, and the density and also the
zero temperature, this cold plasma model is applicable for an nonuniform, warm plasma, if
the typical length of variation of the magnetic field and the density is much larger than the
wavelength and the phase velocity of wave is much larger than the thermal velocity of the
particles.

It is possible to consider that the plasma as a medium of electromagnetic wave propagation
with a dielectric tensor K. This dielectric tensor K is a function of the magnetic field and the
density which may change with the position. Accordingly plasmas are in general an nonuniform,
anisotropic and dispersive medium.

When the temperature of plasma is finite and the thermal velocity of the particles is compa-
rable to the phase velocity of propagating wave, the interaction of the particles and the wave
becomes important. A typical interaction is Landau damping, which is explained in ch.11. The
general mathematical analysis of the hot-plasma wave will be discussed in ch.12 and appendix
C. The references 1~4 describe the plasma wave in more detail.

10.1 Dispersion Equation of Waves in a Cold Plasma

In an unperturbed cold plasma, the particle density n and the magnetic field By are both
homogeneous in space and constant in time. The ions and electrons are motionless. '

Now assume that the first-order perturbation term expi(k - r — wt) is applied. The ions and
electrons are forced to move by the perturbed electric field E and the induced magnetic field
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B;. Let us denote velocity by vy, where the sufix k indicates the species of particle (electrons,
or ions of various kinds). The current 7 due to the particle motion is given by

J= npgrvg. (10.1)
%

ng and g are the density and charge of the kth species, respectively. The electric displacement
Dis

D=eE+P, (10.2)
apP
= — = —wP "
i= 2 iw {(10.3)

where F is the electric intensity, P is the electric polarization, and ¢ is the dielectric constant
of vacuum. Consequently D is expressed by

D= oE + éj = K -E. - (10.4)
K is called dielectric tensor. The equation of motion of a single particle of the kth kind is
' d
mk% = go(E + vi x B). (10.5)

Here B consists of B = By -+ B1, where vy, E, B; are the first-order quantities. The linearized
equation in these quantities is :

— WMLV = qk(E + v X Byg). (10.6)
~ When the z axis is taken along the direction of By, the solution is given by
—iB, w By (95 )

Ukz = BO w? — .Q2 Byw? — 92
Ex 92 ’LE .ka
) ’ 10.7
U= BT Bo a1 (107
“ —EE _Qk
ke = By w /
where {2, is the cyclotron frequency of the charged particle of the kth kind:
—qx B
2, = 320 (10.8)

my
(2, > 0 for electrons and §2; < 0 for ions). The components of vy, are the linear functions of E
given by eq.(10.7); and j of eq.{10.1) and the electric displacement D of eq.{10.4) are also the
linear function of E, so that the dielectric tensor is given by

K. FE=|iK, K| 0 E, (10.9)
0 0 K| E
where
HZ
K =1- —k (10.10)
; w? — Qg

' m 0,

K,=-%Y —k "= .
« ng_ng —, (10.11)

_ m;

K= 1—%25-2-, (10.12)
2 nkqg

I = } (10.13)
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According to the Stix notation, the following quantities are introduced:

H,% w
=1l-) —F——F = K
k=1 zk:wzw—ﬂk Ko+ Ky,
Tt (10.14)
L=1-V %Y __ Kk K, |
Zk: w2 w—!—!)k 1 x
From Maxwell’s equation
0B
E=—— 10.15
V x T ( )
. OE 08D
it follows that
kxE= wB]_,
kx Hy=—weK-E
and
w?
kx(kxE)+E2—K-E=0. (10.17)

Let us define a dimensionless vector
ke

N=—
W

(¢ is light velocity in vacuum). The absolute value N = |N| is the ratio of the light velocity to
the phase velocity of the wave, i.e., N is the refractive index. Using N, we may write eq.(10.16)
as

Nx(NxE)+ K- -E=0. (10.18)
If the angle between N and By is denoted by € (fig.10.1) and x axis is taken so that /N lies in
the z, z plane, then eq.(10.18) may be expressed by

K| —N?%cos?8 —iK, N2sinfcosd

E:
iKy - K, - N? 0 E, | =0 (10.19)
N?sinfcosé 0 K| — N%sin?¢ E,

For a nontrivial solution to exist, the determinant of the matrix must be zero, or

AN*~BN?4+C=0 (10.20),
A=K, sin’ 8+ Ky cos® 9, (10.21)
B = (K2 — K2)sin? 0 + K| K (1 + cos® 6), (10.22)

C = K|(K} - K%)= KRL. (10.23)
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By

B'\ E

Fig.10.1 Propagation vector k and z, y, z coordinates

Equation (10.20) determines the relationship between the propagation vector k& and the fre-
quency w, and it is called dispersion equation. The solution of eq.(10.20) is

B+ (B? — 4AC)Y/?
24
= ((K}_ — Ki)sinQB—l— K”KJ_(]. + l'.:OS2 9)

*[(K} — K% — K K1) sin* 6 + 4K K2 cos® 6]'/7)

N2 =

x (2(FLsin? 8 + Ky cos*0)) . (10.24)

When the wave propagates along the line of magnetic force (8 = 0), the dispersion equation
(10.20) is

K)(N* - 2K, N? + (K} - K%)) =0, (10.25)
and the solutions are
K =0, N’=K, +K.=R, N’=K, -Kx=1L. (10.26)

For the wave propagating in the direction perpendicular to the magnetic field (§ = x/2), the
dispersion equation and the solutions are given by

K N'— (K} - K2 + KK )N? + K (K3 - K2) =0, (10.27)
K?-K2 RL '
2 _ L x 2 2_ K. 10.2

10.2 Properties of Waves

10.2a Polarization and Particle Motion

The dispersion relation for waves in a cold plasma was derived in the previous section. We
consider here the electric field of the waves and the resultant particle motion. The y component
of eq.(10.19) is

iK«Ey + (K, -~ N)E, =0,

iB, N’-K,

=R, (10.29)
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The relation between the components of the particle velocity is

R —?.Ex (73, .Qk
t —
Wk g _ Ey w? - .QE w? — Qg
e B B ©
Ey,w?—02 w2

W+ 2N — L)+ (w— %)(N?—R)
C(WH Z)N? - L) = (w~ %)N?-R)

(10.30)

The wave satisfying N2 = R at § = 0 has iE,/E, = 1 and the electric field is right-circularly
polarized. In other word, the electric field rotates in the direction of the electron Larmor motion.
The motion of ions and electrons is also right-circular motion. In the wave satisfying N2 = L
at @ — 0, the relation ¢E,/E, = —1 holds and the electric field is left-circularly polarized. The
motion of ions and electrons is also left-circular motion. The waves with N2 = Rand N> = L
as § — 0, are called the R wave and the L wave, respectively. The solution of the dispersion
equation {10.25) at § =0 is

n2=l (R+L:t Mm—_m) (10.31)
2 Ky
so that R and L waves are exchanged when K| changes sign. When Kx = R — L changes sign,
R and L waves are also exchanged.

When 6 = w/2, the electric field of the wave satisfying N? = K|isE,=E,=0,E, #0.
For the wave safisfying N2 = RL/K |, the electric field satisfies the relations iE;/E, = —(R —
L)/(R+L)=—-Ky/K.1, E. = 0. The waves with N> = K| and N* = RL/K as 6 — n/2 are
called the ordinary wave {Q) and the extraordinary wave (X), respectively. It should be pointed
out that the electric field of the extraordinary wave at 8 = /2 is perpendicular to the magnetic
field (E, = 0) and the electric field of the ordinary wave at # = 7/2 is parallel to the magnetic
field (E; = E, = 0). The dispersion relation (10.24) at 8 = 7/2 is

1
N2 = E(Kﬁ ~ K2+ K Ky +|K} - K2 - K| K.|)

= ﬁ—(RL-l-K”K_Lﬂ:lRL—K”KJ_D (10.32)
L
so that the ordinary wave and the extraordinary wave are exchanged at RL — K| K| = 0.
Besides the classification into R and L waves, and O and X waves, there is another classifi-
cation, namely, that of fast wave and slow wave, following the difference in the phase velocity.
Since the term inside the square root of the equation N? = (B * (B? — 4AC)'/%) /24 is always

positive, as is clear from eq.(10.24), the fast wave and slow wave do not exchange between 6 = 0
and 8 = 7/2.

10.2b Cutoff and Resonance
The refractive index (10.24) may become infinity or zero. When N? = 0, the wave is said to
be cutoff ; at cutoff the phase velocity

w ¢
Uph = 2 = N (10.33)

becomes infinity. As is clear from (10.20),(10.23), cutoff occurs when

Ky =0 R=0 L=0. (10.34) -
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fig.10.2 Wave propagation (a) near cutoff region and (b) near a resonance region

When N? = oo, the wave is said to be at resonance; here the phase velocity becomes zero. The
wave will be absorbed by the plasma at resonance (see ch.11). The resonance condition is

tan® § = —ﬂ. | (10.35)
K,

When # = 0, the resonance condition is K; = (R + L)/2 — %oo. The condition R — foo is
satisfied at w = (%, {2 being the electron cyclotron frequency. This is called electron cyclotron
resonance. The condition L — +06 holds when w = |f2|, and this is called ion cyclotron
resonance.

When 8 = 7/2, K, = 0 is the resonance condition. This is called hybrid resonance. When
waves approach a cutoff region, the wave path is curved according to Snell’s refraction law
~ and the waves are reflected (fig.10.2a). When waves approach a resonance region, the waves
-propagate perpendicularly toward the resonance region. The phase velocities tend to zero and
the wave energy will be absorbed.

1.3 Waves in a Two-Components Plasma

Let us consider a plasma which consists of electrons and of one kind of ion. Charge neutrality
is ' S :
niZi = Ne. (10-36)
A dimensionless parameter is introduced for convenience:

5 Ho (nim; + neme)c?

10.37
BZ (10.37)
The quantity defined by eq.(10.13), which was also introduced in sec.2.2,
112 = nee?/(eome) (10.38)
is called electron plasma frequency. Then we have the reiations
T2/ = mi/me > 1,
T2 + 112 ?
L = 10. :
1310 7% | (10.39)
Ky, Kx, K), and R, L are given by
m? 1 ‘
Kl:l—wz—ﬂ-? W20
m? n: g
=— i e 7€ b 10.40
Hx W w -2 w’ ( )
H? +H-2 HZ
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el

Fig.10.3 Sa) Dispersion relations {w - ck)) for R and L waves propagating parallel to the magnetic

field (@ = { g Dispersion relations (w - ¢k} for O and X waves propagating perpendicular to the
magnetic feld (4 = 7r/23.

2+ I? wi = (4 Qo)w + 4402, — 112

B=l- - = @~ 2w = 12) ’

(10.41)

m? 4 11t W (4 Qe)w + 02, — 112

(w2 (w2 T (w + 2w + 2) (10.42)

rL=1

The dispersion relations for the waves propagating parallel to By (6 = 0) are found by setting
K”:O, N2=R, and N2=L. Then :

w? = T2, (10.43)

w? 1 w2 w—9%) (w2 — %)

— == = 44
czkﬁ R w?—wfle+ R0 -1 (v—-wrl{w+uwL) (1049
where wr, wy, are given by
0 2.2 2 -
WR = ?e + ((?) + 112+ |Qe!2i|) >0, (10.45)
0 Q. 9 1/2 . )
w =25+ ((7) 2+ |Qe!2i|) >0, (10.46)
w? 1 (w + -Qi)(w + -Qe) _ ("-‘-’ _ |.Q,|)(w + ‘Qe) (10 47)

K L A wlet 2Sh—M2  (w—wL){wTwr)
Note that 2. > 0, {2, < 0 and wr > f2. Plots of the dispersion relations w — ck” are shown in
fig.10.3a. The dispersion relations for the waves propagating perpendicular to By are found by
setting N? = K| (ordinary wave) and N? = (K{ — K%)/K) (extraordinary wave). Then

W1 m\" 2
- =12} =14 e .
c2k? K| ( w? ) + c2k?’ (10.48)
w? K| _ K} 2w? = 22)(w? ~ 22 = IT2((w+ 2 (w+ 2e) +H{w— 2 ) w— 2))

c2k? - K?-K2  RL 2w? - W Hw? — wd)
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Fig.10.4 The w regions of R and L waves at ¢ = 0; O and X waves at § = #/2; F and 5 waves; in the
case (w, < fI, < f2;). The numbers on the right identify regions shown in the CMA diagram, fig.10.5.
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Fig.10.5 CMA diagram of a two-component plasma. The surfaces of constant phase are drawn in each

region. The dotted circles give the wave front in vacuum. The magnetic field is directed toward the top
of the diagram.
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Wt (2 22+ 120+ 02202 — 202,02,
a (w? — wﬁ)(w2 —wh) )

(10.49)

Equation (10.48) is the dispersion equation of electron plasma wave (Langmuir wave). Let us
define wyy and wry by

wip = 022 + 112, (1050)
L1 1
wig I |02

(10.51)

wyH is called upper hybrid resonant frequency and wry is called lower hybrid resonant frequency.
Using these, we may write
eq.(10.49) as

W (WP = wl) (@ — W)
c2k? (w? —wi)(w? —wi)

(10.52)

We have wg > wyn > e, 2, and wiy < 2|62, 27 +IT%. Plots of the dispersion relation w - cky
are shown in fig.10.3b. The gradient w/ck in w-cky diagram is the ratio of the phase velocity
vpn to ¢. The steeper the gradient, the greater the phase velocity. The regions (in terms of w)
of R and L waves at # = 0, and O and X waves at # = /2, and F and S waves are shown in
fig.10.4, for the case of wy, < Il < {2..

We explain here the CMA diagram (fig.10.5), which was introduced by P.C. Clemmow and
R.F.Mullaly and later modified by W.P.Allis?>. The quantities £22/w? and (I + II2)/w?®
are plotted along the vertical and horizontal ordinates, respectively. The cutoff conditions
R=0(w = wgr), L = 0{w = w), K| = 0(w = f) are shown by the dotted lines and the
resonance conditions B = co(w = (), L = co(w = ), K| = 0{w = 2n, w = f2yy) are
shown by solid lines. The cutoff and the resonance contours form the boundaries of the different
regions. The boundary RL = KK, at which O wave and X wave are exchanged, is also shown
by broken and dotted line in fig.10.5. The surfaces of constant phase for R, L and O, X waves
are shown for the different regions. As the vertical and horizontal ordinates correspond to the
magnitude of B and the density ne, one can easily assign waves to the corresponding regions
simply by giving their frequencies w.

10.4 Various Waves

10.4a Alfvén Wave
When the frequency w is smaller than the ion cyclotron frequency (w < |{2), the dielectric
tensor K is expressed by

K =1+4,
Kx =0, o (10.53)
Kyj=1-—-¢

[ 2

where § = pon;mic?/BE. As II2/w? = (mi/me)(£22/w?)d, we find II? /w? > §. Assuming that
II%/w? > 1, we have |K| 3> |K_|; then A, B, C of eq.(10.20}) are given by

H2 3y
A —j cos’ g,
m
w?
H2
C =~ —w—g(l + 6)2

e

B ——%(1+48)(1+cos?8), (10.54)
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and the dispersion relations are

e _w_ @ _ ¢ ~ B8 (10.55)
N2 k2 146 | popmc® T pofm’ '
1+ ——=—
BO
2 2 2
€ _ % ¢ cos? @ (10.56)

N2 TR T 1%s
(pm is the mass density). The wave satisfying this dispersion relation is called the Alfuén wave.
We define the Alfuén velocity by
c2 ¢ - Bg

146 | popmC®  HoPm
14+ 2
BU

v: = (10.57)

Equations (10.55) and (10.56) correspond to modes appearing in region (13) of the CMA di-
agram. Substitution of eqs.(10.55) and (10.56) into (10.19) shows that E, for either mode is
E, = 0; E; = 0 for the mode (10.55) (R wave, F wave, X wave) and E, = 0 for mode (10.56) (L
wave, § wave). From eq.(10.6), we find for w < |f2] that

E+v;xBy=0 | (10.58)
and v; = (E x By)/B2, so that v; of the mode (10.55) is
| . v; = & cos(kyx + k2 — wt) (10.59)
and v; of the mode (10.56) is |
v; = Jeos(kzz + k2 — wt) ' (10.60}

where &, ¢ are unit vectors along z and y axes, respectively. From these last equations, the fast
mode (10.55) is called the compressional mode and the slow mode (10.56) is called the torsional
or shear mode. The R wave (10.55) still exists, though it is deformed in the transition from
region (13) to regions (11} and (8), but the L wave (10.56) disappears in these transitions.

As is clear from eq.(10.58), the plasma is frozen to the magnetic field. There is tension B2/2puq
along the magnetic-field lines and the pressure B?/2u exerted perpendicularly to the magnetic
field. As the plasma, of mass density pm, sticks to the field lines, the wave propagation speed
in the direction of the field is B3/ (itopm)-

10.4b Ion Cyclotron Wave and Fast Wave

Let us consider the case where the frequency w is shifted from low frequency toward the ion
cyclotron frequency and I7?/w? > 1. The corresponding waves are located in regions (13) and
(11) of the CMA diagram. When [w| < (2, § > 1, and I12/w? > 1, the values of K, K« and
K, I are

—6122 —bw2? m?
K, = t K, =——"1 K, =-—£. .61
1 wz_gig; x w2—Q?, Il w2 | (106 )
Since 12 /w? = (mi/me)(122/w?)é > &, the coefficients A, B, C are
2 R
A= —£§ cos? 8,
: w
o2 4§02 \
B = w—gm(l + cos” ), 5 (10.62)
m? §202
C=goa—a J
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The dispersion equation becomes (72 = 022§, v = ¢?/é)

6422
22 — w2

62027

4 2 2
N*cos*8 - N Q?—wz

(1+cos?8) +

= 0. (10.63)

Setting N2 cos? 6 = c?k?/w?, and N2sin® § = ?k? /w?, we may write eq.(10.63) as
I i

w80 — W20k + kijct) + 22k

29

ke = FBE T ) - PR (10.64)
.Ii _ (w/vAk")4 — (w/’uAk”)2 — (w/Qi)2 +1
kﬁ (u.)/’UAkH) - (1—w2/!?i2)

_ ((w/vaky)? — (1 — w/82))(w/vaky)? = (1 +w/6%)) (10.64)

(w/vak))? — (1 —w?/02}) '
Therefore resonance occurs at
k2¢? k22
2 _ 2 I _ 02 [

CE=lprm T Rarm (10.65)

(v:’k“)z =1- (%)2 . | (10.65')

The dispersion equation (10.63) approaches

]
2 ot
pad w1 (10.86)
22
N2cos? 8 ~ §(1 + cos® 8) 17z -~ = (10.67)

as |w| approaches |£2|. The mode (10.66) corresponds to the Alfvén compressional mode (fast
wave) and is not affected by the ion cyclotron resonance. The dispersion relation (10.67) is that
of the ion cyclotron wave, and can be expressed by

72 72 ) -1

+ 1
.’cﬁc2 kﬁc2 + Icﬁ_i::2

w? = 2} (1 + (10.68)

Note that here w? is always less than §2?. The ions move in a left circular motion (i.e., in the
direction of the ion Larmor motion) at w 2 |§2;| (see eq.{(10.30}}.

The mode {10.66) satisfies 1E;/FE, = 1, i.e., it is circularly polarized, with the electric field
rotating opposite to the ion Larmor motion.

The ion cyclotron wave satisfies

(10.69)

i.e., the electric field is elliptically polarized, rotating in the same direction as the ion Larmor
motion.
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Fig.10.6 Orbits of ions and electrons at lower hybrid resonance.

