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SOKENDAI Lecture Series “ Mathematics for Physics”

Mathematical Tools for Nonlinear Phenomena

(Lecture Series-—I)
Heiji Sanuki

National Institute for Fusion Science and Graduate University for Advanced
Studies, Toki 509-5292, Japan

Abstract “
Mathematical tools dealing with nonlinear phenomena are numerous and varied
and have received much attention of many researchers during the last 100
years. Marvélous results obtained in plasma physics for past few years have
actually enhanced its prestige and importance of nonlinear physics
considerably in the eyes of plasma fusion community. In this series ofb
lectures, an attempt giving an introductory presentation of a variety of
complementary methods and viewpoints that may be used in the study of broad
spectrum of nonlinear phenomena is presented. The organization of this
series of lectures consists of the three perspectives such as (1)
mathematical tools of nonlinear phenomena, (2) WKB methods and related
topics, and (3) mathematical topics associated with bifurcation phenomena.
First, the mathematical tools of nonlinear phenomena‘(lecture—l) are

presented in this article.

Keyword: Typical nonlinear equations, analytical tools, non—secular

perturbation method, multi—-time expansion method, reductive perturbation
method, Hopf—Cole transformation, Bidcklund transformation, Konno—-Sanuki
transformation, Steepest descent method, Van del pol equation, Mathieu
equation, K-dV equation, Sine—Gordon equation, Nonlinear Schrédinger

equation, 1D and 2D-Solitons, Convective Cells
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1. Brief Introduction of Typical Nonlinear Equations
In this chapter, we briefly represent an introduction of couple of
typical nonlinear differential equations and viewpoints that can be used

in the study of a broad spectrum of nonlinear dynamic systems.

1.1 Self excited(autonomous) oscillation( HE)iEE))

We here have the following two cases, namely, ” positive
resistivity”(¢>0) and ” negative resistivity” (e<0) associated with
the autonomous oscillation, which is described by the following

differential equation

X+ex+x=0, x=dx/dt

X=v, V=—8&-—X, : (1-1-1)

It should be noted that the case of &>0 corresponds to the positive
resistivity, leading “ attractor problem” and the case of <0 is
related to the negative resistivity associatedwith “no attractor problem
but the excitation one. In order to study these dynamical processes, the

diagram method in phase space is often used.

Diagram Method (v, x)

d_ _mrx ~ (1-1-2)

== ]

dx 1%

- N2/

Fig. 1a Resistive, attractor (e>0) Fig.1lb Negative resistive,

excitation (£<0)




1.2 Van del Pol equation
The Van del Pol equation is a well-known nonlinear differential
‘equation, describing the excitation circuit of electric oscillation in

vacuum Tube (Ref.1 and Ref.2), which is given as
¥—e(l-xHx+x=0, (&>0), (1-2-1)

where the second term in (1-2-1), —s(l—xz) may give the negative
resistivity in case of x><1 and it leads the ” excitation” of oscillation.
As the solution grows in time, the resistive term hardly affects the
excitation as x~> 1 and it finally saturate.

When €<1, we solve Van del Pol equation by using Mathematica.

ZT:

Tl | |

25“‘TB(YVVVVVV J 1P [ HE

-1

-2 ; - Limit cycle
Fig. 2a Solution of Van del Pol Fig.2b Limit cycle in
equation, where x=0.01, x=0, attractor problem
e=0.1 at t=0
Note! _
Averaged work due to —e(1- x’)x term should be zero near ” limit
cycle” , namely,
Tu2n T
[ (=x")idx = [(1-x*)i%dt = 0. (1-2-2)
0 0

If x=acos(t) on limit cycle, we obtain

27! 2
f(l —a’cos’ t)a’ sin’ tdt = m2(1 - %—) =0, (1-2-3)

0

which gives the limit cycle with a=%2.




1. 3 Examples of autonomous oscillation or relaxation oscillation

A solution of Van del Pol equation in case of £>>1 can be solved by
Mathematica in the same way of Fig.2a. The solution and the phase diagram
for a typical example are illustrated for given parameters and initial

condition in Fig.3a and Fig. 3b, respectively. :
' x/5

2}
.

10 :io‘. 40 T 3
_ /
.l |
Fig. 3a Solution of Van del Pol Fig.3b Limit cycle in_

equation for £=10 phase diagram for &=10

Experimental observation associated with autonomous oscillation
Bifurcation nature of the electrostatic potential of toroidal
helical plasmas have been studied experimentally in detail by the Heavy
Ion Beam Probing (so called HIBP) measurements in the'Compact Helical
System (CHS) experiment. These observations reveal a similar dynamics to
the autonomous oscillation mentioned in this chapter. Self-sustained
oscillation (electric pulsation) is observed in ECR+NBI heating phase as
shown in Fig.4. Pulsating behavior of central potential in the low-density
region and the line-averaged electron density measured with HCN
interferometer are represented by solid line and by dashed line in Fig. (a),
respectively. Spatial structural change of the potential before and after
transition is also shown in Fig.4(b). Here, p is the normalized minor
radius. As is shown in Fig. 4, the bifurcation nature causes a stationary
self-excited oscillation in potential termed potential pulsatioﬁ. The
phenomenon shows a number of variation and is repetitive back and forth

transitions between bifurcated states.
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Fig.4 Self-sustained oscillation (electric pulsation) (a) Pulsating

behavior of central potential (solid line) and the line—averaged electron

density(dashed line). (b)Spatial structural change of the potential before

and after transition. (from Ref.28)

1.4 Other typical equations

We here consider the following two typical equations, namely, Rayleigh

equation and Lineard equation.