10.4c Lower Hybrid Resonance
The frequency at lower hybrid resonance at 8 = 7/2 is given by

w2 = LU]%H,
1 __ 1 1 win _ I+ (10.70)
wiy P +IF |00 [0, I2+ |20, + 0F '

When the density is high and II? > [§%|f2, it follows that wip = (]%]42,)/2. When T2 <
|92,|92%, then wiy = IT? + 2. At lower hybrid resonance, we have £, = E, = 0 and E, # 0.

When the density is high (that is JIZ > |£2;|42), then || < wiy < 2 and the analysis of
the motions of ions and electrons becomes simple. From eq.(10.7), the velocity is given by

e By w2y _ ‘
Ve = .Bo m - (1071)
and v » = dag/dt = —iwz;, yields
& Er |0
e N 2 (10.72)

At w? = |40, we find that =, ~ — z/Bof2e and z, >~ —E;/Byll, or z; ~ I, (see fig.10.6).
Consequently, charge separation does not occur and the lower hybrid wave can exist.

We have been discussing lower hybrid resonance at # = w/2. Let us consider the case in which
¢ is slightly different from & = n/2. The resonance condition is obtained from eq.(10.24) as
follows:

K, sin®0 + Ky cos’6 = 0. (10.73)

Using eqs.(10.46),(10.50) and (10.51), eq.(10:73) is reduced to

e ‘*J'E,H)(W2 - wIZJH) . 2 112 2
(@ = %) (? = 022) sin“@+4+ [ 1— —5 | cos 6 =0. (10.74)

When ¢ is near 7/2 and w is not much different from wy g, we find that

2 2y7,,2 2y 772 2

w? — wEH _ (wiy — 020)(wiyg — ) 117 - Yin
= 7 _ 2 2

WLH ~ YUH “ry

2 72 LN 2\ 2
= Qegﬂe 1- (—Q—l—) 1— (WLH) cos’d. .
WiH WLH I,

cos @
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As wiywiy = Q20% + 2|42, w? is expressed by

m;

WP =wiy |14 o cos? @ 7A (10.75)
e 1 1
(1+5)
When I12/|02|02. = § = ¢?/v4 > 1, eq.(10.75) becomes
w? = wiy (1 + Zn:ri:,e cos? 8) ) (10.76)

Even if 8 is different from 7/2 only slight amount (Zme/m;)"/?, w? becomes w? ~ 2wy, so that
eq.(10.76) holds only in the region very near 6 = /2.

10.4d Upper Hybrid Resonance
The upper hybrid resonant frequency wyg is given by

why = 2 + QF. (10.77)
Since this frequency is much larger than |£2, ion motion can be fleglected.

10.4e Electron Cyclotron Wave (Whistler Wave)
Let us consider high-frequency waves, so that ion motion can be neglected. When w > | 4],
we find

H‘Z 3
] - —
H2 Qe
K m = ) (10.78)
A

The solution of dispersion equation AN* — BN? +C =0

_ B+ (B*—44C)\?

2
N 24
may be modified to
" 2A— B+ (B2 - 4AC)/2
~2IT2(1 — 2 }w?
— e ( e /f‘dz) , (10.79)
2w2(1 — M2 /u?) — 22sin” § & 2.A
1/2
2 i d 2 He2 ’ 2 '
A= |2:sin*0+4w [1- —a ) cos 6 . (10.80)

The ordinary wave and extraordinary wave will be obtained by taking the plus and minus sign,
respectively, in eq.(10.79). In the case of

m\?
22sint 0 > 40? (1 - ;g—) cos® 4 : (10.81)
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we find
1-12/w?
N?= ° :
1 — (I2/w?)cos? 8’ (10.82)
s (1=I2/w?)?w? — 22sin 0 (10.83)

T (1 - T2 Jw?)w? - 22sin’6

Equation (10.82) becomes N? = K| = 1 — I12/w? at ¢ ~ 7/2 and does not depend on the
magnitude of the magnetic field. This wave is used for density measurements by microwave
interferometry. In the case of

2\ 2
2%sin* 0 < 40 (1 - %) cos® @ (10.84)
with the additional condition
. ' m?
22sin? 0 <« | 2w? (1 - -{?) ‘ (10.85)
the dispersion relations become
H2
N =1- : 10.
{w+ 2. cos)w’ (10.86)
H?
N?i=1 e (10.87)

T W — Qe cos@w

Equation (10.86) corresponds to the L wave, and eq.(10.87) to the R wave. R-wave resonance
occurs near the electron cyclotron frequency. This wave can propagate in regions (7) and (8) of
the CMA diagram, where the frequency is less than the plasma frequency. This wave is called
the electron cyclotron wave. It must be noticed that the assumptions (10.84) and (10.85) are
not satisfied near Ky = 1 — I1? /w? ~ 0.

The electron cyclotron wave is also called the whistler wave. Electromagnetic disturbances
initiated by lighting flashes propagate through the ionosphere along magnetic-field lines. The
..frequency. of a lightning-induced whistler wave falls in the audio region, and its group velocity
increases with frequency; so that this wave is perceived as a whistle of descending tone. This is
why it is called the whistler wave.

10.5 Conditions for Electrostatic Waves
When the electric field E can be expressed by an electrostatic potential
E=-V¢=—iko (10.88)

the resultant wave is called an electrostatic wave. The electric field E is always parallel to the
propagation vector k, so that the electrostatic wave is longitudinal. The magnetic field B, of
the electrostatic wave is always zero:

Bi=kx Ej/w=0. (10.89)

Alf¥en waves are not electrostatic waves. We will here discuss the conditions for electrostatic
waves. Since the dispersion relation is

Nx(NxE)+K-E=0
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the scalar product with IV becomes
NK(E||+E_1_):O

where E| and E are the components of the electric field parallel and perpendicular to k. If
|E|l > |EL|, the wave is electrostatic and the dispersion relation becomes

N.-K-N=0. (10.90)
Rewriting the dispersion relation as |

(N>~ K)-E, =K-E|
shows that |E)| > |E | holds when

IN?| > | K | (10.91)
is satisfied for all K;;. The dispersion relation (10.90) for the electrostatic wave is then

k2Keg + 2kok Koy + k2K, = 0. (10.92)

The condition (10.91) for the electrostatic wave indicates that the phase velocity w/k = ¢/N of
this wave is low. The K;; have already been given by egs.(10.9-10.12) for cold plasmas, and the
general formula for hot plasma will be discussed in chs.12-13. We have stated that magnetic
field B; of the electrostatic wave is zero. Disturbances of the magnetic field propagate with the
Alfvén velocity vy =~ B2/{(uonim;). If the phase velocity of the wave is much lower than va,
the disturbance of the magnetic field will be damped within a few cycles of the wave and the
propagated magnetic-field disturbance becomes zero. When the electron thermal velocity v is
taken as a typical phase velocity for electrostatic waves, then the condition of vpo > vre reduced.
to ‘

This is a condition that a wave is electrostatic.

At resonance the refractive index N becomes infinite. As the Kj; are finite for lower hybrld
and upper hybrid resonance, the condition (10.91) is satisfled so that these hybrid waves are
electrostatic. Since some of the Kj;; become infinite for the ion or electron cyclotmn waves, these
cyclotron waves are not necessarily electrostatic.
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Ch.11 Landau Damping and Cyclotron Damping

The existence of a damping mechanism by which plasma particles absorb wave energy even in
a collisionless plasma was found by L.D.Landau, under the condition that the plasma is not cold
and the velocity distribution is of finite extent. Energy-exchange processes between particles
and wave are possible even in a collisionless plasma and play important roles in plasma heating
by waves (wave absorption) and in the mechanism of instabilities {(wave amplification). These.
important processes will be explained in terms of simplified physical models in this chapter.
In succeeding chs.12, 13, and app.C, these processes will be described systematically. In hot
plasma models, pressure term and particle-wave interaction term appear in the dielectric tensor
that are absent in the dielectric tensor for a cold plasma.

11.1 Landau Damping (Amplification)

Let us assume that many particles drift with different velocities in the direction of the lines
of magnetic force. When an electrostatic wave (a longitudinal wave with k || E) propagates
along the lines of magnetic force, there appears an interaction between the wave and a group
of particles (see fig.11.1). Take the z axis in the direction of the magnetic field and denote the
unit vector in this direction by 2. Then the electric field and the velocity v = v satisfy

E = 2E cos(kz — wt), . (11.1)

d
md—: = gF cos(kz — wt). (11.2)

The electric field E is a quantity of the 1st order. The zeroth-order solution of eq.(11.2) is
z=wvtl+ 2z
and the lst-order equation is

m%%l = qF cos(kzp + kvt — wt). _ (11.3)

The solution of eq.(11.3) for the initial condition v, =0 at ¢t =01is

_ qEsin(kzy + kvgt — wt) —sinkz

U] o [e— (11.4)
The kinetic energy of the particle becomes

d mv? d . d d

TR —vazmv—mEmvl +vgamv2+---. (11.5)

From eqgs.(11.2),(11.4), we have the relation

md(vl + wvg)

p” = qE cos(k(zp + vot + z1) — wt)

= gE cos(kzy + at) — gE sin(kzp + at)kz,

t gE [ —~cos(kzg+ at) +coskzg tsinkz
z21 = / UL dt = =— 7 _
0 _ m o o
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Fig.11.1 Propagation of wave and motion of particles in the process of Landau Damping.

where
a = kvp — w.

Using these, we may put eq.(11.5) into the form

d mv? ¢*E? (sin(kzo + at) — sinkzp
dt 2 m

= ) cos(kzp + at)
[

_kv0q2E2 (— cos(kzo + at) + cos k2o _ tsir;k%o) sin(kz + at).

m a?

The average of the foregoing quantitiy with respect to the initial position zo is

d mv2> g*E? (—w sin ot wt cos at)
——) = +teosat + —— ). (11.6)
2
<dt 2 20 2m o

o

When we take the velocity average of eq.(11.6) over vy with the weighting factor i.e. distribution
function f(wp) (@ = kvo — w)

o) = £ (252 = gt

the rate of increase of the kJIletIC energy of the particles is obtained. The distribution function
is normahzed

f-o:o f(vo)dwo = %/g(a)da =1

The integral of the 2nd term of eq.(11.6)

Z f (a)tcosatda = k j ( )cos:cda: ' (11.7)
approaches zero as t — oo. The integral of the 3rd term of eq. (11.6) becomes
g a)t cos crt / ( ) '
T f =7 coszdz. (11.8)

The function g{a) can be considered to be the sum of an even and an odd function. The even
function does not contribute to the integral. The contribution of the odd function approaches
zero when t — oo if g(a) is continuous at @ = 0. Therefore, only the contribution of the 1st
term in eq.(11.6) remains and we find

d mv? g(a) sinat
<ET>ZW - | (1L9)
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Fig.11.2 (a} Landau damping and (b) Landau amplification.

P denotes Cauchy’s principal value of integral. The main contribution to the integral comes
from near o = 0, so that g(c) may be expanded around o = 0: '

i 2

g(a) = g(0) + ag'(0) + 5

r
79 (0)+---.

As sinat/o? is an odd function, only the 2nd term of the forégoing equation contributes to the
integral and we find for large ¢ that

d mv? _ wg’BE? /’°° g'(0) sinatd
a 2 T T omlE] fewe @ “
2 2
_ —mEf fw Bf('uo))
~ 2mlk] (’6)( o/ womwsk (1110)

If the number of particles slightly slower than the phase velocity of the wave is larger than the
number slightly faster, i.e., if vg@fy/dvy < 0, the group of particles as a whole gains energy from
the wave and the wave is damped. On the contrary, when vy@fo/8vg > 0 at vg = w/k, the parti-
cles gives their energy to the wave and the amplitude of the wave increases (fig.11.2). This mech-
anism is called Landau damping' or amplification. Experimental verification of Landau damping
of waves in a collisionless plasma was demonstrated by J.M.Malemberg and C.B.Wharton? in
1965, twenty years after Landau’s prediction.

The growth rate (11.10) of the kinetic energy of particles must be equal to the damping rate
of wave energy. Therefore the growth rate v of the amplitude of wave field is obtained by (y < 0
in the case of damping)

d mv?
= =9
n<dt 2 >zm,0 W

and the growth rate <y is given by

55 (5) () %), o W

where IT? = ng®/egm, W = 2e0E%/4, [ f(v)dv = 1.

There is a restriction on the applicability of linear Landau damping. When this phenomenon
runs its course before the particle orbit deviates from the linear-approximation solution, the
reductions leading to linear Landau damping are justified. The period of oscillation in the
potential well of the electric field of the wave gives the time for the particle orbit to deviate from
the linear approximation { w? ~ eEk/m from mw?z = eE). The period of oscillation is

_ 1 N m 1/2
Tose = Wose ~ (EkE) -
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Consequently the condition for the applicability of linear Landau damping is that the Landau
damping time 1/ is shorter than 7.5 or the collision time 1/1qy is shorter than 7os.

I'YToscl > 1; ‘(11.12)
|Vco]lTosc| > 1. (11.13)

On the other hand, it was assumed that particles are collisionless. The condition that the
collision time 1/ 4y is longer than A/vims is necessary for the asymptotic approximation of the
integral (11.9) as ¢ — oo, where A is the wavelength of the wave and s is the spread in the
velocity distribution;

1 2T

> .
Veoll kvrms

(11.14)

11.2 Transit-Time Damping

We have already described the properties of Alfvén waves in cold plasmas. There are compres-
sional and torsional modes. The compressional mode becomes magnetosonic in hot plasmas,
as is described in ch.5. In the low-frequency region, the magnetic moment g, is conserved and
the equation of motion along the field lines is

d'Uz 3B1z

Mg = Hm g, (11.15)

This equation is the same as that for Landau damping if —p, and 8B, /0z are replaced by the
electric charge and the electric field, respectively. The rate of change of the kinetic energy is
derived similarly, and is

dme?\  madlkl o (w) [0f(w) -
<ET>ZUUU_& 2m IBIZ| (7{?)( avU )"uq:w/k- ' (1116)

This phenomena is called transit-time damping.

11.3 Cyclotron Damping

The mechanism of cyclotron damping is different from that of Landau damping. Here the
electric field of the wave is perpendicular to the direction of the magnetic field and the particle
drift and accelerates the particle perpendicularly to the drift direction. Let us consider a simple
case in which the thermal energy of particles perpendicular to the magnetic field is zero and the
velocity of particles parallel to the magnetic field By = Bpz is V. The equation of motion is

dv ov

m—— +mV

5 5. = ((EL+vx 2By + Vi x By). (11.17)

As our interest is in the perpendicular acceleration we assume (E; - 2) = 0. B, is given by
B, = (k x E)/w. With the definitions v* = v, +4v,, E* = E, +1E,, the solution for the
initial condition v =0 at t =0 is

o = igE* (w — kV) exp(ikz — iwt) 1 — exp(iwt — tkVt £ 182¢)
- W w—kV £ ’

(11.18)

=95
m
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The macroscopic value of v, is obtained by taking the average weighted by the distribution
function fo{V') as follows:

igexp(ikz — iwt)

(v1)= 5 ((ct+c)Ei+i(ct—c)E] x 2), (11.19)
et = ot —i8%, : (11.20)
o0 ~ kV/w)(1 -
ot = j_m gy o - /::)( kV(;(:S!(?w kv £ Q)t) _ (11.21)
o folV)(1 — kV/w) sin{w — kV £ 2t
i:f qv £V X( w/_lei(Q )t (11.22)
As £ becomes large we find that
at Pf dv f“EuV_ = i‘g“’), (11.23)
;wﬂ w2
g - T2 (). (11.24)
When |
2%
> (11.25)

where Vims = (V2)/2 is the spread of the velocity distribution, the approximations (11.19)~(11.24)
are justified. The absorption of the wave energy by the plasma particles is given by

(Re(qF exp(ikz — twt))(Re{v 1)),
2
= fa(ﬁﬂEm +iEy|? + 07 |Es — iE,|%). (11.26)

Let us consider the case of electrons (2, > 0). As was described in sec.10.2, the wave N2 = R
propagating in the direction of magnetic field (# = 0) satisfies E; + iE, = 0, so that the
absorption power becomes

¢ .- 2
Peﬂ%ﬁ fEx—iEyI .

When w > 0, eq.{11.24) indicates 5~ > 0. In the case of w < 0, 8~ is nearly zero since
fo({(w— Q)/k < 1.
Let us consider the case of ions (—(2 > 0). Similarly we find

P = ——ﬁ+|E +iE, %

When w > 0, eq.(11.24) indicates 8+ > 0. In the case of w < 0, 8% is nearly zero, since
folw+ £/k) < 1.

The cyclotron wvelocity V; is defined so that the Doppler shifted frequency (the frequency of
wave that a particle running with the velocity V feels) is equal to the cyclotron frequency, that
is,

w—kV,+£ 2 =1,

w 7



136 ' 11 Landau Damping and Cyclotron Damping

Accordingly particles absorb the wave energy when the absolute value of cyclotron velocity is
smaller than the absolute value of phase velocity of the wave (+2/w < 0)(see eq.(11.24)). This
phenomena is called cyclotron damping.

Let us consider the change in the kinetic energy of the particles in the case of cyclotron
damping. Then the equation of motion is

d .
m—dl;- —g(v x Bg) = qE ) + q(v x By).

Since B; = (k x E)/w and E; = 0, we have

dv, k.
me = qw (v -E,),
dv kz'vz
md_:-_‘:i'(”.l. x Bo) = qE (1— ” )
so that
dv kz'uz
va.'T;'=Q(”l-E¢) (1" " )
Then

d (mul) kv, d (mv]
dt\ 2 /] w—kov. dt 2 )’

2 w)? _
vy 4+ | vz — k_ = const.
Z

In the analysis of cyclotron damping we assumed that v, = V is constant; the condition of the
validity of linearized theory is?

k2 E? |w — kv, |t?

2452 ? <L

We have discussed the case in which the perpendicular thermal energy is zero. When the
perpendicular thermal energy is larger than the parallel thermal energy, so-called cyclotron
instability may occur. The mutual interaction between particles and wave will be discussed
again in chs.12 and 13 in relation to heating and instabilities.

11.4 Quasi-Linear Theory of Evolution in the Distribution Function

It has been assumed that the perturbation is small and the zeroth-order terms do not change.
Under these assumption, the linearized equations on the perturbations are analyzed. However
if the perturbations grow, then the zeroth-order quantities may change and the growth rate of
the perturbations may change due to the evolution of the zeroth order quantities. Finally the
perturbations saturate (growth rate becomes zero) and shift to steady state. Let us consider
a simple case of B = (0 and one dimensional electrostatic perturbation (B; = 0). Ions are
uniformly distributed. Then the distribution function f(z,v,t) of electrons obeys the following
Vlasov equation;

af af e _Of

“5{ + ’U-(;az — HE% =0. (11.27)

Let the distribution function f be divided into two parts

f@,v,t) = folv,1) + fi(z,v,1) | (11.28)
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where fy is slowly changing zeroth order term and f; is the oscillatory 1st order term. It is
assumed that the time derivatives of fp is the 2nd order term. When eq.(11.28) is substituted
into eq.(11.27), the 1st and the 2nd terms satisfy following equations;

0 | Oh Eafo

e
ot o T mt o (11.29)
dfo goh
Bt ml o (11.30)

f1 and F may be expressed by Fourier integrals;
fl.(z v,t) = o )1/2 /fk('u exp(i(kz — w(k)t))dk, - (11.31)
‘ . | .

B0 = G / By expli(ke — w(k)t))dk. (11.32)

Since f; and E are real, f_g = f, E_y = Ef, w(—k) = —w*(k) (w(k) = we(k) + #y(k)). The
substitution of egs.(11.31) (11.32) into eq.(11.29) yields

folv) = (w(k;) E}c%. (11.33)

- If eqs.(11.32) (11.33) are substituted into eq.(11.30), we find

Ofo(v,t) _ (3)2 5%(% f By exp(i(K'z — w(K)t))dk’

ot m

= k)i_ —E, o1 ‘13(:}’ ) expli(kz — w(k)t))dk). (11.34)

Statistical average of eq.(11.34) (integration by z) is reduced to

Bfoé':,t) _( o )afo(” t)), (11.35)
_ (e = ilBxl’ exp(2y(k)t)
2= () Lot

e\ [ (k)| Exl? exp(2y(k)t)
= (?n") f_m (@r () — )2 + (k)2

When |y(k)] < |w: ()|, the diffusion coefficient in velocity space is

2
Dy(v) = (%) x [ 1B exp(2y(4)6) 8w (k) — o)k

e\’ w
- (._) m|Ek|zexp(2fy(k)t)’w/k:U. (11.36)

m

From Poisson’s equation and eq.(11.33), the dispersion equation can be derived:

V.-E=-2{ fidv,
€0
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ikEy = - f Fudv,
€0

1 1 fo,
1+ TE ] (m) Edv = 0. (11.37)

Under the assumption of |y| <« |w,|{w = w, + #y), the solution of eq.(11.37) for «y is given by the
same equation as eq.(11.11).

Equation (11.35) is the diffusion equation in the velocity space. When the distribution function
of electrons are given by the profile shown in fig.11.2(b), in which the positive gradient of
v@f/3v > 0 exists near v;. Then waves with the phase velocity of w/k = v; grow due to Landau
amplification and the amplitude of |Ey| increases. The diffusion coefficient IJ, in velocity space
becomes large and anomalous diffusion takes place in velocity space. The positive gradient of
df/0v near ~ v; decreases and finally the profile of the distribution function becomes flat near
v~

Let us consider the other case. When a wave is externally exited (by antenna) in a plasma with
Maxwellian distribution function as is shown in fig.11.2(a), diffusion coefficient D, at v = w/k
is increased. The gradient of the distribution function near v = w/k becomes flat as will be seen
in fig.16.18 of ch.16.
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Ch.12 Wave Propagation and Wave Heating

Wave heating in ion cyclotron range of frequency (ICRF), lower hybrid wave heating (LHH),
electron cyclotron heating (ECH), and other heating processes are being studied actively. The
power sources of high-frequency waves are generally easier to construct than the beam source of
neutral beam injection (NBI). Although the heating mechanism of NBI can be well explained by
the classical process of Coulomb collision (refer sec(2.6)), the physical processes of wave heating
are complicated and the interactions of waves and plasmas have a lot of variety, so that various
applications are possible depending on the development of wavé heating.

Waves are excited in the plasma by antennas or waveguides located outside the plasma (exci-
tation of wave, antenna-plasma coupling). When the electric field of the excited wave is parallel
to the confining magnetic field of the plasma, the electron, which can move along the magnetic
field, may cancel the electric field. However, if the frequency of the wave is larger than the
plasma frequency the electron can not follow the change in the electric field, and the wave then
propagates through the plasma. When the electric field of the excited wave is perpendicular to
the magnetic field, the electrons move in the direction of E x B (under the condition w < §2;)
and thus they can not cancel the electric field. In this case the wave can propagate through the
plasma even if the wave frequency is smaller than the plasma frequency. Excitation consists of
pumping the high-frequency electromagnetic wave into plasma through the coupling system. If
the strucure of the coupling system has the same periodicity as the eigenmode wave, the wave
can be excited resonantly. The efficiency of wave excitation is not hlgh except such resonant
excitation.

Neutral beam injection and electron cyclotron heating can be launched in vacuum and prop-
agate directly into the plasma without attenuation or interaction with the edge. Consequently
the launching structures do not have to be in close proximity to the plasma and have advantage
against thermal load and erosion by plasma.

Excited waves may propagate and pass through the plasma center without dampmg (heating)
in some cases and may refract and turn back to the external region without passing the plasma
center or may be reflected by the cutoff layer (see fig.12.1). The wave may be converted to the
other type by the mode conversion (wave propagation).

The waves propagating in the plasma are absorbed and damped at the locations where Landau
damping and cyclotron damping occur and heat the plasma. Therefore it is necessary for heating
the plasma center that the waves be able to propagate into the plasma center without absorption
and that they be absorbed when they reach the plasma center (wave heating).

12.1 Energy Flow

Energy transport and the propagation of waves in the plasma medium are very important
in the wave heating of plasmas. The equation of energy flow is derived by taking the difference
between the scalar product of H and eq.(10.15) and the scalar product of E and eq.(10.16):

oD oB
V(ExH)+E- —+H —=1(. 12.1
( J+E —-+H - — (12.1)
P = E x H is called Poynting vector and represents the energy flow of electromagnetic field.
This Poynting equation does not include the effect of electric resistivity by electron-ion collision.
Plasmas are dispersive medium and the dielectric tensors are dependent on the propagation
vector k and the frequency w. Denote the Fourier components of E(r,t) and D(r,t) by E,(r,t)
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Fig.12.1 Passing through, refraction and reflection, absorption near boundary, and absorption at
center of plasma.

and D, (r,t), respectively. Then we find

D, = /D r,t) exp{—i(k - r—wt))drdt

(2 (2r)?
1 ,
E, = Gre fE(r,t) exp(—i(k - r — wt))drdi.
There is following relation between them:
D, (k,w) = K (k,w) - E,(k,w),
and we have

D(r,t) = (—2;1;)—250 f K(k,w) - Eo(k,w)exp(i(k - — wt)) dk duw,

1 ,
E(r.t)= @)t / E.{(k,w)exp(i(k - r — wt)) dk dw.
From the formula of Fourier integral, following equations are derived:
D(r,t) =€ f K(r—ot—t) E@ t)dr'dt
where R(r,t) is

K(r,t) = fK (k,w)exp{—i(k - r — wt)) dk dw.

2)4

Therefore analysis of general electromagnetic fields in dispersive medium is not simple. However
if the electric field consists of Fourier component in narrow region of k, w and K changes slowly
as k, w change, then we can use the following relation:

D(r,t) =K - E(r,t).

From now we will discuss this simple case. The relation between the magnetic induction B and
the magnetic intensity H is

B = uoH,

in plasmas.
The quasi-periodic functions A, B may be expressed by

A= Agexp (—i [ (o m)dt’) = Agexp(—i, + 1),

B = Bpexp (—2[ (wr + iwi)dt') =By exp(—i(br + i)
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where ¢, and ¢; are real. When the average of the multiplication of the real parts of A with the
real part of B is denoted by AB, then AB is given by

AB = % -5 {(Aoexp(—igr + i) + A exp(igr + 1)) x (Bo exp(—idse + 65) + Bg exp(ige + 61)))
= $(A0B; + AfBo) exp(21) = SRe(AB"). (12.2)

The averaging of the Poynting equation becomes

oW
V-P+ =0, (12.3)
- )
P = — Re(Eo x BY)exp? f widt', (12.4)
2#0 )

¥

ow 1 e((B* oB

—) + e E* -(%(K . E)) = %Re(—in B + eo(—w)E* - K - E)

ot 2 o ot
= %wiB B + %0 (wiRe(E* - K - E} + w,Im(E* - K - E)). (12.5)
1o

From the relations

E*-K-E=) E}Y K;E;

i

E-K*-E*_—-_ZE,-ZK:‘JE; S E}Y (Kj)E
-t 3 i
= EE*Z KT *E;

we find
Ty*
SRS £11.5) 0%
. _ Ty *
Im(E*‘K‘E)ZE*‘(?’)[KQ(K)]'E.

(KT)* is the complex conjugate of transpose matrix KT (lines and rows of components are
exchanged) of K, ie, Kg = Kj;. When a matrix M and (M7T)* are equal with each other,
this kind of matrix is called Hermite matriz. For the Hermite matrix, (E* - M . E) is always
real. The dielectric tensor may be decomposed to

K(k,w) = Ky(k,w) + iKi(k,w).

As is described in sec.12.3, Ky and K1 are Hermite, when k, w are real. It will be proved that
the term K corresponds to Landau damping and cyclotron damping. When the imaginary
part of w is much smaller than the real part (w = @, + iw;, |wi] € |w;|) we may write

iI{H (k,w,-) + iKI(k,w,).

K(k, wr + iWi) = KH(kawr) + w; B
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1®)

F(&) cos(kz — w(k)t)
Fig.12.2 F(x,t) and f(k)cos(kz — w(k)t)

When the Hermite component of W {the term associated to Ky in W) is denoted by Wy, Wy
is given by

1 By By € .. €0 ru 7,
1_ /B -By €., ( d ) )
— ZRe( 2020 D (% Ky - : _
2Re( S0 28 (k) ) - By (12.6)
and eqs.(12.3),(12.5) yield
% Wo _ —wr-lz-eoEa K{-Ey—V-P. | (12.7)

The 1st term in eq.(12.6) is the energy density of the magnetic field and the 2nd term is the
energy density of electric field which includes the kinetic energy of coherent motion associated
with the wave. Equation (12.6) gives the energy density of the wave in a dispersive media. The-
1st term in the right-hand side of eq.(12.7) represents the Landau and cyclotron dampings and
the 2nd term is the divergence of the flow of wave energy.

Let us consider the velocity of the wave packet

Fr,t) = f Fk) expilk - 7 — w(k)t)dk (12.8)
when the dispersion equation
w = w(k)

is given. If f(k) varies slowly, the position of the maximum of F(r,t) is the position of the
stationary phase of

9 }
Gtk r—wkt) =0 (i=zy3)

(see fig.12.2). Consequently the velocity of the maximum position is

(E _ duw(k) Yy Ow(k) z 6w(k))

t Ok, t Ok, ' t Ok,

that is,

Ow Ow Jw
‘Ug = ('a—l'j'c—x", a—ky‘, Ek:) . (129)
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This velocity is called group velocity and represents the velocity of energy flow.

12.2 Ray Tracing

When the wavelength of waves in the plasma is much less than the characteristic length
(typically the minor radius a), the WKB approximation (geometrical optical approximation)
can be applied. Let the dispersion relation be D{k,w,r,t) = 0. The direction of wave energy
flow is given by the group velocity vy = dw/0k = (0w/Ok,, Ow/Ok,, Ow/Bk,), so that the
optical ray can be given by dr/dt = vg. Although the quantities (k,w) change according to the
change of v, they always satisfy D = 0. Then the optical ray can be obtained by

dr aD dk oD

&~ ok &= o (12:10)
d¢ aD dw oD

il & e (12.11)

Here s is a measure of the length along the optical ray. Along the optical ray the variation §D
becomes zero,
oD 8D oD oD :
= —_— k —_ — . — i
4D ok ok + 0 dw + o dr + En §t=0 (12.12)

and D(k,w,r,t) = 0 is satisfied. Equations (12.10),(12.11) reduce to

dr dr /dt _l_ 8D foD ‘1_ Ow

dt ~ ds (ds) Ok (Bw) B (5’;)7',1&=c0nst. — e
Equation (12.10) has the same formula as the equation of motion with Hamiltonian D. When
D does not depend on t explicitly, D = const. = 0 corresponds to the energy conservation
law. If the plasma medium does not depend on z, k, =const. corresponds to the momentum
conservation law and is the same as the Snell law, N = const..

When &k = k, + ik; is a solution of D = 0 for a given real w and |ki| < |k.| is satisfied, we

have

OReD(k,,w)

D(k; + ik;,w) = ReD(k,,w) + ki + imD (ky, w) = 0.

Ok,
Therefore this reduces to
ReD(k;,w) =0,
k:, ‘
k. FBDRnw) D w). (12.13)
Ok,
Then the wave intensity I(r) becomes
” o
I(r) = I(ro) exp (—2/ k;dr) , : (12.14)
To
aD ImD(k,,w)
kidr = [ k- ——ds = — [ ImD(k,, — [y 15
f dr f s [m (K, w)ds on7onr (12.15)

where dl is the length along the optical ray. Therefore the wave absorption can be estimated from
the egs.(12.14) and (12.15) by tracing many optical rays. The geometrical optical approximation
can provide the average wave intensity with a space resolution of, say, two or three times the
wavelength.
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12.3 Dielectric Tensor of Hot Plasma, Wave Absorption and Heating

In the process of wave absorption by hot plasma, Landau damping or cyclotron damping are
most important as was described in ch.11. These damping processes are due to the interaction
between the wave and so called resonant particles satisfying

w—kv;,—n2=0  n=0+1,%2,--.

In the coordinates running with the same velocity, the electric field is static {w = 0) or of
cyclotron harmonic frequency (w = nf2). The case of n = 0 corresponds to Landau damping
and the case of n = 1 corresponds to electron cyclotron damping and the case of n = —1
corresponds to ion cyclotron damping (w > 0 is assumed).

- Although nonlinear or stochastic processes accompany wave heating in many cases, the exper-
imental results of wave heating or absorption can ususally well described by linear or quasi-linear
theories. The basis of the linear theory is the dispersion relation with the dielectric tensor K of
finite-temperature plasma. The absorbed power per unit volume of plasma P3P i3 given by the
1st term in the right-hand side of eq.(12.7): |

Pt =, (52‘1) E*.K:; E.

Since Ky, K7 is Hermit matrix for real k, w as will be shown later in this section, the absorbed
power P2* is given by

PP =, (522) Re(E* - (—i)K - E) (12.16)

As is clear from the expression (12.19) of K, the absorbed power P2 reduces to

P — w%’ (Bl ImKee + 1By Im Ky + | E: Ik

+2Im(E; Ey)ReKzy -+ 2Im(E, E. )ReK,, + 2Im(EZE;)ReK,: ). (12.17)
Since eq.(10.3) gives j = —iwP = —iegw(K — I) - E, eq.(12.16) may be described by
1
pb =-§Re(E* ez (12.18)

The process to drive the dielectric tensor K of finite-temperature plasma is described in
appendix C. When the plasma is bi-Maxwellian;

fU(UJ.:UZ) = noFL(v1)F:(v;),

2
_om _myi
Filvi)= 2wkl P ( QRTJ_) ’

) m \/? m(v, — V)?
Fifv:) = (21mTz) exp (_ 26T,

the dielectric tensor K is given by

2
K=I+Y 1_5_2_ lz (COZ(Cn) -(1- %) 1+ gnz(gn)))e-bx,, rodacL],  (12.19)
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Fig.12.3 Real part Re Z and imaginary part Im Z of Z(z).

| n?l, /b (Il —1) —(2A1)Y2p, 1,
Xo=1| —in(li—1) (n%/b+2b)I, — 2bI, i(2A7)Y 2 nua(l] - I,,) (12.20)
—(2A7) 2L, —i(201) *na(l], - In) 222ty

o0 _ a2
Z(C) = ﬂ-'}/Q ‘/;00 E}cﬁp(ﬂ? ) dﬁ,

I,(b) is the nth modified Bessel function

_ w +ni? Czu—kZV—FnQ
= 21/2kszz, " 21/2]“:;»:1'-1"1"2 ’

_ T _ k:z:'UT_L)Q — p1/2
AT— TJ_1 b= (T ) a=b ]
w2 = KT, - KT
Tz = m’ T1L = m

~T'he components of 'L matrix are zero-except L,, = 1.
When the plasma is isotropic Maxwellian (T, = T'\) and V = 0, then 7, = (4, and At =1,
and eq.(12.19) reduces to

m[& '
K=I+) = Y 0Z(Ca)e X, + 2631 . (12.21)
ie n=—oo

Z(() is called plasma dispersion function. When the imaginary part Imw of w is smaller than
the real part Rew in magnitude (|Imw| < |Rew|), the imaginary part of the plasma dispersion
function is :

kz 12 2
—m/“exp{—(*).
PIEMRR

ImZ{{) =
The real part Re Z(z) (z is real) is shown in fig.12.3. The real part of Z(z) is

ReZ(z) = —2z(1 — (2/3)2% +---) '
in the case of z < 1 (case of hot plasma) and

ReZ(z) = ~z (1 + (1/2)z™2 + (3/4)z™* +-- )
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in the case of z 3 1 (case of cold plasma).'?3 The imaginary part of Z({) represents the terms
of Landau damping and cyclotron damping as is described later in this section.
When T — 0, that is, {, = *oo, b — 0, the dielectric tensor of hot plasma is reduced to the

dielectric tensor (10.9)~(10.13) of cold plasma.
In the case of b = (kzp)? < 1 (pq = vy /8 is Larmor radius), it is possible to expand

e ¥ X, by b using
b 21
9= (3) L (3)

=(%)“($+m(2)2+m(2)"+---)-

The expansion in b and the inclusion of terms up to the second harmonics in K give

1 b

mz—1+2( )Co((zl+z—)(§—§+"') (Z2+Z—2)(”—§+ )+"')j,

yy—1+Z( )Co(Zo(2b+ .)‘+(ZI+Z—1)(%_§;+"‘)
Ki=1-3 (%)2@(240%(1 b )+ (W W) (b )
J

b2
+((aW2 + (_aW_2) (Z + ) +- ) :

= S (L) 6 (@20 (3vr )+ Gam 2 (B Yo )
Ko =21/2Z(%)251/2C0 ((W1 - W_1) (%+) + (Wa — W_y) (§+) + ) ,

F)
— (T\° 3
K. = _21/212 (j_) bl/QCU (WO (_1 + §b+ - )
J

- (W + W) (5+---) + (W — W_a) (24-) +---)j (12.22)

2

Kya: = "’Kmya Kz = Kzz: sz = _sz

where
Zin = Z(Cin)u W,=- (1 + (:nZ(Cn)) )
(n = (w+ n0R) /(2 2k, (kT /m)'/?).

When z 3> 1, ReW(x) is
ReW(x) = (1/2)z 2(1 + (3/2)z~2 +-- ).
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The absorbed power by Landau damping (including transit time damping} may be estimated
by the terms associated with the imaginary part Gy of (p.Z(4o) in eq.(12.22) of K;;:

k,
Go = ImGeZ (o) = P fwlfi’qo exp(—¢3)-
Since
T\ 2
(mKyy), = (—j) 2bGo,

k= (15 i

;)\ 2p1/2
(ReKyz)o = (':J) 21/ b / COGO
the contribution of these terms to the absorption power (12.17) is
ab II;\? €9 2 2,2 . 1/2 ‘
Bg"=2w () Go( 5 ) (1Bl + B[’} + Im(B; B.)(26) /%o ). (12.23)

The 1st term is of transit time damping and is equal to eq.(11.16}. The 2nd term is of Landau
damping and is equal to eq.(11.10). The 3rd one is the term of the interference of both.
The absorption power due to cyclotron damping and the harmonic cyclotron damping is
obtained by the contribution from the terms
ks

Gin =Im(eZy, = I ITT1/2C0 exp(—¢2,)

and for the case b < 1,

;| *
(ImK.'ca:);tn = ([mey);i;n = (?) G:I:nana

IT; 2 2 -2
(Iszz):tn = (?) QC:,:nGinbann s

%]

Il
(REKry):!:n == (:J) Gin(Zag),
ReKys),, = — (2 2(25’)1/2C G i
_ yzlon = "y tnlrtnlnl 7,
N 2
(K er) s = = (2] (202 anCirn(ann™,

S’
=
[

—

op =n(2-n)7!

TN
b | o

The contribution of these terms to the absorbed power (12.17) is
II;\?
PP =w (El) Ghn (529) an|Ez £ iEy |2 (12.24)

Since

Go = (w +09%)/(2Y2k,vr3) = (w — n| AN/ (2 2k, 01)
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the term of +n is dominant for the ion cyclotron demping (w > 0}, and the term of —n is
dominant for electron cyclotron damping (w > 0}, since

(n = (w — n02)/(2" 2 k.vre).
The relative ratio of E components can be estimated from the following equations:

(Kez — N{)Ez + Koy Ey + (Koo + NUNYE, =0,
— Koy By + (Kyy — Nj — N1)Ey + Ky B, =0, - (12.25)

(KM. + NJ_N")E;L- - K. E, + (Kzz — NE)EZ = ().