Rayleigh Equation

Putting x==\ﬁ§y in the Van del Pol equation (1-2-1), we have

j-el=39)j+3=0, j-e(l-y)y+y=c ,

or

i-e(l-x)x+x=0, y-c=x.

This is called as the Rayleigh equation.

Lineard Equation

(1-4-1)

(1-4-2)

The general form of the Rayleigh equation is called as the Lineard

equation, which is given by

(1-4-3)

This equation can be written as following two coupled equations

dx

dr

X+ ¢p(x)+x=0.
dv
v, 2;=4x+¢WH,

(1-4-3)




which yields the characteristic curve

dx v

This curve is called as the Lineard characteristic curve. Illustrating

dv__x+90) (1-4-4)

this curve in phase space (x, v), we can study the solution of (1-4-3).

’ _tangential line

=9 _(0) .

|
{
|
ol |/ x

Fig.5 Example of Lineard characteristic curve is plotted.

Two typical cases of the characteristic curves for the damping

oscillation (1-1-1) and Rayleigh oscillation (1-4-3) are plotted in Fig. 6.

tangential line

N

(X X .-—.———— - -

1~
~

(a) (b)

Fig.6 Characteristic curves, (a) damping oscillation and (b) Rayleigh

Oscillation.




Coffee Break

Autonomous (Self-Excited) Oscillation

# Rattling phenomena when open a badly door

# Rattling oscillation when drag a desk

# Violin (particularly, not so good violinist)

# Camera stroboscopic lamp

# Small electric bulb on Christmas tree (switch on and off)
# Leaves of tree along breeze

# Billow due to breezing on the surface of lake

Note: quoted from Prof. M. Toda (Ref.8),
A EZETL &£ 55
FEDEZEZITLL R
THNTOARDEZ D S7ET
EIZE o EFDEETIS

Ty

Vs otV LIS SN AR
Fig. 7 “Shishiodoshi” (BEEK L) (http://www2u. biglobe. ne. jp/” g-grass/

sisiodoshi/sisiodoshi. html
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Fig.8 Intermittent Hot Spring ([&ETR)
(http://www. town. shikabe. hokkaido. jp/kanketusen)

Fig.9 Intermittent Hot Spring (Ireland)
(from http://ja. wikipedia. org/wiki/fiR5%)
W ”f#%ﬁ‘: o o :

o

Fig. 10 Intermittent Hot Spring(Onikoube (2E)Mivagi prefecture)
(from http://www. towninf. co. jp/p/04/121539)
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1.5 Logistic equation
We here define N as a population or species. If the velocity (N’)

Is proportional to N, we have

‘fi—’;’=k1v, —e=o> N=Ngt | . (1-5-1)

If k<O, it decays and it grows in time when k>0.

If the time is discrete, (1-5-1) is replaced by the following discrete

equation

—N, =ktN,, N,,;=N,(1+kt)=(1+kT)’N,; =...

n

N

n+l

N,=(+kt)"'N, , (1-5-2)

If we introduce T =t/n and use the relation

1+ k)" =(1+%)” ={(1+%)""“}’“, (1-5-3)
lim(1+ 2)"’“ =e, lim(1+k1)"=€", (1-5-4)
n—> oo n n—> o

we finally have the solution
N =Nge". ‘ (1-5-5)

It should be noted that the solution (1-5-2) reduces to solution
(1-5-1) by taking the continuous limit.

Digression

"Logistic” means a physical distribution( #¥&. FCu).

The Logistic (fL¥5) means the transport of the materials to the front line (4
B ZRRRITIED).
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Q. Is any nonlinear equation always not solvable?
- A. Not always.

As the population (N) increases, it tends to saturate in time and the

following model equation is employed,

dd—];,=aN(1—ﬁN), a,B are constants, (1-5-6)

which is a nonlinear equation for N. Since (1-5-6) can be written as

1
e o= (B =—alr- ) | (1-5-7)

we can solve (1-5-7) and have the solution
1

- TN B (1-5-8)

1 1§ —at
N-B-Gr P, >N

Fig. 11 Logistic curve
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Linearization of (1-5-6)

If we linearize (1-5-6) in the following

d, 1 1 1 1 1
E(F-ﬁh —a(ﬁ—ﬁ), (Nm -B) _(Nn -p)= —OCT(-AZ—ﬁ),
N,.,,-N,=awN,,,(1-BN,), Nl ,=Wl—(l—ar)—aﬁ‘r,

n+l n

we can solve it and have the solution

1
1 n
B +(70—ﬁ)(1—ar)

1 a1 _ L
ﬁ:—ﬁ=(l—ar)(No B, N,= , (1-5-9)

Taking the limit n— >, then the solution (1-5-9) reduces to
1

) B +(Ni - Bl

0

N, (1-5-10)

Comment on discrete equation of (1-5-6)

The discrete equation of (1-5-6) is represented as
N, -N,=aN,(-pN,). (1-5-11)

It should be noted that this equation could not be lenearized in general.
For B <<1, the solution is similar to (1-5-8). But, the solution N becomes
Chaotic when B exceeds some critical value (note: this case will be

discussed later in Lecture 3)

It is generally pointed out that when the population increases, it tends

to saturate due to self-controlling effect.
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Examples
#f Mouse and suicide in the river, # relation between human population and
Agriculture Revolution or Industrial Revolution

These are beyond description on the basis of ”“ Logistic Equation”.