For cold plasmas, Kz — K, Kyy = K|, K,z = K|, Kgy— —iKx, Ky = 0, Kyz — 0 can be
substituted into eq.(12.25), and the relative ratio is E; : Ey, : E, = (K| - N?) (K — N1} :
—ZKE(K" - N_‘i) : —N”N_L(KJ_ - NZ)

In order to obtain the magnitude of the electric field, it is necessary to solve the Maxwell
equation with the dielectric tensor of eq.(12.19). In this case the density, the temperature, and
the magnetic field are functions of the coordinates. Therefore the simplified model must be used
for analytical solutions; otherwise numerical calculations are necessary to derive the wave field.

12.4 Wave Heating in Ion Cyclotron Range of Frequency

The dispersion relation of waves in the ion cyclotron range of frequency (ICRF} is given by
eq.(10.64);

1/2
vt = (- (- ()) =0 () () )] )

The plus sign corresponds to the slow wave (L wave, ion cyclotron wave), and the minus sign
corresponds to the fast wave (R wave, extraordinary wave). When 1 — w?/022 « 2(w/kiva)?,
the dispersion relation becomes

9 W w
=2 |{1- = 1
ky =2 (u2 ) ( _().2) (for slow wave)

1

2
+ (for fast wave).

Since the externally excited waves have propagation vectors with 0 < k? < (7/a)?, k% > (w/a)?
usually, there are constraints :

()
va (1 — w?/$F) a/’

B (1-w?/ QD)

nypa® < 2.6 x 1074 1

for slow wave and
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o2 (2/w)’

2
ngea” > 0.5 x 1 A/ 72

for the fast wave,* where nyq is the ion density in 1020 m—3

and A is the atomic number.

An ion cyclotron wave (slow wave) can be excited by a Stix coil! and can propagate and heat
ions in a low-density plasma. But it cannot propagate in a high-density plasma. like that of a
tokamal.

The fast wave is an extraordinary wave in this frequency range and can be excited by a loop
antenna, which generates a high-frequency electric field perpendicular to the magnetic field (see
sec.10.2). The fast wave can propagate in a high-density plasma. The fast wave in a plasma
with a single ion species has E; +¢E, = 0 at w = |f4] in cold plasma approximation, so that it
is not absorbed by the ion cyclotron damping. However, the eleciric field of the fast wave in a
plasma with two ion species is E; + iE, # 0, so that the fast wave can be absorbed; that is, the
fast wave can heat the ions in this case.

Let us consider the heating of a plasma with two ion species, M and m, by a fast wave. The
' masses, charge numbers, and densities of the M ion and m ion are denoted by mp, Zum, nym and
Mm, Zm, Mm, respectively. When we use

, @ is the plasma radius in meters,

— Zl\z/InM _ Z?nnm
™ = 1 M =
Ne e

~ we have nmM/ZM + Wm/Zm = 1 since ne = Zmnm + ZmTim. Since (ITe/w)? > 1 in ICRF wave,
‘the dispersion relation in the cold plasma approximation is given by eq.(10.2) as follows:

N2 = (R - NII2)(L_ N|I2

- Ky —Nf 7

Rz_ﬂ_?((mM/mm)nmw e W )
w? w + |2 w+ |[2ul 2]/ Zm )
m? )l

L:__%mem)nw+ Y ),
w w — |2m| w— ] |2/ 2u

P __H_? (Mg /Mo ) P n mw?
L w? w? — 22 w? — QE,I ’
It = nee” .
€pTMM

Therefore ion-ion hybrid resonance occurs at K| — N, If = (), that is,

Then (M [ T0n w0 + e’ z—fiNszO
g mhio oy Al el

27,1

sz5w+%w@ba
™M+ T/ 16

f _ Mm _ v MmIM

b=s— pH=—== —-

my .Qm mMZm

Figure 12.4 shows the ion-ion hybrid resonance layer; K J_—N”2 = (, the L cutoff layer; L—le = {,
and R cutoff layer; R — N ”2 =0, of a tokamak plasma with the two ion species D (M ion) and
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Center

|
Fig.12. 4 L cutoff layer(L = N ﬁ) R cutoff layer (R = N ) and the ion-ion hybrid resonance layer
(KL = ) of ICRF wave in a tokamak with two ion COmponents D™, H*. The shaded area is the
region of 2 <0.

H* (m ion). Since the K,, component of the dielectric tensor is much larger than the other
component, even in a hot plasma, the dispersion relation of a hot plasma is®
Kz — N, ﬁ Ky

—Kpy Ky — N”2 - N?

When we use the relation Ky = K;z + AKyy, |[AKy| < Kz,

= (. (12.26)

(sz_le)(Kmx'{'AK —N2)+

2 _
At Koz — N}

_ (Kaz + 1Koy — N} (Kez — iKzy — N})
- Keo — N} '

When w? is near wio‘H, K.z is given by

m? { mm Tvw?
Koz = _? (2 nmCOZ(Cl) -2__-f2_:§ !

The resonance condition is K, = N”2. The value of Z({,) that appears in the dispefsion
equation is finite and 0 > Z(¢{;} > —1.08. The condition

2 Mm g1/9 5 VT 'f?Mw2 w?

is necessary to obtain the resonance condition. This point is different from the cold plasma
dispersion equation (note the difference between Kz and K| ).

It is deduced from the dispersion equation (12.26) that the mode conversion® from the fast
wave to the ion Berstein wave occurs at the resonance layer when 7y, > no» When the L cutoft
layer and the ion-ion hybrid resonance layer are close to each other, as shown in fig.12.4, the fast
wave propagating from the outside torus penetrates the L cutoff layer partly by the tunneling
effect and is converted to the ion Bernstein wave. The mode converted wave is absorbed by ion
cyclotron damping or electron Landau damping. The theory of mode conversion is described in
chapter 10 of ref.1. ICRF experiments related to this topic were carried out in TFR.

When 1y < 9o, K = N”2 cannot be satisfied and the ion-ion hybrid resonance layer disap-
pears. In this case a fast wave excited by the loop antenna outside the torus can pass through the
R cutoff region (because the width is small) and is reflected by the L cutoff layer and bounced
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back and forth in the region surrounded by R = N"2 and L = le. In this region, there is a
layer satisfying w = |£2,], and the minority m ions are heated by the fundamental ion cyclotron
damping. The majority M ions are heated by the Coulomb collisions with m ions. If the mass of
M ions is ! times as large as the mass of m ions, the M ions are also heated by the Ith harmonic
ton cyclotron damping. This type of experiment was carried out in PLT with good heating
efficiency. This is called minority heating. The absorption power Py due to electron Landau
damping per unit volume is given by eq.(12.23), and it is important only in the case (p < 1. In
this case we have Ey/E, = K,./ Ky, = 2¢3/(2'/°b'/2(4(—1)) and Py is®

oIN? 7k 2
Po = g, 2 (—) ( “’T‘*) oo 2 exp(~C2,). (12.27)
4 W -Qe

The absorption power P}, by the n-th harmonic ion cyclotron damping is given by eq.(12.24)
as follows;

2 2 n—1 . 2
, _ W€ 2 [ n E) w 1/2 _ (w — n|§2])
B = =57 |Bx + 18y (w ) (2 X n!) (2 Wken TP\ 2k ) (12:28)

The absorption power due to the second harmonic cyclotron damping is proportional to the
beta value of the plasma. In order to evaluate the absorption power by eqs.(12.27) and (12.28),
we need the spatial distributions of E; and E,. They can be calculated in the simple case of a
sheet model.”

In the range of the higher harmonic ion cyclotron frequencies (w ~ 22;,3(2;), the direct
excitation of the ion Bernstein wave has been studied by an external antenna or waveguide,
which generates a high-frequency electric field parallel to the magnetic field.8

12.5 Lower Hybrid Wave Heating

Since |{2j| < IT; in a tokamak plasma (n. > 10¥cm™3), the lower hybrid resonance frequency
becomes

2 1 02 m?

2 _ . o
“LHZ TLIR02 + Zmem . 1+ H2/02

There are relations §2 >> wry > |12, T2 /112 = |£2|/§2,. For a given frequency w, lower hybrid
resonance « = wiy occurs at the position where the electron density satisfies the following
condition:

mi(z)  IME, _ W
m P P= o —ot

When the dispersion equation {10.20) of cold plasma is solved about N? using N? = Ni‘lq + N}_,
we have

2 K 1/2

N = K. K, -K:+ KK, . K. K, - K2+ KK,
+ 2K 2K,

where K| = K| — Nﬂz. The relations h(z) = I2{(z)/I%,, K = 1— h(z), Ky = ph(z)2/w,
Ky = 1- Buh(s), fn = Mhe/w? ~ O(mifme), & = 112 /(wy) ~ O(mi/me)/2 and figh > 1
reduce this to

N2(z) = z(f—“_hh)n (le — (L= h+ph) £ [(NF = (1= bt ph))? = a(1 - h)ph]l/g). (12.29)
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Np=138

Ni/ba

0.05 |-
Ny=1353

-Nli =133
s 1 1

0.1 0.2 h(z) = n(z)/nm

Fig.12.5 Trace of lower hybrid wave in N? — h(z) (= I2(z)/II2,) diagram for the case of

T

p=0.353, N ﬁcr =1+ p = 1.353. This corresponds to the case of H plasma in B = 3T, and

f = w/2x= 109 Hz. The electron density for the parameter g = 7.06 x 103 (= 2, /w?) is
Tees = 0.31 x 10%¢ m—3.

The slow wave corresponds to the case of the plus sign in eq.(12.29). In order for the slow wave
to propagate from the plasma edge with low density (h < 1) to the plasma center with high
density (IT? = IIZ,, h = 1), N (z) must real. Therefore following condition

Ny > (1= h)*/2 + (ph)'/?

is necessary. The right-hand side of the inequality has the maximum value (1 + 2)/? in the
range 0 < h < 1, so that the accessibility condition of the resonant region to the lower hybrid
wave becomes

2

Nl >Nia=1+p=1+ ??_3 (12.30)
If this condition is not satisfied, the externally excited slow wave propagates into the position
where the square root term in eq.(12.29) becomes zero and transforms to the fast wave there.
Then the fast wave returns to the low-density region. The slow wave that satisfies the acces-
sibility condition can approach the resonance region and N, can become large, so that the
dispersion relation of hot plasma must be used to examine the behavior of this wave. Near the
lower hybrid resonance region, the approximation of the electrostatic wave, eq.(13.1} or (C.36),
is applicable. Since 2| €« w < {2, the terms of ion contribution and electron contribution are
given by egs.(13.3) and (13.4), respectively, that is,

H;z m _ ﬂ? ™my
1+ FT:(I + Ioe™*0 Z(o)) + Tc-g"'?i(l +¢2Z(¢)) =0,
where (o =w/(2Y2k,v1,), and ¢ =w/(2Y%kvr;) ~w/(2Y%k L vrs). Since Ipe™ ~ 1 — b+ (3/4)6%,
CO > 1, C > 1) 1+ CZ(C) & _(1/2)<_2 - (3/4)C—4: we have

3T, 3HEZkTeN 4 o m\ , m\
i v ile 1+ =& -1 - _ e -0 ‘
( A m Tanim, )\t )R ) k=0 (12.31)

Using the notations p; = vri/{f2| and

23 (Iﬂeﬂd s

1T, w®* \ _(l1+p 1T p
I )

|92 42| P 4T 1+p
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we have

3ﬂ]2 K.Ti 3 Hz KTe _ sz Mle v’%isz
wt my 4 .Qé Me T ow? m; £

" m I\ 1 1-hll?
22 W] 1+p h w?
Then the dimensionless form of (12.31) is

— hmy 1
h me(1+p)s

4 1 9 mi E ]. . 2
(k1pi)* — 2(kJ_pi) + | — —g(kzpi) = 0. (12.32)
me/) S
This dispersion equation has two solutions. One corresponds to the slow wave in a cold plasma
and the other to the plasma wave in a hot plasma. The slow wave transforms to the plasma
wave at the location where eq.(12.31) or (12.32) has equal roots.®'®!! The condition of zero
- discriminant is 1/h =1 + 2k, ;{1 + p)s and

Mi(z) Ife _ P
07 T 0 S i¥Ea(tp)s

Accordingly, the mode conversion occurs at the position satisfying

1/2
w_2 (1o w? n N||UTe2\/§ T + 1/ w? A
H-2 - I'Qil-Qe c Te 4 .Qi.Qe

1

and the value of k2 p? at this position becomes

m; k. pi
kiP?lM.C. = E;ZTPI

If the electron temperature is high enough at the plasma center to satisfy v > (1/3}c/N;,
the wave is absorbed by electrons due to electron Landau damping.

After the mode conversion, the value N) becomes large so that ¢/N, becomes comparable
to the ion thermal velocity (¢/N, ~ wr;). Since w > |§2;], the ion motion is not affected by
the magnetic field within the time scale of w™!. Therefore the wave with phase velocity ¢/N
is absorbed by ions due to ion Landau damping. When ions have velocity v; larger than ¢/N
{vi > ¢/N1), the ions are accelerated or decelerated at each time satisfying v; cos(§2it} =~ ¢/N
and are subjected to stochastic heating.

The wave is excited by the array of waveguides, as shown in fig.12.6, with an appropriate phase
difference to provide the necessary parallel index N = k.c/w = 2mc/(A.w). In the low-density
region at the plasma boundary, the component of the electric field parallel to the magnetic field
is larger for the slow wave than for the fast wave. Therefore the direction of wave-guides is
arranged to excite the electric field parallel to the line of magnetic force. The coupling of waves
to plasmas is discussed in detail in ref.12 and the experiments of LHH are reviewed in ref.13.

For the current drive by lower hybrid wave, the accessibility condition (12.30) and ¢/Ny > vr.
are necessary. If the electron temperature is high and &7, ~ 10keV, then vr./c is already
~ 1/7. Even if N is chosen to be small under the accessibility condition, eq.(12.30), the wave
is subjected to absorbtion by electron damping in the outer part of the plasma, and it can not
be expected that the wave can propagate into the central part of the plasma.

When the value of V| is chosen to be Ny ~ (1/3)(c/vTe), electron heating can be expected and
has been observed experimentally. Under the condition that the mode conversion can occur, ion
heating can be expected. However, the experimental results are less clear than those for electron
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Fig.12.6 Array of waveguides to excite a lower hybrid wave (slow wave).
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Fig.12.7 The locations of electron cyclotron resonance (w = §2.), upperhybrid resonance (w = wrh)
and R cut off (w = wg) in case of 2,9 > .o, where {25 and 1., are electron cyclotron resonance
frequency and plasma frequency at the plasma center respectively (left figure). The right figure is the
CMA diagram near electron cyclotron frequency region.

heating.

12.6 Electron Cyclotron Heating

The dispersion relation of waves in the electron cyclotron range of frequency in a cold plasma
is given by eq.(10.79). The plus and minus signs in eq.(10.79} correspond to ordinary and
extraordinary waves, respectively. The ordinary wave can propagate only when w?® > II? as
is clear from eq.(10.86) (in the case of § = w/2). This wave can be excited by an array of
waveguides, like that used for lower hybrid waves (fig. 12.6), which emits an electric field parallel
to the magnetic field. The phase of each waveguide is selected to provide the appropriate value
of the parallel index Ny = k,c/w= 2mc/(wA,;).

The dispersion relation of the extraordinary wave is given by eq.(10.87). When 8 = n/2, it is
given by eq.(10.52). It is necessary to satisfy wiy > w? > wi,wa. As is seen from the CMA
diagram of fig.10.5, the extraordinary wave can access the plasma center from the high magnetic
field side (see fig.12.7) but can not access from the low field side because of w = wg cutoff. The
extraordinary wave can be excited by the waveguide, which emits an electric field perpendicular
to the magnetic field (see sec.10.2a).

The ion’s contribution to the dielectric tensor is negligible. When relations b < 1, g >> 1 are
satisfied for electron, the dielectric tensor of a hot plasma is

sz: W:1+XCDZ—1/2: KZZ=I_X+NJ2_X‘”’

K'.r'y = _iXCOZ—l/Q: K, = N_LXIZ, K’yz = iNJ.Xyz,
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Xzz = Xyz &= 2“1/2XY_.1%<0(1 + C—lz-l)r

2
Xzz = XY_2 (%) COC—I(I + C—IZ—I):

The Maxwell equation is

(K:r:z: - N”?)E:c + Ka:yEy + NJ_(N“ + X-’EZ)EZ =0,
—nyEa; + (Kyy — ‘N-”2 - Ni)Ey + iN_LXyzEz = 01

Ni(Nj+ Xz2)Ez — iN 1 Xyz By + (1 - X — NI(1 = x22))E, = 0.
| The solution is

E, _iNiXM(Nll + Xxz) + Kay(1 - X — NJ2_(1 — Xzz))

E, B N_L(Z-Xa:z(Ka:a: - N||2) + sz(Nn + sz)) ’

N}_(NH +X:r:z)2 - (Kzz - Nﬂ? (1 -X - Ni(l - Xzz))

N_L(iXIZ(KfCI - an) + K:cy(Nll + X:.t:z))

SR

The absorption power P_; per unit volume is given by eq.(12.24} as follows:

mi/2 (w—82.)%\ e o (2
P_]_:LUXCOTCXP ——m ElEz—@Eyl .

When w = 2, then {_y = 0, Z_y = in'/2, K;p = 1+ih, Koy = h, Xyz = Xze = 22X (vpe/c)(o =
X/(2Ny), X=2 = 0, h = n1/2(o X /2. Therefore the dielectric tensor K becomes

1+ ih h NJ_XIZ
K = —h 1+ih  iNIXzz |-
NJ.XZ:Z "iNJ.Xzz T 1-X
For the ordinary wave (O wave), we have

- B, —iE, _ iN3 (O)N) (N} + Xzz) ~ i1 = N)(1 = X — N3(0))
E, Ny (O)(Nyh + ixzz(1 — Njj)) '

When N <« 1 and the incident angle is nearly perpendicular, eq.' 10.82) gives 1 - X —N2(0) =
Il . 1
(1-X )le. Since xz. = X/2N||, Xzz > N |- Therefore the foregoing equation reduces to

E;—iE, iNi1(O)N|Xz:

E, Nih+ ixas

For extraordinary wave (X wave), we have

B,—iB,  iNHONIV) + xee) = i(1= NR)(1= X = N3(X))
Ey B NJZ_(X)(NH+Xzz)2_(sz"Nﬁ!)(l"‘X"Ni(X))'
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When Nj < 1 and w = £, eq.(10.83) gives 1 - X — Ni(X) = -1+ Ni. Since X2, =
(2m)~Y/2(vre/cNy) X h < h, the foregoing equation reduces to

By —iBy _ —(L+ NEX)N)(Nj +xz2)) -1
Ey h - i(l + NE(X)(N” + sz)2) h -

The absorption power per unit volume at w = {2 is
2 77 (MR 4+ X2,

2 r@%wm) N O
@2r) /2 \w cN) ) Nj + (vre/c)*(2/7)

P_1(0) ~ exp(—¢2;)

wep

P

for ordinary wave and

wWeg 1  wep 2\Y2 T\ "? /Nyvre
P00~ g = (2) () (75F):

for extraordinary wave.!%18

Since P(0) neTa!? /N, P(X) « N”Tel/ 2/ne, the ordinary wave is absorbed more in the
case of higher density and perpendicular incidence, but the extraordinary wave has opposite
tendency.

The experiments of electron cyclotron heating have been carried out by T-10, ISX-B, JFT-2,
D-IIID, and so on, and the good heating efficiency of ECH has been demonstrated.
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Ch.13 Velocity Space Instabilities (Electrostatic Waves)

Besides the magnetohydrodynamic instabilities discussed in ch.8, there is another type of
instabilities, caused by deviations of the velocity space distribution function from the stable
Maxwell form. Instabilities which are dependent on the shape of the velocity distribution func-
tion are called welocity space instabilities or microscopic instabilities. However the distinction
between microscopic and macroscopic or MHD instabilities is not always clear, and sometimes
an instability belongs to both.

13.1 Dispersion Equation of Electrostatic Wave

In this chapter, the characteristics of the perturbation of electrostatic wave is described. In
this case the electric field can be expressed by E = —V¢ = —ik¢. The dispersion equation of
electrostatic wave is give by (sec.10.5)

k:K:r::c + Zk:csz:cz + k.g,Kzz =0.

The process in derivation of dispersion equation of hot plasma will be described in details in
appendix B. When the zeroth-order distribution function is expressed by

Jo(vi,v.) =noF (v }F.(v,),
2
__m _myy
Fi(vi)= 2nkT) P ( 2nTl) ’

m \Y? mu2
Fx{v:) = (ZHK,TJ_) exp (_251;

the dispersion equation is given by eq.(C.36) as follows

ad T, (—nf2)
k2 4 k2 m (1 —z—) -0 .
24rk2 4+ Z T +n=z_m ST CnZ(Cn-)In(b)e 0 (13.1)
where
Wn »
anmz-, wnzW“kZV‘FnQ,

b= (kory /)2, V4, =kT/m, v =kTL/m,
I, (b) is n-th modified Bessel function

Z(¢) is plasma dispersion function.

When the frequency of the wave is much higher than cyclotron frequency (Jw| > |§2|), or
b— 0 (T =0, kg — 0), then we find {, — (o, nf2/w, = 0, I, =5 0(n # 0), Ty — 1, so that
the dispersion equation is reduced to

K+ k24> I

,:;z (1+6Z(¢) =0 (Jw| > |2))- (13.2)

The dispersion equation in the case of B = 0 is given by

2 g m _ _ w—kV _
k +Lzen ﬁ(1+gz¢(g))‘_0. (C‘_zl/zin’ B_O) (13.3)
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When the frequency of wave is much lower than cyclotron frequency (jw| < |f2]), then we find
(o= 00(n#0), (hnZn = —1and ¥ I(b)e ® = 1.

K2 K2+ Zrﬂ o (Ige b1+ Z(Co) + 3 = (1- Ige"’)) —0. (] < |2]) (13.4)

When the frequency of wave is much higher than cyclotron frequency or the magnetic field is
very small, the dispersion equations (13.2),(13.3) are reduced to

d(f /no)
2 2 2 M kT, v
I k = = 0.
R+kE+Y ol e w_kzvzdﬂuz 0
Partial integration of eq.(13.5) gives
k2 + k2 _f/’n.g

= 13.5
Z ./ {w— kzvz)2 (13.5)

13.2 Two Streams Instability

The interaction between beam and plasma is important. Let us consider an excited wave in
the case where the j particles drift with the velocity V; and the spread of the velocity is zero.
The distribution function is given by

fi(v:) = n;d(v, = Vj).

The dispersion equation of the wave propagating in the direction of the magnetic field (k, = 0)
is
2
1=% —L .
S oti

In the special case II? = IT2 (niq?/m; = nigi/m2), the dispersion equation is quadratic:

_ 2 2y1/2
(- k7 = IT? (1+2:12 + (1+82%) )

2
where
KVi-Ve) o VitV
2 _ 2 2 _ _
e = Iy + 113, = YA V 3
For the negative sign, the dispersion equation is
(w—kVV =T -2*+2°+.-) (13.6)

and the wave is unstable when z < 1, or
K2(Vi — Va)? < 412,

The energy to excite this instability comes from the zeroth-order kinetic energy of beam
motion. When some disturbance occurs in the beam motion, charged particles may be bunched
and the electric field is induced. If this electric field acts to amplify the bunching, the disturbance
grows. This instability is called two-streams instability.
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13.3 Electron Beam Instability

Let us consider the interaction of a weak beam of velocity Vp with a plasma which consists of
cold ions and hot electrons. The dispersion equation (13.5) of a electrostatic wave with k, = 0
(B =Ey =0, E; #0, B, =0) is given by

. Hg _ H2 2 [ felv:)/no HE —
Kzz = K" - m l—m-"ﬂe foo (w — k'vz)2 d'Uz— (w ._._ ng)2 = 0' (137)

For the limit of weak beam (IIZ — 0), the dispersion equation is reduced to K| I{w, k) =~ 0, if
w # kVp. The dispersion equation including the effect of weak beam must be in the form of

w—kVp = bu(k). (8u(k) < KVp)
Using 42 we reduce eq.(13.7) to
Hg _ _ 6K||
g = K“ (w = kVQ, k) + (E)u=kva Jw.

If w = kV, does not satisfy K = 0, K| # 0 holds and the 2nd term in right-hand side of the
foregoing equation can be neglected:

H?
5_5 = Kj(w = kW, k).

The expression for K)(w = kVp, k) is
K”(w,) = KR(QJ,-) + z'KI(w,).

The K term is of the Laudau damping (see sec.12.3).
When the condition w = £V} is in a region where Landau damping is ineffective, then |Kj| <€<
|Kr| and the dispersion equation is reduced to

g

m == KR. (13.8)
Therefore if the condition
Kr <0 - (13.9)

is satisfied, d,, is imaginary and the wave is unstable. When the dielectric constant is negative,
electric charges are likely to be bunched and we can predict the occurrence of this instability.

If w = kV; is in a region where Landau damping is efective, the condition of instability is that
the wave energy density Wy in a dispersive medium (eq.12.6) is negative, because the absolute
value of Wy increases if Wy /8t is negative; :

aW() d (Eo E* 8
ot b Fw
When energy is lost from the wave by Landau damping, the amplitude of wave increases because

the wave energy density is negative. Readers may refer to ref.1 for more detailed analysis of
beam-plasma interaction.

(wKs:)E, ) %EOE;KIEZ <0.

13.4 Harris Instability

When a plasma is confined in a mirror field, the particles in the loss cone ({(v; /v)? < 1/Ryy Rm
being mirror ratio) escape, so that anisotropy appears in the velocity-space distribution function.
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The temperature perpendicular to the magnetic field in the plasma heated by ion or electron
cyclotron range of frequency is higher than the parallel one.

Let us consider the case where the distribution function is bi-Maxwellian. It is assumed that
the density and temperature are uniform and there is no flow of particles (V = 0). In this case
the dispersion equation (13.1) is :

k2+k2+ZH2mJ( + Z Iz(b)e"’( . _:?}2)412(41)) —0,  (1310)
J
w—HQ

= Gl Im) Pk,

We denote the real and imaginary parts of the right-hand side of eq.(13.10) for real w = w, by
K (we) = Ki(w:) + iKi(w:). When the solution of eq.(13.10) is wr + i7, i.e., for K{w +iv) =0,
w; and vy are given by K {w;) = 0, ¥ = —K;(w.) (0K (wr)/Ow;)™! when |y| < lw;| and Taylor
" expansion is used. Accordingly we find

1 1 a w+il2 1IN
2 2 2, . —b
kit+k,+ ;HJ ™ (nTz + (2xT,/m) 2k, EEM Iie ( T nT ) Z (Ct))

(13.11)

=—= ITim; I - - .
Y=—Z" 2]: Zm; x ;=Z_:m " T T T\ RTe W exp(—(;) ; (13.12)

Z.(C)/ kT, 1 wtiZ 12
H2 —b r !
A= Z 3™ i_z_:m[ ( 2xT, /m)1/2k, Y ey \ R T AT Z(Q) ;
Z.(¢;) is real part of Z((;) and Z[((;) is the derivatives by .

Let us assume that the electron is cold {be = 0, |{ge| > 1) and the ion is hot. Then the
contribution of the electron term is dominant in eq.(13.11) and the ion term can be neglected.
Equation (13.11) becomes

k2
k2 H2w2 =0. (13.13)
i.e.,
k.
== =T, —.
wy =& ey

The substitution of w, into eq.(13.12) yields

1 o~ 7.-b (_ I xp{—(2
y= 2k2z ( ) o )I/QIkzIx (I:V:‘,mhe wr( (wr+m)+TLm)e p{ Cz))j.

(13.14)

exp(—(?) has meaningful value only near wy + I/ = w ~ I|42| = 0. The first term in the
braket of eq.(13.14), —(w, — I|2])| can be destabilizing term and the 2nd term —(T7, /T }{|f%] is
stabilizing term. Accordingly the necessary conditions for instability (v > 0) are

T. 1

we ~ ], we <8R, T—zl < 2
L
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that is,

w = HE% <10, (13.15)

T, '
= > 2L 13.1
s (13.16)

When the density increases to the point that II, approaches |2, then plasma oscillation couples
to ion Larmor motion, causing the instability. When the density increases further, an oblique
Langmuir wave couples with an ion cyclotron harmonic wave {|{2;| and an instability with w, =
II.k./k ~ || is induced. As is clear from eq.(13.16), the degree of anisotropy must be larger
for the instability in the region of higher frequency (I becomes large).

In summary, the instability with ion cyclotron harmonic frequencies appear one after another
in a cold-electron plasma under the anisotropic condition (13.16) when the electron density
satisfies

2 ,0Me B? k? |
~ — — —_ e -« &0
Ne ~ 1“2 : ( ” 102) &2 (1=1,2,3,--)

This instability is called Harris instability.>*

Velocity space instabilities in simple cases of homogeneous bi-Maxwellian plasma were de-
- scribed. The distribution function of a plasma confined in a mirror field is zero for loss cone
region (v) /v)? < 1/Rym (Rum is mirror ratio). The instability associated with this is called loss-
‘cone instability.! In general plasmas are hot and dense in the center and are cold and low density
in the edge. The instabilities driven by temperature gradient and density gradient are called
drift instability. The electrostatic drift instability> of inhomogeneous plasma can be analyzed
by the more general dispersion equation described in app.C. In toroidal field, trapped particles
always exist in the outside where the magnetic field is weak. The instabilities induced by the
trapped particles is called trapped particle instability.87
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Ch.14 Instabilities Driven by Energetic Particles

Sustained ignition of thermonuclear plasma depends on heating by highly energetic alpha
particles produced from fusion reactions. Excess loss of the energetic particles may be caused by
fishbone instability and toroidal Alfvén eigenmodes. Such losses can not only reduce the alpha
particle heating efficiency, but also lead to excess heat loading and damage to plasma-facing
components. These problems have been studied in experiments and analyzed theoretically.
In this chapter basic aspects of theories on collective instabilities by energetic particles are
described.

14.1 Fishbone Instability

Fishbone oscillations were first observed in PDX experiments with nearly perpendicular neu-
tral beam injection. The poloidal magnetic field fluctuations associated with this instabilities
have a characteristic skeletal signature on the Mirnov coils, that has suggested the name of fish-
bone oscillations. Particle bursts corresponding to loss of energetic beam ions are correlated with
fishbone events, reducing the beam heating efficiency. The structure of the mode was identified
as m=1, n=1 internal kink mode, with a precursor oscillation frequency close to the thermal ion
diamagnetic frequency as well as the fast ion magnetic toroidal precessional frequency.

14.1a Formulation

Theoretical analysis of fishbone instability is describea mainly according to L. Chen, White
and Rosenbluth!. Core plasma is treated by the ideal MHD analysis and the hot component is
treated by gyrokinetic description. The first order equation of displacement £ is (refer eq.(8.25))

pmqﬂ% = jx 6B +6j x B — Vép, — Vipy. (14.1)

where dp, is the first order pressure disturbance of core plasma Vép. = —§ - Vp. — 1.pV - §.
dpy, is the first order pressure disturbance of hot component. The following ideal MHD relations
hold:

6El=z'u£><B, 5E"=0, (5B:VX(EXB), (SJ=V5B

By multiplying [ dr€&* on (14.1) and assuming a fixed conducting boundary, we have

SWitnp + 6Wi + 61 = 0 O (142)
where
,72
oI = ?/pmlﬂgdr (14.3)
1
Wi = / £ Voppdr (14.4)

and dWyup is the potential energy of core plasma associated with the displacement £, which
was discussed in sec.8.2b and is given by (8.79). §W¥x is the contribution from hot component.
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14.1b MHD potential Energy

Let us consider the MHD term of §Wypgp, which consists of the contribution of dWgyp from
singular region near rational surface and the contribution W, from the external region.
External contribution dWip of cylindrical circular plasma is already given by (8.92)

5Wl\e/ﬁ§Dcycl m [a f ‘ & 2
97k 2moJo \’|dr

+ gl&lz) dr (14.5)

where f and ¢ are given by (8.93) and (8.95). When r/R < 1 is assumed, f and g of (-m, n)

mode are
3 2 2
™ of1 n nr
= = - 1-( —
f Rsz (q m) ( (mR) )

T 1 n)\? n?y? nr \? 1 n\? n | r\?
-5 () (o0 ) - ) o (3~ () 2D )
IR z((q m) ((m )+ Rz) 1 (mR +2 q? m m/ \R
where g(r) = (rB,/RBy(r)) is the safety factor. Let us consider the m=1 perturbation with the

singular radius r = r; {g(rs) = m/n). In this case the displacement is &, =const. for 0 < r < 7
and & = 0 for rs < r < a (refer sec.8.3b). Then §Wyjip,, is reduced to?

d I?deEIDcycl ﬂ'Bgs 1 af 1 1
27 R |£s| ( ) (‘ﬁp‘[) P (q_2+a—3) dp) (14.6)

where p = r/rg, B = (p)s/(Bgs/2,ug) and Bygs = (rs/Rq(rs))B; is the poloidal field at r = r,.
The pressure (p)s is defined by

Ts / p 2dp 1 T
== ["(5) Far= [ 0-p)arar (14.7)

MHD potential energy Wi Dror /2™ R per unit length of toroidal plasma with circular cross
section is given by®

ext JW‘”“ -82 T | i V :
SWiktiptor _ (1 - _2) R T el W= (1) 31 =) ( i~ % ) '
n 2»“0 R

2rR 2r R 144 7S
(14.8)

In the case of m=1 and n=1, Wi, /27 R is reduced to only the term of §Wr.

Let us consider the contrlbutlon from singular region. In this case we must solve the displace-
ment & in singular region near rational surface. The equation of motion in singular surface was
treated in sec.9.1 of tearing instability. From (9.13) and (9.9), we have (in the limit of z < 1)

, 0%¢, Fa2Bl,.

popmY' 55 = iF— (14.9)
. n 0
’YBlr = ZF'Y&r + ﬂo'f'sz 8:1:2 Blr (1410)
where
—m n B Bpn dg Bgns r—rg dyg
F=(kB)= —Bp+—-—B, = —=(— = ZAr=""" = =7, —
(k-B} - 0+RBz - (—m-+ng) - drAT - xr, z — $=Ts o .
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By following normalizations

181,75 . Ts /,1,07‘52 TR
= ) Tag = ’ TR = ’ Sgr = 1
v By,ssn A= (B2 /1opm)' 7 R = e
we have
2 { Tag 2 1" " 1 "
Y (_) r = P, 10 = _xfr + ",b - (14.11)
ns YTABSR
In the limit of Sg — o0, (14.11) yields
TAe 2 2\ o y
(7—) +xz° )& + 226, =0
ns
and the solution is*
,_ {€o/m)(y7as/ns)”! &, ( z )
= ’ T = — —ta — ] - 14.12
& x2/(yrae/ns)? +1 ¢r(@) = foo x oo Y7a8/(08) ( )

Since the external solution of m=1is £, = & as ¢ — —o0 and & = 0 as © — o0, the matching
conditions to external solution yield £, = &/2 and & = &.
The term dWyiyp from singular region is

SWs T ra+A a9, 2 T BZS
—2:;4;13 = 2_1110/1~—A ri(k - B)? (agr) dr = Tmisn‘m\el (14.13)

Eq.(14.13) is the expression in the case of cylindrical plasma. For the toroidal plasma 7a¢ is
replaced by 3'/2r,/(BZ/umop), where 31/2 is the standard toroidal factor (1 + 2¢2)/2 (ref.6).
Therefore the total sum of MHD contributions of m=1, n=1 is (yra¢ < 1 is assumed.}

W B3 -
Wwnp + 01 = QWRQ_SSKJ? (5WT + ’YTM; + Trqrzrﬁg)
0

B2 i
~ 2R 205 ¢, 2 (6WT + maf) | - (14.14)
2].1,0 2

14.1c Kinetic Integral of Hot Component

The perturbed distribution of hot ion component §F}, is given by gyrokinetic equation in the
case of low beta and zero gyro-radius approximation as follow®

e 0 d e
= —jp—F oH — — i — & =i— .
0F}, m6¢3E oh + h, ('U” B z(w wdh)) S Hy, ZmQ(5¢ (14 15)
where
v2 v? eB o . . )
E= by w= ﬁ: We = —, Q= (“’573' +w*h) Fon, @anh = —ivgn -V,

b x Vg V"’_m 1 d

v 24 vi) m (bx k), 1
= v —_— | —= = =W =z .
dh "2 ] eB o Wk " Fon eBr Fon Or

vgy, is the magnetic drift velocity and |Wap| is diamagnetic drift frequency of hot ion. k = (b-V)b
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is the vector toward the center of curvature of magnetic field line and the magnitude is R (refer
sec.2.4). d¢ is scaler potential and related by Vi¢ = —iw€ x B. When we set

SH, = —:—)%Q&f; +6Ch (14.16)
we have
Y| &z,f = i{w — Qqy) (éGh - ——Qﬁqb) + z——5¢ = i(w — Wan}0Gh + zﬂiéqb

Taking the average /1 = §(A/v))dl/ § dl/v; of both side of the foregoing equation yields

1 @gndo

5 = = Q"0 (14.17)
and
Ganbp i mv]+v1/2) __1m(yj+vi/2)
Tw e eB xR V=D (b xs) Wt x B)
2+ 2 2
_ m(U" UL/ )(KE) _ _EJUQ _ —EJZE
€ e e

~where

2 4 92 /2 (cos 8 0 vE 4+ v% /2 -8
Vil T Vi/2(cos 04 +sinfp) Vi TUI/2e T,
(”" +01/2(k- 8~ —— R 2 R

(14.18)

One notes that frequencies w, wqy are much smaller than the hot ion transit and bounce fre-

quencies v /R, e/2y/gR. For untrapped particles (Gy,) and trapped particles (6Gns), we
have
J
3Gy = 0, 8G = 2QF (14.19)
w - wdh
- The perturbed pressure tensor due to hot ion component is

0P, = —£, V(P I+ (P — PL)bb) + 6P, T+ (8P — 6P )bb (14.20)
where

2
6PJ_ = %6Fh2frvldvldv“

5P|| = fmvﬁéFh2wvldvlav|'.

The first term of the right-hand side of (14.20) has similar form to the pressure term of core
plasma. Since beta of hot ion component 3y, is much smaller than 3. of core plasma, the first
term in (14.20) can be neglected: Since E = v?/2, u = v2 /2B and a = p/E are defined, we
have

EI/Z

BE
2 _ 2 _ 3/2
v = 2E(1 —aB), wv{ =2BaF, 27rv_[_dv_|_dv“ =2? W—v” dEda = 2%/ 'n’B———-——(l ~ B2 dadE.
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Then the perturbed pressure of hot ion component is reduced to

3/2 E\?
(sPJ_ =2 WB/WC{&C}E maBEéFh
B! E B
_ o5/2 B 1/2/ 32«
2°*mB - da(l — aB) ; dEE A= aB) —aB)JFh
3/2 E1/2 .