1.6 Two variables Lotka-Volterra equation
The two variable Lotka-Volterra equation is represented by the

following two coupled equations,

d
=gx-kxy , -%= &Y + kxy. (1-6-1)

The General Form of Lotka-Volterra Eq. is also given as

dN "
E‘L= £ij+ﬁi2ajkN]Nk,(j=12’ ..... n), (Zlk =—(ij. (1_6—2>
J k= ’

The time evolution of the solutions (x and y) of (1-6-1) is plotted in Fig. 12.
It turns out from Fig. 12 that the solutions x and y show periodic

motion with slightly shifted phase and the species (x) increases in time
and simultaneously the species (y) decreases. This type of mutual motions

is repeated periodically.

Fig. 12 typical solution of two variable Lotka-Voltrra equation

14




It should be noted that (1-6-2) has the following conservation law

n X N. —
G= Erj(e T-x)), x;= log(-_]\-/.%) 1= BN, (1-6-3)
J= J

where 7?} is the stationary solution. Since this equation has only the

energy conservation, it is a non—-integral system and the motion of this

equation becomes chaotic and/or ergodic.

Examples of these phenomena
# A plankton feeding fish in the Adriatic Sea in the Balkan Peninsula,

# Relation between Rabbit and fox in Canadian grass—covered plain.

15




2. Asymptotic Methods in Nonlinear Oscillation

2.1 Secular terms

When one discuss the topic associated with the famous “ three body
problem ” during the initial stage of celestial mechanism, as Bogoliubov
and Mitropolsky pointed out in the text book [Ref.2], it is wéil known
that the difficulty arises that it is hardly to use the conventional
expansion method in powers of a smallness parameter to get the suitable
results duringvsufficient long interval of time. The results based on these
expansion techniques may contain so-called the secular terms like

t"sin(at ) and t™ cos(at)

«

with time “t” appearing outside the sine and cosine symbol.
To demonstrate this difficulty, we consider a following trivial example

based on following simplified equation

dx
— =gt , (2-1-1)
dt _
which gives the solution, x=Ce™. If one applies the conventional

expansion method to Eq. (2-1-1), we obtain

e*t?
x=C(1—-£t+T—...) . (2_1_2)
It should be noted that the formulae are applicable only when & <<1 and
we have no appreciable change during this time interval. One consider a
solution of a nonlinear equation containing a smallness parameter & in the

form,
i—? +0’x = ef(x,%xt—). (2-1-3)
This is a general form of differential equation with a perturbation.

If the solution of (2-1-3) is sought in the form, x = x, + &x, + £°x, +......, it
can be easily seen that the use of the simple expansion method leads the
appearance of secular terms mentioned above. Asymptotic solution of
(2-1-3) would be discussed in detail later.

In order to demonstrate the problem associated with secular terms, let

16




us next consider, as an example, the non—attenuating oscillation of some
mass m attracted towards an equilibrium position by an elastic force,

which is described by

2
x 3 .
m——+oax+yx =0. (2-1-4)
ar’ "

 solve (2-1-4), we have a solution with a second order approximation as

3
x = acos(wt + 6) - —éf—ag'tsin(a)t +0)+ ——sg—z—cos 3(wt+6), (2-1-5)
8w 32w

which contains the following secular term
3¢ )
-—a’tsin(wt + 0).
8w

The solution (2-1-5) contradicts with an accurate solution, which can be

described by an elliptic function in the form
x= xmcn{£¢} , (2-1-6)
1

where cn,K denote the elliptic cosine function( be discussed in Appendix)

and the complete elliptic integration of the first kind, respectively.

2.2 Non-secular perturbation method

For simplicity, we now the consider oscillations close to linear
oscillations. It should be noted that the asymptotic method discussed by
Bogoliubov and Mitropolsky [Ref. 2] is one of the powerful methods to study

various kind of oscillations.

Asymptotic solution

We again discuss the differential equation (2-1-3)

d’x dx

— +w'x=¢f(x,—), (2-2-1)

dr? /( dt)

where ¢ is the small positive parameter and the right hand side of (2-2-1)

corresponds to a perturbation term including the friction term. When £=0,

17




we have purely harmonic oscillation as

X =acosQ, (2-2-2)
with a constant amplitude (a) and a phase angle (@),
da do
=0, —=w, =t +3),
dt dt @ )

 where the amplitude a and the phase ¥ are time independent constants,
depending on the initial conditions. When &£#0, the perturbation may result
in the appearance of harmonics in the solution of (2-2-1) and consequently

the instantaneous frequency (dg/dt) depends on the amplitude a.

The general solution of (2-2-1) is given in the following form

x = acos@ + eu, (a,@) + £ u,(a, @) + ...... (2-2-3)

Here wu(a,@),u,(a,¢) etc. are periodic function of the angle ¢ witha period

27 and quantities a and @ are function of time, which are given as

%‘ti=sAl(a)+82A2(a)+...., ‘fi—‘f=w+sBl(a)+ssz(a)+..., (2-2-4)

It should be noted that u(a,@),u,(a,9)- A/a,) and B(a) [j=1, 2:--] have to
be chosen to serve as a solution of (2-2-1).