-1

E
=2mB [ da(l - aB)/? f dEEY5F,.
0

B
The divergence of the second pressure term of (14.20) is (refer appendix A)

aéP 80P — 4P
A %babﬁ + (8P = 6P1) Y (babs)
o o Lo

&

(VéPa)s =

_ 8P,
B Bx,g

+bg(b- V)(6B| — 6PL) + (8P — 6PL)((b- V)bg + bs(V - b))
(VoP,), = V,16P + (JPH — 6P )}(b-V)b=V_ 0P + ((513“ — 8P )k

(VoP,) = V8P, + (b- V)P — §P.) + (6P) — §P)V - b.

The kinetic integral §Wk is

SWi = .;_fgi . V5Pdr = %/51 (V16P, + (0P| — 6P, )k)dr

1 * *
= "‘af V- g18P, — (0P — 8P, )€1 - k)dr

g3 2 vl —v? /2
= —23/21rm[drB/dadE—— (V-ﬂ;—; - (Gi-n)-”—vz'i"/" 0Fh-

(1 - aB)l/?
Since V-€, +2(£-k) =0 (refer (B.7)), the term of () in the integrand is
f+of /2 1
()=-LT 2

(61 k) ~ —5(€L  x),
oW is reduced to

Wk 23/2 f E3?  J*QEJ2
= drB | d kil
R 2R ST / “ETT B o - o

E3Y  J*QEJ2
(1—-aB)Y/? w—Gan

= —2522m, / drrgi / déB f dadE
Y(

Ts (1+r/R) T* T
2722, f drr / d(aB) / dEK, 52 9E)
] (1—/R) W — Wep

(14.21)

(14.22)

(14.21")

(14.22)
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2 prg K2 Q B2 .
e 23252 LEI—/ ]d Bf 5222 __% = Bspe |2 )
Témy A drr {(aB)} | dEE Kore -0 = 1€ 1< 0Wk, (14.23)
where
Ko = iﬂ_ 1 . dﬂi . ﬁ cos @
L ™ (1-aB)i/2 " J 27y’ 2= Jon (1—aB)t/?’

Therefore dispersion relation (14.3) is reduced to

L sWT 4 Wk =0, (14.24)
WA

where wp = (745/2)! and 7 is relaced by —iw.
14.1d Growth Rate of Fishbone Instability

Let us assume a model distribution for slowing down hot ions with the initial velocity vZ =
me

Mo -~ a
Fho = CO(—E«;/;,—O), (E < Emx). (14.25)
Then the pressure py, and the density ny, of hot ions are
3/2 - fBmx 3/2 m
/ 2/2nB B)l e dad E(mE) o = co /0 PinB o eagdE (1426)
— 3/2 _ Ph
Ph =27 *nBmKpEnyx, = ) (14.27)

23/2r BmKy Eqy

B EY? ' In(Emy/Te)
= LY : R — = ¢q23/2 = pp X/ 1)
L = fc 2 :rrB(l — QB)I/Z dadEF 5 = cp2 ﬁBmeme Ph B . {14.28)

The kinetic integral is

5WK 21 / / 3/2_2 5/2 ﬁ ~(3/2)wey E~5/2 — (Bco/Or)(m/eBr)E~3/2
R R2 '5 | drr [ dE2 mmBE b mE/(2eBRr) —
r2 B Bmx  —(3/2)0n — 2(08y/07)R( mE/QeBRrw)
= B2l / ar ”K? me B mE/(2eBRrw) — 1
Ty ] i (-, [ 2 2SR [ 24
= T —% - —
R2 210 Kg Wdh,mx h o wy-—1 or y—1
Ba Xl KQ ( Wdh mx) aﬁh w ( Wdnh mx)
= b —3/2 In (1—2dhmx ) _ 9O Db} ) )
|£s| 2K2 ( 3/ )(ﬁh)wdh,mx n 1 w ( 67’ )R 1 + wdh,mx ln 1 w

(14.29)

As the second term of ({88,/8r))R is dominant, the dispersion relation is reduced to

. Wdh,mx 2T K_22 6ﬂh ( (_i)) —
i07REE L g +WK§< o R(1+em(1-5)) =0 (14.30)
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Fig.14.1 Toroidal precession of banana orbit of trapped ions

where
w mul /2 Ph
1= mx = ——= = —_—
&dh,mx ’ “dh, eBRr Pn B2/2,1L0
Let us consider the case of §WT = 0. Then (14.30) is
1
—tapf2 + 21n (1—5) +1=0, (14.31)

where

-1
Wah.mx 15)
ap = ci:\ ( 2= ﬁ: ) .

Under the assumption (1 —1/62) < 0 and || < |£2], (14.31) is reduced to

: : . 1 : £2; : _
_tah(ﬂr + ?“Ql) 4= (Qr + E.Ql) (ln (Er - 1) + e — (T/.Q,——l)ﬂl?z) +1=0. (1432)

From the real and imaginary parts of (14.32), we have

T — Qg

Y= e oD ra- ey (14.33)
11— (m— an)f
%= Ty (14.34)

In the case of marginally unstable state # = ay, that is, {2, =0, f2; is given by

PRSI TR S Y
T —In(1/82, - 1)’ " l+exp(-1/02) 2 202,
and £2, = 0.75. For the excitation of fishbone instability, the necessary condition is £2; > 0, that
is, ap < 7 and
(_gjg_h Ts Wdh,mx 1 Kb

There is a threshold for (|36, /0r|)7s for the instability.
Banana orbits of trapped ions drift in toroidal direction as is shown in fig.14.1. The toroidal
precession velocity and frequency are*

e > —

o — mvt [2 o mv? /2
¢ eBr ’ ¢~ eBRr’

(14.35)
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Therefore wap mx is equal to the toroidal precession frequency of trapped ions with the initial

(maximum) velocity. It seems that the fishbone instability is due to an interaction between

energetic particles and m=1, n=1 MHD perturbation. The interaction of resonant type is char- -
acterized by Landau damping. The resonance is between the toroidal wave velocity of instability

and the toroidal precession of trapped energetic particles.

(* Note: The toroidal vertical drift velocity is vg = (mv? /2eBR), so that the poloidal dis-

placement of particles between bounces is 768 ~ wvg71y, 79 being the bounce period. Since

d¢/d@ = g along the magnetic line of field, the associated toroidal displacement between bounces

is Rd¢ = (Rquq7a/r), g = 1. Thus toroidal precession velocity is given by (14.35}.)

14.2 Toroidal Alfvén Eigenmode

Alfvén waves in homogeneous magnetic field in infinite plasma have been analyzed in sec.5.4.
Shear Alfvén wave, fast and slow magnetosonic waves appear. In the case of incompressible
plasma (V - £ = 0 or ratio of specific heat ¥y — 00), only the shear Alfvén wave can exists.

In the case of cylindrical plasma in the axisymmetric magnetic field, the displacement of MHD
perturbation £(r, 8, z) = £(r) expi{—mé + kz — wt) is given by Hain-Liist equations (8.114-117)
as was discussed in sec.8.4. In the case of incompressible plasma, Hain-Liist equation (8.117) is
reduced to [In sec.8.4 perturbation is assumed to be £(r) expi(+m8 + kz — wt)]

d [F? - popaw? ) 1d d /B
o (Dot L ) (<P = o) 280 8 (2)

dr \ m?/r?+k? dr
B d (_(m/r)FB,
+T2(m2/r2 F D (F? = topmw?) + " (Tg(mz/,rz n kz)) & =0 (14.36)
where ‘ ,
—Im n Bz m B RBZ
F=-B) = (B0 + 3B.0)) = 7 (n- m) o =T

The position at which F? — pppnw? =0 = w? = kﬁvi, v4 = B%/opm holds is singular radius.
It was shown by Hasegawa and L.Chen” that at this singular radius (resonant layer) shear Alfvén
wave is mode converted to the kinetic Alfvén wave and absorbed by Landau damping. Therefore
Alfvén wave is stable in the cylindrical plasma. -

Alfvén waves were also treated in sec.10.4a, 10.4b by cold plasma model. The dispersion
relation in homogenous infinite plasma is given by (10.64") showing that Alfvén resonance occurs

at w? = kﬁvi and cuts off of compressional Alfvén wave and shear Alfvén wave occur at w? =

kﬁvi(l +w/2) and w? = kﬁvi(l —-w/) respectivély.

14.2a Toroidicity Induced Alfvén Eigenmode
Let us consider shear Alfvén waves in toroidal plasma and the perturbation of (-m, n) mode
given by

&(r,8,2,t) = p(r)expi(—mb + n% — wt) (14.37)

where R is major radius of torus and k is
b — k-B 1 (n m )
"B "R\ ¢/
The resonant conditions of m and m+1 modes in linear cylindrical plasma are

2

(73}

— — k2 =0
2 m

vz
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'r"c'-"l Eno

qE‘)

Fig.14.2 The dispersion relation of toroidally coupled m and m+1 modes.

w

=k =0

Ui lm+1

However wave of m mode can couple with m+1 in toroidal plasma since the magnitude of
toroidal field changes as B, = B,p(1 — (r/R) cos ), as will be shown in this section later. Then
the resonant condition of m and m+1 modes in toroidal plasma becomes

w? k2 w
v fjm QE;K =0
O:sz w? k2 -
R kY

where ¢ = r/R and « is a constant with order of 1. Then the solutions are

flm f{m

v 2(1 — a?e?)

The resonant condition (14.38) is plotted in fig.14.2. At the radius satisfying kﬁm = kﬁm 41, the
difference of w. becomes minimum and the radius is given by

m m m+1/2

g(rg) = 1.5 for the case of m=1 and n=1. Therefore Alfvén resonance does not exist in the
frequency gap w- < w < wy.

The continuum Alfvén waves correspond to the excitation of shear Alfvén waves on a given
flux surface where the mode frequency is resonant w? = kf v%(r) and such a resonance leads
wave damping. However frequencies excited within the spectral gaps are not resonant with the
continuum and hence will not damp in the gap region. This allows a discrete eigen-frequency
of toroidicty-induced Alfvén eigenmode or toroidal Alfvén eigenmode (TAE) to be established.
This TAE can easily be destabilized by the kinetic effect of energetic particles.

The equations of TAE will be described according to Berk, Van Dam, Guo, Lindberg®. The
equations of the first order perturbations are

1/2
) ) 5 2 2 2,2 1.2
A (Y Y (14.38)

V.4, =0, 1 _ (5 x By, (14.40)
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A, -
E1=V¢1——wl, B, =V x A,.

For ideal, low 8 MHD waves, we have following relations:
E| =0, By =0, Ay = Ay b

so that

El)(b
B

ZLIJ'A”]_ = b . v¢1, "M =

From (14.40), we have

Vin+V-Gpd) =0,

and

Equations {14.41-43) yield

Al A —i_ (b-Vér\

B, = =y (2L ala ~ L

11 =V x (A1b) V(B)XB+BV><B wv( 5 )xB

. .1 —i (B-V)(;bl) B
=bh-4, =_—_p. = —"p. 2 = v/l =

i =b-7; ”.Ob VxBi= ob.Vx (B VJ_( o) 32)
B B . B-qul))_ i ( ) (B.v¢1
T wpg (b Bz)v (B VJ'( B? —w,uoBv BV, B?

Then (14.44-47) yield

w1 I ) (jll1 )
V |li—=V +V|=B + V(== =
(z,uo 'ui J'¢1) (B 41 B B 0

v. (:"—gvml) oV (%) BxV (LB'%%) +(B-V) (

When (R, ¢, Z) and (r,8,{) coordinate are introduced by,

R=Ry+rcosf, Z =rsin8, p=—

. . . . 2w
—iwp(vy x b) = (j; x B)x b+ (Fx B1)x b, j4=——b

B?

1
ﬁv..

<
3

J
E,;+1B),.

B
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(14.41)

(14.42)

(14.43)

(14.44)

(14.45)

(14.46)

(14.47)

(14.48)
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0.5 1.0
rfa

Fig.14.3 Lefthand-side figure: The toroidal shear Alfvén resonance frequencies {2 that corresponds to
(n=1, m=1) and (n=1. m=2), ¢(r) =1+ (r/a)?, /R =0.25, 2 = w/(va(0)/ Ro). Righthand-side
figure: The structure of the global mode amplitude as a function of radius.

and following notations are used
' % m
r,0,(,t} = mi{r)expi(—mé+np—wt), (b-V m;—(n———)z—z’km ms
¢1(r,0,¢,1) ;d’ (7) expi( p—wt),  (b-V)dm = g (0= 15 h®

ém
R b

I

] m
ftu= (- ), B,
Infm = T \" ~ 40 -
(14.48) is reduced to®

d 3 (.r.)2 2 dEm 2 d ( w')z 2 UJ2 - 2
g 5 = - m; —_ - - s Em
dr (T (vf‘ k”m) dr ) trB dr \ vy (m”—1) vk Bl | 7

d [ 3/ w\%2r {dEmia dEm_1) _
T (,- (K) E( e = — 0. (14.49)

As is seen in fig.14.3, mode structure has a sharp transition of m=1 and m=2 components at
the gap location. Therefore m and m+1 modes near gap lécation reduces

g )i 2 (0 OB
vi L T Ry \va dr

w? dE+1  2r [ w\*dE
w” 42 \4Emi1 | 2r (_) m
('U% ||m+1) dr + Rg \va dr 0.
so that toroidal shear Alfvén resonance frequency is given by
w? 2 w 2
(;3; - ’“um) 2 ()
w 2 w? 2
2 (35) (5,{ = Fim1

When Shafranov shift is included in the coordinates of (R, y, Z) and (r,#, (), coupling constant
becomes 2.5¢ instead of 2¢.8

The energy integral from (14.49) without coupling term of m=1 modes is reduced to following
equation by use of partial integral:

y dBm\? W d 1
G(w, Bm) = P/ﬂ drr ((7’2 (E‘—) + (m® - 1)511) (g - kﬁm) - WETE;H;}E)

= 0. (14.50)
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= En(rs )Cn(rs) = Em(r)Culry) (14.51)
where ,
odEy,
Cm('f') = (":A k"m) ?, E'm(a) =0.

The radius r = 5 is singular at which (w?/va)? — k2 = 0 and P is principal value of the integral.
From this formulation, it is possible to estimate the damping rate of TAE and is given by®

qu = i Sien(wo)Ci(rs)® (14.52)
2|5 (T ’“nm)

Ts

wog%
Since wpdG/wp > 0, Im{dw) < 0. This is called continuum damping.

. 14.2b Instability of TAE Driven by Energetic Particles

Dynamics of energetic particles must be treated by kinetic theory. Basic equations will be
described according to Betti and Freidberg®.

f’+v fJ+qJ(E+va) Vof; =0, (14.53)
%T:’ + V- (nyuy) =0, _ (14.54)
a : .
mja(njuj) +V: -F= anj(E +Juy X B), (14.55)
P =m /v'ufjd'v, (14.586)
Bi=Vx (€, xB), | (14.57)
pojr =VB1 =V xVx (€, xB), | ((14.58))

J1 X B+3x By =) (VP —iwmj(nyju; + njuy)) = Y (vplj - pwﬂglj) . (1459)
i i
Fj is equilibrium distribution function of axisymmetric torus. Fj(e,p,) is assumed to be a
function of constants of motion £ and p,, where

e = %02 +q0, po=mRu,+qy, ©=RA, (14.60)
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Figly _
= — B =
BBz =R RBr =5z
0 fij tv-fi+ B(wxB) Vofy = -3 (B +vx Biy) V,F, (14.61)
at Pom; om ’
and
. 9p, OF, 0F, _ . 0F  _ OF
Fo=pt ) pE) =t = R—1 p—2 14.62
v E] ‘Pav‘p 610:,0 + (v E) ae !ijRapw +va Se ( )
The solution is obtained by integral along the particle orbit (refer appendix sec.C.2)
X t
fij= _T‘:L_Jf (E+v x By)-V,Fdt. (14.63)
3 J ~o0

It is assumed that the perturbations are in the form of
Q1 = Qu(R, Z) expi(np — wt).

The second term mv(8F)/de) of the right-hand side of (14.62) contributes to the integral
OF; OF; [t

—dt' = —qy=2 f - E-vdt.
e ~%ig; - E.vd

The contribution from the first term m;R(0F;/dp,) is

3 t
-5 (] (B m; ROy +] m;R(b x By), 8F’dt)
i —00 3 90 6

m;

qjg;z (f; E¢Rdt'+f_tm Rv x (W—j—)i) dt’)
o8 ([, 25+ [ (B - o))

o0F, ¢ 1 d(E, R) /" n ,)
——F 4 —(v - ]
~ U5y, Op, (,[_oo —iw  df e —o0 w(v E)dt
The solution is

f15=—5(2F3RE +( )/ (E-v )dt) (14.64)

. t
—&j (E + v x By)-mju

m;

Since

El” = 0, - ngJ. = ’ El = ’EUJ(g_L x B),

RE, = iw(€, x B),R = iw(€1rBz — €.2BR)R = —iw(€ - V§),
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E-v=iw(§J_xB)-vz—iwgl-(va)=_wgl.ﬁ‘;_;’
= _iw™e, T, @(d(@-v)_ _deL)
= zwqj&l i wqj i v
f1j becomes
g 9b o { O 8Fj( ft dé, )
fij= qjapw(E V«p)-l—zmj(wag +n8p,p) £, v _wv i dt
OF aF;
—-—qu—wiﬂmj(w wa) 5 6L v —8)
where
[ S ndF;/dp,
s"f_m it % = TBR b

s; is reduced to

bl vi 2 '

as will be shown in the end of this subsection. The perturbed pressure tensor is
Plj = fmjvvdv = Pl.LjI + (PIHJ — Pu_j)bb

and VPjj is given by eqs.(14.21') and (14.22'). Then the equation of motion is

—--pwng_ =F,(&;)+ iDJ.(&_L)!

Fi(€i)=51xB+jxB1+ V(£ -VP),

2 02 BF
D.(§,)= mj_/ (U_;_‘V_L + (’Uﬁ - %) K-) (w— w*j)a_;sjdv.
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(14.65)

(14.66)

(14.67)

(14.68)

(14.69)

(14.70)

F,(§,) is the ideal MHD force operator for incompressible displacement. D, (¢,) contains
the contribution of energetic particles. Eqs. (14.68-70) describe the low frequency, finite wave

number stability of energetic particle-Alfvén waves in axisymmetric torus.

The energy integral of (14.68) consists of plasma kinetic energy normalization Ky, ideal MHD
perpendicular potential energy dWyup and the kinetic contribution to the energy integral dWx:

WKy = Wamp + Wk

where
1 2
Ky = '2“/P|§L| dr,

1
dWumnp = —3 [&j_FJ.(E_L)d"':

(14.71)
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Wi = 2 f £ Dy (€, )dr

After a simple integration by parts, §Wx can be written as

14.72
i (14.72)

ds} v? . v?
dtj = m; ('jJ;VJ_'E +(7J‘—'u“)§l-‘n).

On the other hand ds}/d¢ is given by

since

*
dsj

T = iw's} + Dsj, D=(v-V)

+ —Qj—('u x B} V,.
m;
With use of the notation s; = a; + icj (g; and ¢j are real), we have
d *

. . 1
8j dt = iw*|s;|® + i(c;Daj — a; Dey) + ED(aj2 + cf)

Contribution of the last term to the integral (14.72) by drdv is zero, since Fj and w,; are
functions of the constants of motion ¢ and p,, and

1 "
Wk = 5 Z ](u - w*j)%?‘(iwilst “+ Rj)d‘vd‘l",
j

R; = ¢;Da;j — a;Dej — wi|si|*.

The desired expression for the growth rate is obtained by setting the real and imaginary parts
of (14.71) to zero:

oW,
W = —=E2 + O(B). (14.73)
K
O(3) is the contribution of R; term. In the limit of w; < w;, the imaginary part yields

Wi
wizf(—;’ Wk = lim (

wi—+0

o Z[(u Wej) wl|sj|2dvd'r') . (14.74)

Let us estimate {14.74). Since V- &, + 2€, - k ~ 0 (refer (B.7)), s; is

sj=—mjft ('u“+ )(n &) )dt’ _-mjft (’u”+—§-) %dt’

where

0 b 0 _ ,—if
§R=§r6089—593in9=§,,€ +26 _gge €

€r and §0 are (V ‘ g (1/7')( T‘Er /a'r) - 'L(m/’r)&) R 0)

&= Em(r)e™™, Go=—iy (Tﬁnl;fr))’

e—zmﬁ .
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Since the leading-order guiding center of orbits of energetic particles are given by

()=, 0)= D0 )+ 00, o(t) = At —1) + ()

(P

perturbations along the orbit become

expi(—mé(t') + ny(t) _ wt') = exp (i(—ng vy + % —w)(t — t)) expi(—mé(t) + np(t) — wt) _

= exp (—i(w — wu }(t' — t)} expi(—mb(t) + np(t) — wt)

where

w _ﬂ(H_E)
m—R q -

my(vf +v§/2) 1
8= R 2

and

7 Z(ﬁm-l + €m+1 — tp(m—1) T o(m+1)) expi(—mb + np — wt)

m

f i(w — wm) #ar’
o0

T, v? T€m-1 Ar€me1) N expi(—imé + np — wit).
:zﬁ (’U‘ZI‘F?'L)Z(Em 1+&€mt1 — ¢ (( ))+Z((n§-:-;.)))e P (%;n_wj;P w)‘ (14.75)

It is assumed that perturbation consists primarily of two toroidally coupled harmonics £, and
€..+1 and all other harmonics are essentially zero. Strong coupling occurs in a narrow region of
thickness ~ ea localized about the surface r = rp corresponding to ¢{rp) = (2m + 1)/2n = ¢o.
The mode localization implies that £ ,, terms dominate in (14.75). Substituting these results
into the-expression for s; and maintaining only these terms which do not average to zero in 8

leads to the following expression for ]Sj|2!

2 mire (sl | lenf? L 1
5 = + g + *
j 4R || (m+ 1)2 m? lw — wml?  |Jw — wm-1|?

since w41 = —Wm and wyyo = —~wip—1. Ky is given by
2 2 2
_ 6P 39 [
Ky = 5 ( - + m+ 1) dr. ‘ (14.76)

Using the relations wr ~ kyva, k| = 1/(290R), go = (2m + 1/2n}, we obtain the following
expression for growth rate:

2 2 2
Wi ) Homi' gy Y BF n 9F; w; w;
k"‘UA wil—rjblﬂg 2B2 ( ” + 2 ) ( 66 s g9 8¢) |w - wm|2 + [uJ —wm_1[2 v

(14.77)
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With use of the formula [*°_¢/(z? + €*)dz = , short calculation of integral by v yields

2n? pgm? Ra v\’ aF n 9F,
— d
kum Z 2B / Wty Be g oy )t

4

'Uﬂ =Up 11'" =UA/3

(14.78)
{Note wm = v /(2g0R), wm—1 = 3v)/(2q0R), wr = va/2qoR.)
Equation (14.78) gives the TAE growth rate for arbitrary distribution function Fj(e, ). The

second term of (14.78) is due to sideband resonance.
The growth rate can be easily evaluated for a Maxwellian distribution

m; 32 mjv?

Here nj = nj(¢) and T} = Tj(+}. Some straightforward calculation leads to

wi . ;
(k"'UA)j = —qf; ( — ngod; —————1+m (14.79)
where
T ____ dp/dr _ mjor _dinT;
B = B 2pq’ 8 = —TLp; B TLpj = 4B, ’ = dlnn;’

Each of these quantities is evaluated at r = 5. The functions G,

ng and J;flj are functions
of single parameter A; = v /vr; and are given by

m_]’

—a2
G5 = i) + 9mi(Ni/3),  gmi(A) = (@2/2)X5(1 + 227 + 2X])e A

HI = hEiO) + h5;(N/3), hmi(A) = (r/2/2)(1 +2)7 + 2A;*)e"\? (14.80)

]

T35 =GN + 3N /3),  dg(Ay) = (M2 /2)(3/2 4+ 208 + 2+ 2X0)e ™Y

For the alpha particles it is more reasonable to assume a slowing down distribution

2

A Ma¥a _ 3 5MeV)

w, (0<’U<Ua,

A and vy are related to the density and pressure as follows:

Fy=

Am Mo N NaMaVZ /2 mjv}
~ 4 n{v, /vg)’ Pa = 3In(va/vg)’ 2

After another straightforward calculation we obtain an analogous expression for the alpha par-
ticle contribution to the growth rate:

( o, ) = —3fa (GL, — ngodaHy,) (14.82)

kjjva
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where

Pa ) 2 dpa/dr ﬂlava
— —_—_— 6 e p—— —
Ba B2 /2 %o ) @ 37'La Da ) TLpa = o B

The functions GL, and HY, are functions of the parameter A, = va /v, and are given by

Gl = 97(Aa) + 95 (Aa/3), 9T (Xa) = (37/16)Aa(3 + 4ha — 622 — A)H(1 — A,)

HI = hT(0a) + hI(Aa/8), AL (Aa) = (37/16)(1 + 622 — 423 — 32V H(1 — A,) (14.83)

H(1 — X,) is the Heaviside step function (H(z) = 1 for = > 0, H(z) = 0 for z < 0). The final
form of the growth rate is obtained by combining the contributions of ions and electrons of core
plasma and e particles:

Wi

Fon = 0 (8GR + BeGre + Ba(Gla — naodaHE)) (14.84)

where (3, 8. and 8, are f3; = n;T,/B% /21 of ions and electrons of core plasma and o particles.
The contributions of ions and electron of core plasma are Landau damping. The marginal
condition for excitation of TAE is

61GT(A1) Gsa
o : , ) -
> nqd.HL — GL, -2 ngoHJL

(14.85)

Derivation of {14.66) is described as follow:

@=Tug =T -3§*+zm V)6 = X -ions + S

v = yyb + vy cos(f2t)é — v, sin(2t)(b x &)

BT = vfbb + v cos(2t)? + v} sin(26)%(b x &, )(b x &)
= (v +vi/2)bb+ v /2)(bb+&,8) + (b x &1)(bx &L)) = (vf + v} /2)bb+ 23 /2)],

i

v 35 = —iwy €y + (v1/2)V - € + (vf ~ ”l/g)zbb’a

3 8
> (bb +bigi— ) = }u:bja—zj(&bi)

j
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0.4 ns 0.8 1.0
rfa

Fig.14.4 Representative shear Alfvén frequency continuum curves as function of minor radius r.
Horizontal lines indicating the approximate radial location and mode width for toroidal Alfvén
eigenmode (TAE), kinetic TAE mode (KTAE), core-localized TAE mode (CLM), ellipticity Alfvén
eigenmode (EAE), noncicular triangularity Alfvén eigenmode (NAE}, and energetic particle continuum
mode (EPM). '

Zbab,-g—f; — e (b- Vb4 (b-VIE-B) = —k-E+ (b- V),
ij

dg
at

= (v3/2)V - £+ (W3 /2 - of)n - €1 —iwugy + (vf —2/2) 5 5”

Since |§)| <« |£ |, we obtain

d¢

dt ( ?L/Q)V'g'i‘('lfi/z—vﬁ)ﬁ.-gl+a,13_iﬂt+..._

The third term is rapidly oscillating term and the contribution to (14.66) is small.

14.2¢ Various Alfvén Modes

In the previous subsection we discussed the excitation of weakly damped TAE by super-
Alfvénic energetic particles. There are various Alfvén Modes.

In high-temperature plasmas, non-ideal effects such as finite Larmor radius of core plasma
become important in gap region and cause the Alfvén continuum to split into a series of kinetic
Alfvén eigenmodes at closely spaced frequencies above the ideal TAE frequency.

In central region of the plasma, a low-shear version of TAE can arise, called the core-localized
mode.

Noncicular shaping of the plasma poloidal cross section creates other gaps in the Alfvén
continuum, at high frequency. Ellipticity creats a gap, at about twice of TAE frequency, within
which exist ellipticity-induced Alfvén eigenmodes and similarly for triangularity-induced Alfvén
eigenmodes at about three times the TAE frequency.

The ideal and kinetic TAE’s are "cavity” mode, whose frequencies are determined by the
bulk plasma. In addition, a ”beam mode” can arise that is not a natural eigenmode of plasma
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but is supported by the presence of a population of energetic particles and also destabilized by
them. This so-called energetic particle mode, which can also exit outside the TAE gaps, has a
frequencies related to the toroidal precession frequency and poloidal transit/bounce frequency
of the fast ions. The schematic in fig.14.4 illustrates these various modes.

Close interaction between theory and experiment has led many new discoveries on Alfvén
eigenmodes in toroidal plasma. A great deal of theoretical work have been carried out on
energetic particle drive and competing damping mechanism, such as continuum and radiative
damping, ion Landau damping for both thermal and fast ions, electron damping and trapped
electron collisional damping. For modes with low to moderate toroidal mode numbers n, typically
continuwm damping and ion Landau damping are dominant, where as high n modes, trapped
collisional damping and radiative damping are strong stabilizing mechanism. There are excellent
reviews on toroidal Alfvén eigenmode!®. '
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Ch.15 Development of Fusion Researches

The major research effort in the area of controlled nuclear fusion is focused on the confinement
of hot plasmas by means of strong magnetic fields. The magnetic confinements are classified to
toroidal and open end configurations. Confinement in a linear mirror field (sec.17.3) may have
advantages over toroidal confinement with respect to stability and anomalous diffusion across
the magnetic field. However, the end loss due to particles leaving along magnetic lines of force
is determined solely by diffusion in the velocity space; that is, the confinement time cannot be
improved by increasing the intensity of the magnetic field or the plasma. size. It is necessary to
find ways to suppress the end loss.

Toroidal magnetic confinements have no open end. In the simple toroidal field, ions and
electrons drift in opposite directions due to the gradient of the magnetic field. This gradient
B drift causes the charge separation that induces the electric field E directed parallel to the
major axis of the torus. The subsequent E x B drift tends to carry the plasma ring outward.
In order to reduce the E x B drift, it is necessary to connect the upper and lower parts of the
plasma by magnetic lines of force and to short-circuit the separated charges along these field lines.
Accordingly, a poloidal component of the magnetic field is essential to the equilibrium of toroidal
plasmas, and toroidal devices may be classified according to the method used to generate the
poloidal field. The tokamak (ch.16) and the reversed field (17.1) pinch devices use the plasma
current along the toroid, whereas the toroidal stellarator (sec.17.2) has helical conductors or
equivalent winding outside the plasma that produce appropriate rotational transform angles.

Besides the study of magnetic confinement systems, inertial confinement approaches are being
actively investigated. If a very dense and hot plasma could be produced within a very short
time, it might be possible to complete the nuclear fusion reaction before the plasma starts to
expand. An extreme example is a hydrogen bomb. This type of confinement is called inertial -
confinement. In laboratory experiments, high-power laser beams or particle beams are focused
onto small solid deuterium and tritinm targets, thereby producing very dense, hot plasma within
a short time. Because of the development of the technologies of high-power energy drivers, the
approaches along this line have some foundation in reality. Inertial confinement will be discussed
briefly in ch.18.

The various kinds of approaches that are actively investigated in controlled thermonuclear
fusion are classified as follows: ‘

( [ Axially Tokamak
symmetric { Reversed field pinch
Toroidal Spheromak
system 4
Magnetic Axially Stellarator system
confinement < asymmetric{ Heliac
L Bumpy torus
Open end ( Mirror, Tandem mirror
system Field Reversal Configuration
{ Cusp

Laser

Ion beam, Electron beam

Inertial
confinement {
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From Secrecy to International Collaboration

Basic research into controlled thermonuclear fusion probably began right after World War
II in the United States, the Soviet Union, and the United Kingdom in strict secrecy. There
are on record many speculations about research into controlled thermonuclear fusion even in
the 1940s. The United States program, called Project Sherwood, has been described in detail
by Bishop.! Bishop states that Z pinch experiments for linear and toroidal configurations at
the Los Alamos Scientific Laboratory were carried out in an attempt to overcome sausage and
kink instabilities. The astrophysicist L. Spitzer, Jr., started the figure-eight toroidal stellarator
project at Princeton University in 1951. At the Lawrence Livermore National Laboratory, mirror
confinement experiments were conducted. At the Atomic Energy Research Establishment in
Harwell, United Kingdom, the Zeta experiment was started? and at the I.V. Kurchatov Institute
of Atomic Energy in the Soviet Union, experiments on a mirror called Ogra and on tokamaks
were carried out.?

The first United Nations International Conference on the Peaceful Uses of Atomic Energy
was held in Geneva in 1955. Although this conference was concerned with peaceful applications
of nuclear fission, the chairman, H.J. Bhabha, hazarded the prediction that ways of controlling
fusion energy that would render it industrially usable would be found in less than two decades.
However, as we have seen, the research into controlled nuclear fusion encountered serious and
unexpected difficulties. It was soon recognized that the realization of a practical fusion reactor
was a long way off and that basic research on plasma physics and the international exchange
of scientific information were absolutely necessary. From around that time articles on con-
trolled nuclear fusion started appearing regularly in academic journals. Lawson’s paper on the
conditions for fusion was published in January 1957,* and several important theories on MHD
instabilities had by that time begun to appear.>® Experimental results of the Zeta” (Zero Energy
Thermonuclear Assembly) and Stellarator® projects were made public in January 1958. In the
fusion sessions of the second United Nations International Conference on the Peaceful Uses of
Atomic Energy, held in Geneva, September 1-13, 1958, %1° many results of research that had
proceeded in secrecy were revealed.

L.A Artsimovich expressed his impression of this conference as “something that might be called
a display of ideas.” The second UN conference marks that start of open rather than secret
international cooperation and competition in fusion research.

In Japan controlled fusion research started in Japan Atomic Energy Institute (JAERI) under
the ministry of science and technology and in Institute of Plasma Physics, Nagoya University
under the ministry of education and culture in early 1960’s.11

The First International Conference on Plasma, Physics and Controlled Nuclear Fusion Research
was held in Salzburg in 1961 under the auspices of the International Atomic Energy Agency
(IAEA)}. At the Salzburg conference!? the big projects were fully discussed. Some of there were
Zeta, Alpha, Stellarator C, Ogra, and DCX. Theta pinch experiments {Scylla, Thetatron, etc.)
appeared to be more popular than linear pinches. The papers on the large scale experimental
projects such as Zeta or Stellarator C all reported struggles with various instabilities. L.A.
Artsimovich said in the summary on the experimental results: “Our original beliefs that the
doors into the desired regions of ultra-high temperature would open smoothly...have proved
as unfounded as the sinner’s hope of entering Paradise without passing through Purgatory.”
The importance of the PR-2 experiments of M.S. Ioffe and others was soon widely recognized
{(vol.3, p.1045). These experiments demonstrated that the plasma confined in a minimum B
configuration is MHD stable.

The Second International Conference on Plasma Physics and Controlled Nuclear Fusion Re-
search was held at Culham in 1965.1% The stabilizing effect of minimum B configurations was con-
firmed by many experiments. An absolute minimum B field cannot be realized in a toroidal con-
figuration. Instead of this, the average minimum B concept was introduced (vol.1, pp.103,145).
Ohkawa and others succeeded in confining plasmas for much longer than the Bohm time with
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toroidal multipole configurations (vol.2, p.531) and demonstrated the effectiveness of the average
minimum B configuration. Artsimovich and others reported on a series of tokamak experiments
(T-5, vol.2, p.577; T-3, p.595; T-2, p.629; TM-2, p.647; TM-1, p.659). Further experiments
with Zeta and Stellarator C were also reported. However, the confinement times for these big
devices were only of the order of the Bohm time, and painful examinations of loss mechanisms
had to be carried out. Theta pinch experiments were still the most actively pursued. The ion
temperatures produced by means of theta pinches were several hundred eV to several keV, and
confinement times were limited only by end losses. One of the important goals of the theta
pinch experiments had thus been attained; and it was a turning point from linear theta pinch
to toroidal pinch experiments.

In this conference, the effectiveness of minimum B, average minimum B, and shear config-

urations was thus confirmed. Many MHD instabilities were seen to be well understood ex-
perimentally as well as theoretically. Methods of stabilizing against MHD instabilities seemed
to be becoming gradually clearer. The importance of velocity-space instabilities due to the
non-Maxwellian distribution function of the confined plasma was recognized. There had been
and were subsequently to be reports on loss-cone instabilities,!” Harris instability!®(1959), drift
instabilities19(1963, 1965),etc. The experiment by J.M.Malmberg and C.B.Wharton (vol.1,p.485)
was the first experimental verification of Landau damping.
L.Spitzer,Jr., concluded in his summary talk at Culham that “most of the serious obstacles have
been overcome, sometimes after years of effort by a great number of scientists. We can be sure
that there will be many obstacles ahead but we have good reason to hope that these will be
surmounted by the cooperative efforts of scientists in many nations.”

Artsimovich Era

The Third International Conference' was held in 1968 at Novosibirsk. The most remarkable
topic in this conference was the report that Tokamak T-3 (vol.1, p.157) had confined a plasma
up to 30 times the Bohm time (several milliseconds) at an electron temperature of 1 keV. In Zeta
experiments a quiescent period was found during a discharge and MHD stability of the magnetic
field configuration of the quiescent period was discussed. This was the last report of Zeta and
HBTX succeeded this reversed field pinch experiment. Stellarator C(vol.1, pp.479, 495) was still
confining plasmas only to several times the Bohm time at electron temperatures of only several
tens to a hundred eV. This was the last report on Stellarator C; this machine was converted
into the ST tokamak before the next conference (Madison 1971). However, various aspects of
stellarator research were still pursued. The magnetic coil systems of Clasp (vol.1, p.465) were
constructed accurately, and the confinement of high-energy electrons were examined using the
3 decay of tritium. It was demonstrated experimentally that the electrons ran around the torus
more than 107 times and that the stellarator field had good charge-particle confinement proper-
ties. In WII the confinement of the barium plasma was tested, and resonant loss was observed
when the magnetic surface was rational. Diffusion in a barium plasma in nonrational cases was
classical. In 2X(vol.2, p.225) a deuterium plasma was confined up to an ion temperature of 6-8
keV at a density of n < 5 x 103 em™ for up to 7 = 0.2ms. Laser plasmas appeared at this
conference.

At the Novosibirsk conference toroidal confinement appeared to have the best overall prospects,
and the mainstream of research shifted toward toroidal confinement. L.A.Artsimovich concluded
this conference, saying; “We have rid ourselves of the gloomy spectre of the enormous losses em-
bodied in Bohm’s formula and have opened the way for further increases in plasma temperature
leading to the physical thermonuclear level.”

The Tokamak results were seen to be epoch making if the estimates of the electron temperature
were accurate. R.S.Pease, the director of the Cutham Laboratory, and L.A.Artsimovich agreed
the visit of British team of researchers to Kurchatov to measure the electron temperature of the
T-3 plasma by laser scattering methods. The measurements supported the previous estimates
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by the tokamak group.?? The experimental results of T-3 had a strong impact on the next phase
of nuclear fusion research in various nations. At the Princeton Plasma Physics Laboratory,
Stellarator C was converted to the ST tokamak device; newly built were ORMAK at Oak Ridge
National Laboratory, TFR at the Center for Nuclear Research, Fontaney aux Rose, Cleo at the
Culham Laboratory, Pulsator at the Max Planck Institute for Plasma Physics, and JFT-2 at
the Japan Atomic Energy Research Institute.