For the first approximation, we have
da do
x=acosp, —=¢A(a), — =w+ eB,(a), (2-2-5)
¢ ‘ (@) m (@)
and we have the following solution for the second approximation,
x = acos + eu,(a, @), —t—sA (a) + %A, (a), d—(f=w+£Bl(a)+e2B2(a). (2-2-6)

Here, A;(a@) andB(a) (j=1,2) are given as

2n

A(a) = ——éi—ff(acosqo,—awsinw)sinqxlq)
o o (2-2-7)
B,(a) = —ﬁff(acosw,—aa)sinq))cosqad(p
(V]
and ‘
u(a,p) = go(a) E g.(a)cos(np)+ h (a)sm(mp) (2-2-8)

n® -1

n=2

18




with the abbreviations of

2x
g,,(a)=2L f f(acos@,—awsing)cos(np)de
7
1 2‘; : (2-2-9)
h,(a)=-— f f(acosp,—awsing)sin(ng)de
27, A

where the explicit formula for A,(a)and B,(a) in (2-2-6) is relatively
complicated and are given by Eq. (1.30) in Ref. 2.

2.3 Autonomous oscillation
We here study a case with weak nonlinear friction as an example of

(2-2-1), which is described by

d2x 2 dx
“Zrwix =ef(x)=. (2-3-1)
gz Tex=dey

IntroducingAthe following function and its Fourier series in the form,
F'(x)= [ f(x)dx, F'(acosg) =Y F," (@)sin(ng),
0
and differentiating it with respect to @, we get

f(acos@)awsing = i Fn*(a)sin.(n(p).

Substitution of this relation into (2-2-6) gives A(a)=F,(a)/2, B(a)=0.

Finally, we have the first approximation as

=acosp, —=—F(a), —=w, (2-3-2)
x=acosg, Zr=s k@,
and the second approximation is given as
£ < nF"(a)sin(n)
X =acosQ+— " , (2-3-3)
v w; n’-1
da ¢ . do 2
—==F'(a), —=w+¢B,(a), (2-3-4)
72 1 (@) 7 (@)

where

19




(2-3-5)

2
1 ., dE(@ 1 <an’F' (a)
B,(a)=———F, (a)— - 1 .
(@) 8aw (@) da 2wu222 n® -
It should be noted that we have to take account of the second order term
in the phase equation (2-2-13) provided the first order term in (2-2-12)

is included.

Van-der-Pol Equation
As an example of application of the non-secular perturbation method
mentioned before to nonlinear oscillations, we here investigate the
Van—der-Pol equation, which is given by
&
ar*
If we put w®>=1 f(x)=1-x*> in (2-3-1), Eq. (2-2-6) reduces to Van—der—Pol

—£(1—x2)£+ x=0. (2-3-6)
dt

equation (2-3-6). Since we have in this case

a® a
F*(acos@) = al1-—|cosp - —cos(30),
(acos) a( 4) ® 12 (3e)

the first approximated solution is given as
. ‘ , .
X = acosg, @=ff’-(1-i‘—), @ _y, (2-3-7)

‘which finally gives the solution in the form

1
a,exp(—é&t
0 p(2 )

cos(wt + 3). (2-3-8)

X =—

1
\/ 1+ 1 aoz(exp(st) -1
It turns out from (2-3-8) that small the value of the amplitude may be,
it will increase monotonically and attain the limiting value of 2 and
oscillations with increasing amplitude are automatically excited, namely,
the system is a self-excited oscillation (1imit cycle). As was shown in

(2-3-8), a(t) always tends to the limit cycle 2 when t—> o,
Note: “Forced Van-der-Pol equation” —frequency entrainment

When a periodic force is applied to a self-exciting system associated

with Van—der-Pol equation, the oscillator would give up its independent

20




mode of oscillation and acquire the frequency of the applied oscillating
force. This phenomenon is known as “ entrainment” .

(See Ref.1, textbook by E. Atlee Jackson: “ Perspectives of nonlinear
dynamics” )

Typical examples:

1) Two clocks on the same wall. Van der Pol observed (1927) that

the coupling mechanism tends to keep synchronous time, provided their
independent frequencies are not too far apart.
2) Locking of two organ pipes or turning forks with nearly the

same independent frequencies. Rayleigh.observedthisphenomenon

2.4 Non-secular perturbation method
Parametric Resonances ‘
We now consider the problems associated with the following topics,
1) Boundary of resonance domaih, 2) Pass over from off-resonance zone to

resonance domain.

Hill equation:
2
97X | o 1- AF(1)]x =0, (2-4-1)
dt :
where F (t) is assumed to be periodic.
When the periodic function F (t) has a form, F(t)= P,cos(vt), the Hill

equation reduces to Mathieu’ s equation

% +@’[1- hcos(vt)]x =0, (2-4-2)

where h=AP, We next discuss an approximate solution and determine the
zone of stability in the simplest case of Mathieu’ s equation (2-4-2)
assuming that h<<l. As an example, we study only the fundamental
demultiplication resonance for (2-4-2). Assuming that w=v[2 , we

construct approximate solutions corresponding to the resonance case.

21




For the first approximation, we have

X= acos(—;-t + ﬁ), (2-4-5)
where
2 2 '
da__aho” 29y, 00X Y 09y, (2-4-6)
dt 2v dt 2 2v

Introducing new variables u and v in the form, wu=acos?,v =asin?,
(2-4-6) reduces to the following a set of two linear equations with constant

coefficients,

2 2
du _ [_hi _ ((o - Z)]v, @ _ [~ haw + (w - g)u (2-4-7)

The nature of the solution of (2-4-7) or (2-4-6) depends on the roots of

the characteristic equation

2 .4 2
P +(w—%) =0. (2-4-8)

4v?
The general solution of (2-4-7) is given as
u=Ce" +Ce™
hw® ( v
+|w
2v
A

hw* —(w _ _‘i) . (2-4-9)

v=C, 2)e;"+C2 v 2/,

A

where C,(j=12) are arbitrary constants determined by the initial
conditions. We note that the amplitude a is a bounded function provided
A is imaginary. The condition for A to be real is

ho® ’ hw
w-—|, or —>
2v 4

v
W - —

>

b

where we used the relation, v =2w+o(h). If the frequency of the external

force is in the interval
2w(l - fl—) <v< Zw(l + fl—) , (2-4-10)
4 4

the fundamental demultiplication resonance will appear. The inequalities
represent the zone of instability within which the solution becomes

unstable and oscillations will be excited automatically.
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Fig. 13 Zone of instabilities for the fundamental, first and second

demultiplication resonances is roughly plotted.

3.Application of Non—Secular Perturbation

3.1 Stability boundary of Mathieu equation based on second order
approximation near cyclotron resonance
The motivation of the present disoussion is to derive the formula for

Ponderomotive force near cyclotron resonance.

Ponderomotive force has been proposed as a practical method associated
with the following topics

#) RF plugging of open ended devices,

#) RF stabilization of MHD modes,

#) Nonlinear effects such as parametric processes.

We first introduce a topic associated with the Rf-stabilization of an
axisymmetric tandem mirror by the ponderomative force in Phaedrus tandem
mirror in Wisconsin. Radial ponderomotive force due to the RF electric field
opposes the centrifugal force by the field -line curvature to ensure

interchange stability. This is indicated by the sensitive dependence on
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the sign of the difference between the RF frequency and the ion-cyclotron

frequency.

RF antenna

%00 o 300
(east) AXIAL POSITION (cm) (west)

Fig.' 14 Axisymmetric coil sets and axial field strength profile in Phaedrus

tandem mirror in Wisconsin (quoted from Ref. 13)

Strong dependence of stability on w-w,, where w, is the ion cyclotron
frequency, in the central cell is illustrated in Fig.15. For w>w,, the
fluctuation level is reduced remarkably while for w<w, amplitude
oscillations are observed. Why the results are so sensitive to the small
change of B;field (a few Gauss)? This unsophisticated question may lead

the reconsideration of the formula of ponderdmotive force near resonance.

(¢ ]
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Fig. 15 Central cell line density for single cell operation in Phaedrus

Tandem mirror (from Ref.13)
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We consider the conventional expression of ponderomotive force under
“local” and “adiabatic” approximations, which is given as

2 2
q E,

4m(—w§—_—a‘):2—) ) (3-1-1)

P

where w is the frequency of incident RF wave and w, is the cyclotron
frequency. It should be noted that the expression (3-1-1) is singular as
w->w, (Ref.14).

3.2 Extended ponderomotive expression including “ nonlocality”
and “nonadiabaticity”

We here note that the adiabaticity is characterized by the relation,
®
@y

wci

>>%, where A is the scale length of localized RF field and the

locality is also characterized by & <<A, &, is the excursion length of
particle motion in the localized RF field.

In Ref.15, B.M.Lamb et al. studied a physically correct expression of
P.F. by taking account of the finite transit time of particles through' axial

localized RF-Field. Some results are shown in Fig. 16

t ————

-

2

w/Q

Fig. 16 Frequency dependence of ponderomotive potential (bp for several
values of V,/Lw.. Also shown is the singular results of the

adiabatic theory. (quoted from Ref. 15)
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We should note that the conventional expression is still valid provided

. w xV
>>£ . The maximum locates at —=1+——2%_ These results are
1)) 2 Aw

4 c

L 1
w

c

illustrated in Fig. 16

In Ref. 19, Hatori and Washimi discussed the compact and general adiabatic
expression for ponderomotive scalar and vector potentials based on
“Lie-Transformation Formula” and extended the formula by taking

accotnt of nonlocal effects with finite &/A.

1
¢ (r) = [ de <F +€E(r,1) > sin(or), (3-2-1)
0

T
where E’(F,t)=—V¢(x)sin(a)t) and <A >=2L f A(t)dt, T =2m/w. We have to get
Ty

an explicit solution of & for given RF electric field.

To demonstrate the usefulness of the non—secular perturbation method, let
consider the derivation of ponderomotive force near ion cyclotron resonance.
For simplicity, we apply the following electric field and configuration

which are shown in Fig. 17.