The Fourth International Conference was held in Madison, Wisconsin, in 1971.'° The main
interest at Madison was naturally focused on the tokamak experiments. In T-4(vol.1, p.443),
the electron temperature approached 3 keV at a confinement time around 10 ms. The ions were
heated to around 600 eV by collision with the electrons. ST(vol.1, pp.451, 465) produced similar
results.

Trek to Large Tokameks (since around oil crisis)

Since then the IAEA conference has been held every two years; Tokyo in 1974,'% Berchtes-
garden in 1976, Innsburg in 1978, Brussels in 1980, Baltimore in 1982, London in 1984, Kyoto
" in 1986, Nice in 1988, Washington D.C. in 1990, Wiirzburg in 1992, Seville in 1994, Montreal
in 1996, Yokohama in 1998, Sorrento in 2000 - - .. Tokamak research has made steady progress
as the mainstream of magnetic confinement. Pease stated in his summary talk of the JAEA
conference at Berchtesgarden in 1976 that “one can see the surprisingly steady progress that
has been maintained. Furthermore, looked at logarithmically, we have now covered the greater
~ part of the total distance. What remains is difficult, but the difficulties are finite and can be
summed up by saying that we do not yet have an adequate understanding or control of cross-field
‘electron thermal conduction.”

After the tokamaks of the first generation (T-4, T-6, ST, ORMAK, Alcator A, C. TFR,
Pulsator, DITE, FT, JFT-2, JFT-2a, JIPP T-II, etc.), second generation tokamaks (T-10, PLT,
PDX, ISX-B, Doublet III, ASDEX, etc.) began appearing around 1976. The energy confinement
time of ohmically heated plasmas was approximately described by the Alcator scaling law (g o<
na?). The value of n7g reached 2 x 10 cm~3s in Alcator A in 1976. Heating experiments of
neutral beam injection (NBI) in PLT achieved the ion temperature of TkeV in 1978, and the
effective wave heating in an ion cyclotron range of frequency was demonstrated in TFR and
PLT around 1980. The average 3 value of 4.6 % was realized in the Doublet III non-circular -
tokamak (k.= 1.4} in 1982 using 3.3 MW NBIL Noninductive drives for plasma current have
been pursued. Current drive by the tangential injection of a neutral beam was proposed by
Ohkawa in 1970 and was demonstrated in DITE experimentally in 1980. Current drive by a
lower hybrid wave was proposed by Fisch in 1978 and demonstrated in JFT-2 in 1980 and in
Versator 2, PLT, Alcator C, JIPP T-II, Wega, T-7 and so on. Ramp-up experiments of plasma
current from 0 were succeeded by WT-2 and PLT in 1984. TRIAM-1M with superconducting
toroidal coils sustained the plasma current of I, = 22kA, (n. ~ 2 x 10'®* m*®) during 70 minutes
by LHW in 1990.

The suppression of impurity ions by a divertor was demonstrated in JFT-2a (DIVA) in 1978
and was investigated by ASDEX and Doublet III in detail (1982). At that time the energy
confinement time had deteriorated compared with the ohmic heating case as the heating power
of NBI was increased (according to the Kaye-Goldston scaling law). However, the improved
mode (named H mode) of the confinement time, increased by about 2 times compared with the
ordinary mode (L mode), was found in the divertor configuration of ASDEX in 1982. The H
mode was also observed in Doublet III, PDX, JFT-2M, and DIII-D. Thus much progress had
- been made to solve many critical issues of tokamaks.

Based on these achievements, experiments of third-generation large tokamaks started, with
TFTR (United States) in the end of 1982, JET (European Community) in 1983 and JT-60
(Japan) in 1985. Originally these large tokamaks are planned in early 1970s. TFTR achieved
npr(0)me ~ 1.2 x 10¥m=3 . 5, x7}(0) = 44keV by supershot (H mode-like). JET achieved
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Fig.14.1 Development of confinement experiments in fie7g - K73(0) (A, is the line average electron
density, 7g is the energy confinement time g = W/{P,o, — dW/dt — Ly, ), T5(0) is the jon temperature).

tokamak(e), stellarator {A), RFP(o), tandem mirror, mirror, theta pinch{ closed trigngle =1 is the
critical cgrgdition. : tcgtaP energ;g o)f p?a.sma, Piot: total eating povlerer, }i(,th,; shine t r%u?gh%f neutr

beam heating,.

np(0)me ~ 3.2 x 10 m~? . 5, sT}(0) = 18.6keV by H mode with divertor configuration. JT-60
drove a plasma current of 1.7 MA (7. = 0.3 x 10'* cm™?) by lower hybrid wave (Prr = 1.2 MW)
in 1986 and upgraded to JT60U in 19912!, JT60U achieved np(0)7g ~ 3.4 x 10" m™3 .5,
xTi(0) = 45keV by high 8, H mode. A high performance confinement mode with negative
magnetic shear was demonstrated in TFTR, DIII-D, JT60U, JET, Tore Supra??, T10.

JET performed a preliminary tritium injection experiment?3 (ny/(np + nr) ~ 0.11) in 1991
and the production of 1.7 MW (Q ~ 0.11) of fusion power using 15MW of NBI. Extensive
deuterium-tritium experiment was carried out on TFTR in 1994.2¢ Fusion power of 9.3 MW
(Q ~ 0.27} was obtained using 34 MW of NBI in supershot (I,=2.5 MA). JET set records of
DT fusion output of 16. 1MW (Q ~ 0.62) using 25.7 MW of input power (22.3MW NBI + 3.1MW
ICRF)? in 1998. A pumped divertors were installed in JET, JT60U, DIIID, ASDEX-U and
others in attempt to suppress impurity ions and the heat load on divertor plate. Now these large
tokamaks are aiming at the scientific demonstration of required conditions of critical issues (
plasma transport, steady operation, divertor and impurity control and so on) of fusion reactors.

Based on the development of tokamak researches, the design activities of tokamak reactors
have been carried out. The International Tokamak Reactor (INTOR)?® (1979-1987) and The
International Thermonuclear Experimental Reactor (ITER)?” (1988-2001) are collaborative ef-
forts among Euratom, Japan, The United States of America and Russian Federation under the
auspices of IAEA. The status of ITER in 2000% is described in sec.16.11.

Alternative Aproaches

Potentail theoretical advantages of spherical tokamak was outlined by Peng and Strickler®?,
in which the aspect rato A = R/a of standard tokamak is substantially reduces toward unity.
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Predicted advantages include a naturally high elongation (xs ~ 2), high toroidal beta and toka-
mak like confinement. These predictions have been verified experimentally, in particular by
START device®® at Culham (R/e =~ 0.3/0.28 = 1.31, I, =~ 0.25MA, B, =~ 0.15T). The toroidal
beta reached 40% and observed confinement times follow similar scaling of standard tokamaks.
Spherical tokamak (ST) experiments were also conducted by Globus-M (loffe), Pegasus (Madi-
son), TST (Tokyo), TR-3 (Tokyo). The next generation ST projects MAST {Culham) and
NSTX (Princeton) started experiments in 1999 ~ 2000,

Non-tokamak confinement systems have been investigated intensively to catch up with the
achievements of tokamaks. The stellarator program proceeded from small-scale experiments
(Wendelstein IIb, Clasp, Uragan-1, L-1, JIPP-I, Heliotron D) to middle-scale experiments (Wen-
delstein VIIA, Cleo, Uragan-2, L-2, JIPP T-II, Heliotron E). The plasmas with T, ~ T} = several
hundred eV to 1 keV, ne ~ several 10'® cm™> were sustained by NBI heating without an ohmic
heating current, and the possibility of steady-state operation of stellarators was demonstrated
by WVIIA and Heliotron E. Scaling of confinement time of currentless plasma was studied in
Heliotron E, CHS, ATF and WVII AS. Large helical device LHD started experiments in 1998
and advanced stellarator WVII-X is under construction.

The reversed field pinch (RFP) configuration was found in the stable quiescent period of Zeta
discharge just before the shutdown in 1968. J.B. Taylor pointed out that RFP configuration is
the minimum energy state under the constraint of the conservation of magnetic helicity in 1974
(see sec.17.1). RFP experiments have been conducted in HBTX-1B, ETA-BETA 2, TPE-1RM,
TPE-1RM15, TPE-1RM20, ZT-40M, OHTE, REPUTE-1, STP-3M, MST. An average § of 10-
156% was realized. ZT-40M demonstrated that RFP configuration can be sustained by relaxation
phenomena (the so-called dynamo effect) as long as the plasma current is sustained (1982), The
next step projects REX and TPE-RX are proceeding.

Spheromak configurations have been studied by S-1, CTX, and CTCC-1, and field reversed
configurations have been studied by FRX, TRX, LSX, NUCTE and PIACE.

In mirror research, 2XIIB confined a plasma with an ion temperature of 13 keV and nmg x
10 em™%s in 1976. However, the suppression of the end loss is absolutely necessary. The
concept of a tandem mirror, in which end losses are suppressed by electrostatic potential, was
proposed in 1976-1977 (sec 17.3). TMX, TMX-U and GAMMA 10 are typical tandem mirror
projects. The bumpy torus is the toroidal linkage of many mirrors to avoid end loss and this
method was pursued in EBT and NBT. .

Inertial confinement research has made great advances in the implosion experiment by using
a Nd glass laser as the energy driver. Gekko XII(30 kJ, 1 ns, 12 beams), Nova (100 kJ, 1 ns, 10
beams), Omega X(4 kJ, 1 ns, 24 bemas), and Octal (2 kJ, 1 ns, 8 beams) investigated implosion
using laser light of A = 1.06 um and its higher harmonics A = 0.53 um and 0.35 um. It was
shown that a short wavelength is favorable because of the better absorption and less preheating
of the core. A high-density plasma, 200 ~ 600 times as dense as the solid state, was produced
by laser implosion (1990). Based on Nova results, Lawrence Livermore National Laboratory is
in preparation on National Ignition Facility (NIF31%2) (1.8MJ, 20ns, 0.35um, 192 beams, Nd
glass laser system).

Nuclear fusion research has been making steady progress through international collaboration
and competition. A summary of the progress of magnetic confinement is given in fig.14.1 of the
feTe - 71(0) diagram. TFTR demonstrated @ ~ 0.27 DT experiments and JET demonstrated
@ ~ 0.62 DT experiments. JET and JT60U achieved equivalent break-even condition by D-D
plasma, that is, the extrapolated D-T fusion power output would be the same as the heating

~ input power {Qequiv=1).
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Ch.16 Tokamak

The word “tokamak” is said to be a contraction of the Russian words for current (T 0 K),
vessel(K aM e D), magnet(Mar HHUT), and coil (K @ T yuIK a). Tokamaks are axisym-
metric, with the plasma current itself giving rise to the poloidal field essential to the equilibrium
of toroidal plasmas. In a tokamak the toroidal field used to stabilize against MHD instabilities,
is strong enough to satisfy the Kruskal-Shafranov condition. This characteristics is quite differ-
ent from that of reversed field pinch, with its relatively weak toroidal field. There are excellent
reviews and textbooks of tokamak experiments,'? equilibrium,® and diagnostics.®®

16.1 Tokamak Devices

The structure of the devices of large tokamaks JET, JT60U and TFTR are shown in figs.16.1,
16.2 and 16.3 as typical examples.

The toroidal field coils, equilibrium field coils (also called the poloidal field coils, which produce
the vertical field and shaping field), ohmic heating coils (the primary windings of the current
transformer), and vacuum vessel can be seen in the figures. Sometimes “poloidal field coils”
means both the equilibrium field coils and the ohmic heating coils. By raising the current of the
primary windings of the current transformer (ohmic heating coils), a current is induced in the
plasma, which acts as the secondary winding. In the JET device, the current transformer is of
-the iron core type. The air-core type of current tranformer is utilized in JT60U and TFTR. The
vacuum vessel 18 usually made of thin stainless steel or inconel so that it has enough electric
resistance in the toroidal direction. Therefore the voltage induced by the primary windings can
penetrate it. The thin vacuum vessel is called the linear. Before starting an experiment, the
liner is outgassed by baking at a temperature of 150-400 C for a long time under high vacuum.

Table 16.1 Parameters of tokamaks. R, @, binm, By in T, and I, in MA.

] a(xb) Ria | By I, Remarks
T-4 1.0 | 0.17 59 |50 |03
T-10 1.5 [0.39 3.8 | 5.0 ] 0.65
PLT 1.32 1 04 33 132 J0O5
TFTR | 2.48 | 0.85 29 [ 52 |25 compact
JET 296 [ 1.25(x21) | 24 [ 345 7 noncircular
JT60U | 3.4 1.1{x1.4) 31 [ 4.2 6 JT60 upgraded

Furthermore, before running an experiment, a plasma is run with a weak toroidal field in order
to discharge-clean the wall of the liner. Inside the liner there is a diaphragm made of tung-
sten, molybdenum, or graphite that limits the plasma size and minimizes the interaction of the
plasma with the wall. This diaphragm is called a limiter. Recently a divertor configuration was
introduced instead of the limiter. In this case the magnetic surface, including the separatrix
point, determines the plasma boundary (see sec.16.5). A conducting shell surrounds the plasma
outside the liner and is used to maintain the positional equilibrium or to stabilize MHD insta-
bilities during the skin time scale. The magnitude of the vertical field is feedback controlled
to keep the plasma at the center of the liner always. Many improvements have been made in
tokamak devices over the years. Accuracy of the magnetic field is also important to improve the
plasma performance in tokamak and other toroidal devices. The parameters of typical tokamak
devices are listed in table 16.1.

Measurements by magnetic probes are a simple and useful way to monitor plasma behavior.
Loop voltage V1, and the plasma current [, can be measured by the magnetic loop and Rogowsky
coil, respectively.* Then the electron temperature can be estimated by the Spitzer formula from
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Inner PRC

M5

TFC

Fig.16.1 Artist’s drawing of JET (Joint European torus), JET Joint Undertaking, Abingdon,
Oxfordshire, England. The toroidal field coils (TFC) are arranged around the vacuum vessel{VV). The
outer poloidal field coils (Outer PFC, equilibrium field coils) and inner poloidal field coils (Inner PFC,
ohmic heating coils) are wound in the toroidal direction outside the toroidal field coils(TFC). JET uses
an ion-core current transformer (TC). The mechanical structures (MS) support the toroidal field coils
against the large amount of torque due to the equilibrium field. Reprinted with permission from JET
Joint Undertaking,.
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Fig.16.2 A birdview of JT60U, Japan Atomic Energy Research Institute.
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Fig.16.3 A birdview of TFTR( Tokamak Fusion Test Reactor), Plasma Physics Laboratory, Princeton
University.
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Fig.16. 4 k{ ocations of magnetic probes around plasma (A shown in the figure is mlnus) b) an

array of so ray solid-state tec ors. Each det ctor’s main contribution to a sign from the
emls%mn at the pg temperature a ong t%e line o SIght of the detector. the ﬂuctugatlon of eﬁe electron

temperature at this point can be detected.

the resistivity of the plasma, which can be evaluated using Vi, and I,. From eq.(6.18), the
poloidal beta ratio 3, is given by .

2B,
=1+ B—;"(BW — B,) 7 (16.1)
w

where |B,v — B,| < |B,| and B, = pol,/2ma. Since the diamagnetic flux 4@ is
8@ = 1a*(Byy — By)
we have

__r _ 81 B, ‘
Bp = —m =1+ 12 — = 0P. (16.2)
Therefore measurement of the diamagnetic flux ¢ yields 8, and the plasma pressure. Magnetic
probes g1, g2 located around the plasma, as shown in fig.16.4a, can be used to determine the
plasma position. Since the necessary magnitude of the vertical field for the equilibrium B; is
related to the quantity A = &, 4+ ;/2 , the value of A can be estimated from B, (i; is the
normalized internal inductance). The fluctuations in the soft X-ray (bremsstrahlung) signal
follow the fluctuations in electron temperature. The fluctuations occur at the rational surfaces
{ ¢s(r) = 1,2,...). The mode number and the direction of the propagation can be estimated by
arrays of solid-state detectors, as shown in fig.16.4b. When the positions of the rational surfaces
can-be measured, the radial current profile can be estimated for use in studies of MHD stability.

'16.2 Equilibrium

The solution of the Grad-Shafranov equation {6.15) for the equilibrium gives the magnetic
surface function ¥ = rA, (A, is the ¢ component of the vector potential). Then the magnetic
field B is described by
O _ %

9z’ rB. = EX

and the current density 7 is

rB, =

)

=——B Il
Vi - +rpe,

where ' means 9/8v. When the plasma cross section is circular, the magnetic surface (p,w)
outside the plasma is given by eq.(6.25) as follows:

k(022 111) ()
Y(o,w) = o (1 p 2 yo lna+ A+2 1 pe pCOSW. (16.3)
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shell

;lasma bounda.ryA

Fig.16.5 Positions of plasma boundary and shell

The plasma boundary is given by p = a, that is, by

Y(p,w) = &ﬁ (ln% — 2) : (16.4)

16.2a Case with Conducting Shell
When a conducting shell of radius b surrounds the plasma, the magnetic surface ¢ must be
- constant at the conducting shell. Therefore the location of the shell is given by

o, )_,u.{]IR<1 8;2 2)

(In practice, the position of the shell is fixed, and the plasma settles down to the appropriate
equilibrium position; the important point is their relatlve position). When the magnetic surface
is expressed by

P(p,w) = o(p) + 1 cosw

the magnetic surface is a circle with the shifted center by the amount of A = —1 /4. Therefore -
the plasma center is displaced from the center of the shell by an amount Ag given by (see ﬁg
16.5. o/ = p— Acosw, Bo(p’) = Po{p) — (8Pg/Ip)}A cosw)

2 0.2
Ao(b) = — ;R (1 E+(A+%) (1-52_)).

{Ap < 0 means that the plasma center is outside the center of the shell.)

16.2b Case without Conducting Shell

If the vertical field B, is uniform in space, the equilibrium is neutral with regard to changes to
plasma position. When the lines of the vertical field are curved, as shown in fig.16.6, the plasma
position is stable with regard to up and down motion. The z component F, of the magnetic
force applied to a plasma current ring with mass M is

F, = 2RI, Bpg.
From the relation (0Br/8z) — (8B,/0R) =0,

. aBR R aBz
Mz = -2nRI, 3 2= 2rl, B, (_E 3R )
As I B, < 0, the stability condition for decay index n is
R 0B,
n=-— > 0. (16.5)

. OR
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4

Fig.16.6 Vertical field for plasma equilibrium

The horizontal component Fg of the magnetic force is

d*(AR)

M dt?

= Fp = 2nRI,(B, - B, )AR.

The amount of B, necessary for plasma -equilibrium (see eq.(6.28)) is

—m,Ip( 8R 1) {
B = _— —_— = — —_ .
1 47]'R ln a +A 2 3 A 2 +ﬁp 1

When the plasma is ideally conductive, the magnetic flux inside the plasma ring is conserved
and
o
OR
Here the self-inductance is Ly, = poR(In(8R/a) + [;/2 — 2). Therefore the equation of motion is

Lpl,) +27RB, = 0.

d?(AR)

M dt?

=2rI,B, (g - n) AR
under the assumption In(8R/a) > 1. Then the stability condition for horizontal movement is

3

16.2¢c Equilibrium Beta Limit of Tokamaks with Elongated Plasma Cross Sections

The poloidal beta limit of a circular tokamak is given by 3, = 0.5R/a, as was given by
€q.(6.38). The same poloidal beta limit is derived by similar consideration for the elongated
tokamak with horizontal radius a and vertical radius b. When the length of circumference along
the poloidal direction is denoted by 2meK for the elongated plasma and the average of poloidal
field is B, = pol,/(2maK), the rati