4 A
- 1B,g - Ext
e

—_—

Fig. 17 RF electric field profile and configurat.ion(Ref. 16)
Hereafter we assume relatively small RF electric field with E =O(¢) and

we define the coordinate, &= xg +&(t;€) with x; = p,coswt, where x; is the

coordinate associated with cyclotron motion. We can determine &(t;¢) from
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the following equation

2 2 A
L%+ 011 eycos @) = ), F(1)= e, (F -7, + A)cos(on), (3-2-2)

2
, where X 1is the guiding center

. . . 2
with abbreviations, wg

I
-~

It
~

coordinate. In order to solve (3-2-2), we first discuss an approximate
solution for (3-2-2) by

&LE, >

7‘%’- + . [1-eycos(ar)lg, = 0. (3-2-3)
Although we discussed the first approximate solution of (2-4-2) same as
(3-2-3), we here study an approximate solution of the second order because
we are interested in the expression for ponderomotive force in the first
cyclotron resonance (w=w,). Following the formula in Ref.1, the second
order approximate solution of (3-2-3) is given as
syaw

Yo+ 20) cosawt + ) - MCos(ﬁ), - (3-2-4)

2
go(t) = aCOS(COt + ’!9‘) - fyaw,

where the amplitude a and the phase © are determined from the set of

equations of second approximation

2,,2 4
da___£7a0. gy
dt 8w QRw,-w)
. . (3-2-5)
dg £y’m, ey’w,

d ¢ 4w(do’-o’) 80’Qw,-w)

cos(29)

Using the same process to drive the solutions (2-4-3) to (2-4-7) for the
first approximated solution, we can solve (3-2-5) and obtain the second
approximated solution for (3-2-5). Also, we can solve (3-2-2) based on this
solution (3-2-4) with (3-2-5). Here, we restrict our discussion to evaluate
the zone of instability near the first resonance (w=w,) up to the second
order with respect to y, which is given by the inequality
Y0, 3w -20,) - (wc )2 - 7w, (w+2w,)

Le (3-2-6)
40’ (4w - 0?) 40’ (4w,* - w?)

w

Dependence of the RF strength parameter y on the zone of instability of

the second order near the first resonance is shown in Fig. 18. The particle
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orbit becomes unstable within two boundaries for fixed parameter ey and

the orbit is oscillatory outside the boundaries.

) . . T T AT
Ee ' . T X = (i 2 2 -
E .-_b‘_-,wE/.CUC o

T : - 107 ]
- Otbit Unstable -+ R
L (Aczreal) | '
- A=0 boundarys

- 051

© Orbit Stable - \ {/ Orbit Stable 1
L (7le pure imaginary)\ 4/ (A:pure imaginary) 4

085 08 095 1 105 i1 15

A w/(,uc

Fig. 18 Dependence of the RF strength parameter y on the zone of instability

versus normalized frequency w/w, (Ref.16)

After solving (3-2-2) and substituting its solution into the following

expfession for ponderomative force similar to (3-2-1) as
qE, 1 .
F =275 | de < E(t;6)sin(wt), (3-2-7)
Sty f E(t;¢)sin(wt)

we obtain the expression for ponderomotive force near the first ion
cyclotron resonance after lengthy calculation. We drop the explicit
expression for the final solution of (3-2-7) in this lecture note because
the expression is relatively complicated form and the detailed derivation
is out of scope of this lecture. It should be noted that the expression
(3-2-T7) reduces to the adiabatic expression in case of cold limit (;%—:>O).
Detailed derivation of the expression of poderomotive force based on
(3-2-7) and comparison between the adiabatic expression and the nonlocal

and non-adiabatic expression has been made in Ref.16, IPPJ-736 (1985) (see
Eq. (46) with (47)-(50)).

28




T T l. T
(a) ¥=0.050

(b) ¥=0.075

() ¥=0.10 "

0.06 ——r

-
-
————

0.04

0.02

No

3
I o0

R
- _
— .

——:Nonadiabatic
[ -=--: Adiabatic
-004F T

-0.02

!
!
[
]
'
!
[}
I

1

) 7
[} /4
1

098 10 102
. u-’/ We
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for several values of ey are illustrated. Also shown are the singular

results based on the adiabatic approximation. Parameters, n=20,

p,/A =05, X¥=x, are used in the expression (3-2-7). (Ref. 16)

3. 3 Extended expression for ponderomotive force near cyclotron

resonance

‘The ponderomotive force in magnetized plasmas is derived by the
renormalization theory of wave—particle interaction based on the Vlasov
equation. (Ref.17: M.Kono and H. Sanuki, J.Plasma Physics 38(1987) 43.)

The significant feature of this expression is the non—singular behavior

at resonance and this is related to the onset of the diffusive motion of

particles due to the orbit instability near resonances.

Sanuki and Hatori discussed the ponderomoive expression based on
Lie-Transformation (see, Ref.16 and (3-2-7) in this lecture note), showing
that the particle motion is described by the inhokmogeneous Mathieu

equation and the orbit instability are responsible for suppression of

the divergence in the adiabatic approximation. It should be noted that the
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result is sensitive to the period used for averaging with respective to

«K_»

time ( period is characterized by the parameter “n” in the time average

formula) and the average over the particle distribution was not carried

out in this discussion.

We here briefly introduce the expression for ponderomotive force for
waves with k, =0, propagating perpendicularly to a uniform magnetic field.
When the frequency is close to the mth—order cyclotron frequency maw,,
A numbers of higher order resonances appear. However, the transition of
particles from one cyclotron orbit to another through the electric field
may be less important and the contribution from the self-interaction is
the most important whenever the amplitude is not large enough for the onset
of global chaos. However, we may have an orbit instability, which
drives the particles ihto diffusive motion when the'amplitude exceeds a
certain value. We have to take into account of these situations for deriving
the expression near resonances. Although we cannot explain whoie
derivations of the formula in this lecture, we briefly introduce the final
result.

The expression for ponderomotive force at the resonance point, w=mwo,

is given as

2.2 2 2 '
=~ E,(x,t
7 (1) = = 222 @ oG] | Tk, ) L (33D
. 4 ko, p Cw+Aw) + A
with
| QP mw 2
Aw=—|B ———|E,[, ’ (3-3-2)
2! | 4(mwc)2_w21 OI

2
s Ll L .
),—16|A||B| ~+ +Aw], (3-3-3)

4(mw,)* +50° k[ - l(mwc)z -’
® [4(mwc ) - a)2]2 °

2mw,

where we dropped the explicit definitions of the coefficients A and B (see,
paper by Kono and Sanuki (1987)). From{(3—3—3), A is purely imaginary for
small amplitude, giving the frequency shift but becomes real, implying
orbit instability which may drive the particles into diffusive motion

when the amplitude exceeds a certain value.
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On the other hand, if all the harmonics of the cyclotron motion are
out of resonance, we reach the expression known as the adiabatic

ponderomotive force:

E(x,1) - VY=

0, |E [ (ko p)| (3-3-4)
w ._(ma)c)2 4 ,

ko P

which is the extended expression based on particle distribution function

m>0

even under the adiabatic approximation. Here, « means the particle spices

and J (k,p) is the m-th order of Bessel function.

In order to understand the physics behind (3-3-1) - (3-3-4), we finally
consider the motion of a particle interacting with an electrostatic wave
propagating perpendicularly to the magnetic field. This is the case just
under consideration above. If the magnetic field and electric field are
given as

B =(0,0,B,), E =(0,E cos(ky — wt -9),0),
the Hamiltonian of this system is given by

1|(dy 2 2 . o
= —} — -— -— -_ s 3_. —
H 2[( t) +y] esin(y = vt = 9) (3-3-5)

where &=eEk/mw’, v=w/w, and (3-3-5) represents the motion of 1D

harmonic oscillator perturbed by a sinusoidal wave. In this system, the
1

frequency shift due to the sinusoidal wave is givenby Aw=0(g?). It should

be noted that the overlapping of adjacent orbits of the harmonic oscillator

occurs provided Aw(E)>1, which yields the threshold for the amplitude

(E,) satisfying the relatior

El 1 f
_|__c_|.._~___ & —. (3_3..6)
4mT 16\ w, ) (kp)

In case of E<E_, the particles are confined in the vicinity of the
original orbits although the particles becomes somewhat diffusive (local
stochastic instability). On the other hand, for E>E,, the broadening

of the orbits exceeds the distance between adjacent orbits, resulting in
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global diffusion in phase space (so called global stochastic

instability).

®x10™ _ ' @ %107 ]

095 i 1.0 1.05 105

W,/ Wy ' Wo / Wi

(a) (b)

Fig. 20 Ponderomotive potential versus normalized frequency for fixed
amplitude. The results for W=0.1 and 0.5 for fixed k,p=0.1 are
in Fig. 20 (a) and the results for W=50 and 100 for fixed k,p=05
in Fig.20 (b). (Ref.17)

~ Ponderomotive potential, F,=-V¢ against w/w, is plotted for the fixed

2 e

; E

amplitudes, W =|—2 B[ and k, p. The results for W=0.1 and 0.5 for
w,. | 4m,T

e
fixed k,p=0.1 are illustrated in Fig. 20 (a) and the results for W=50 and
100 for fixed k,p=0.5inFig.20 (b), respectively. These results show that
the stochastic instability is responsible for the removable of the
singularity, which appears in the adiabatic approximation. The results
shown in Fig.20 (b) corresponds to the case where Aw and A are large
enough to have several zeros of denominator of (3-3-1), indicating that
the approximation of retaining the contribution of self-interactions

becomes invalid. Detailed discussion is beyond the scope of this lecture.

The derivation of (3-3-6) was discussed in Ref. 20.
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3. Analyses of Wave Equations

4.1 Linear and nonlinear wave equations

Example 1. Simple Wave equation

d%u , Pu

- , , 4-1-1
ke (417D
The solution is described by the following d’ Alembert Solution,
u= f(x —cot) + glx + ct). (4-1-2)

‘Example 2. Linear and non—dispersive wave
%+%%=O,u=ﬂx—%0, (4-1-3)
where the solution is given as
u=asin(kx —wt) , wfk = ¢, (const.). (4-1-4)

This wave is called the linear and nondispersive wave.

Example 3. Linear and dispersive wave

u +cou, +om,, =0. (4-1-5)
If we assume the solution in the form,

u = asin(kx —wt)

the phase and group velocities are given as

@ . dow .
c= <= Co —ak?, (phase velocity), C, = o (group velocity).
This is the linear and dispersive wave.
Example 4. Simple nonlinear wave
u+uu, =0, u= f(x —uf). (4-1-6)

The characteristics of differential equation is dx/dt=u. Therefore, the
part of large amplitude moves faster than that with smaller amplitude
and the wave steepning and breaking phenomena may come up. These typical

solutions are illustrated in Fig. 21.
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¢ =V, ' (4-2-2)
It should be noted that the nonlinear transformation just eliminates the

nonlinear term and Burgers equation finally reduces to a “heat type of

. ”
equation .

How to solve a nonlinear differential equation depends on how

to find a nonlinear transformation.

. This transforms the problem into an initial value problem. Namely,

u=F(x) at t=0, (4-2-3)
17 _
¢ =D(x)=exp [—-Z—V_ofF(n)dn], at t=0. (4-2-4)

The solution of Burgers Equation is given as the following Heat Equation,

. | - 2 :
¢=m J; fD(n)exp[— (x—1) dn. (4-2-5)

Therefore, we finally have

o G
e T )
u(xf) ==, G(pxH = fF(n')dn'+L2tn-; (4-2-6)
fe dn 0

Behavior as v—->0

Using the steepest descent method (will be explained later), we carry

out the integration in the following way,

_x-n)
t

G (x-8) _
377'=F(77) t =0

=0, n=E&x,?) at stationary point, F(§)-

is the stationary point of function G. Asymptotic solution is given as
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*  ew Ty -9E) -k
g(n)e 2V d’?"’g(g) " € w u(xst)s_s "'>u=F(§)9 x=§+F(§)t
Yo lG (§)| t

where &(x,t) becomes the characteristic variable.

4.3 Steepest descent method

We here introduce briefly the steepest descent method based on the
lecture note by Alfred Banos, Jr. (UCLA) (see, Ref. (11)) “ Selected
Topics on Asymptotic Methods” , (1983/12/15).

Prof. Banos was the MIT group member together with Morse & Fethbach,
who were the authors of the famous textbook, “ Method of Theoretical
Physics, Vol.1 and 2” . To explain the steepest descent method, we apply

an integration,

I= f F(w)e*™dw, (4-3-1)

where w is a complex variable of integration and w=0 is a saddle point,
namely,¢(u0==0 when w=0 ,i.e. w=0 is the SP. C is the path of steepest

descent in w—plane.

S. B,
C

- 00 O

Fig. 22 Path of integration and saddle point, where Im{p(w)}=Im{¢0)} on
C.

Since the integration (4-3-1) can be written as

I= [Fw)e'™dw=e*® [F(w)e*" ™ Vdw,x* = (0) - p(w),  (4-3-2)
C C

where x is a new variable, we can expand the kernel of integration as

36




CLwone?
T=e*® [{f(0)+~~ 3¢ " aw. | (4-3-3)
C

To lowest order, we put —x’ =¢"(O)w2/2 or x=‘,—¢"(0)/2w and carry out

the integration Approximately, then we obtain the following formula,
F(O)e¢(0) b 2 F(O)e¢(0)

I= - e dx =27 - . (4-3-4)
Foord, 'O |

If the saddle point occurs at w=w, instead of w=0, then we have a general

formula instead of (4-3-4)

& ™s)

e JZ?F(WS)

e $gw=w)=0-->w=w, is a SP.  (4-3-5)

4.4 Application of Cole— Hopf transformation

Topics of plasma rotations were one of the highlights during 1960’ s
and 1970’ s associated with the topic of plasma confinement improvement.
It was pointed out that for M, =1, shock —~like structure in density and
potential profiles occurs. Here, M, is the poloidal Mach number.

It should be noted that the slow shock problem during 1960-1970 and
the strong shock formation from 1990-to the present are studied actively
both theoretically and experimentally.

Experiments:

B-3 (1966) in Princeton, JIPP-1 (1974) in IPP at Nagoya where both were
the 1-3 stellarator devices, and CCT (1990) in UCLA, HYBTOK-II in Nagoya
University, H-E (1993) in Kyoto, and CHS (1991) in NIFS associated with
the biasing experiments. There are lots of other experimental observations.
Theory:

Hazeltine (1971), Green (1972), Stix (1973), Asano & Taniuti (1972)
discussed the week shock theory, and Shaing, Hazeltine and Sanuki (1992),

Taniuti, Wakatani et al. (1992) discussed the strong shock theory.
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(1) (2)

itk EMOEL
Wave steepening Wave breaking

Fig.21 Wave steepening and wave breaking ( http://www. sanjo. co. jp/

hum/hokusai/kanagawa. jpg)

Example 5. Burgers equation

U, + U, = Vil . (4-1-7)
nonlinear term viscosity term

This equation is the 1D Navier— Stokes equation and one of well-known

equations in fluid dynamics.

4.2 Cole-Hopf transformation
Cole (1951) and Hopf (1950) noted the following remarkable results:
” Nonlinear equation may be reduced to linear equation by nonlinear

transformation” in the form

d
= -2v—I . §~g-1
u de0g¢ ( )

The transformation in this case has the following two steps
L 2 .
u=19, , w'+5w" =vyp, (first step),

Y =-2vlog¢ (second step) ,
then the equation (4-1-7) reduces to
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If we evaluate the poloidal viscosity based on the solution of linear
theory, we note that the viscosity is in proportion to the derivative with
respect to the poloidél angle of density and/or potential within the linear
theory, and then the viscosity may become too large at the shock region

and we consequently have to discuss the nonlinear analysis to evaluate

the poloidal viscosity near M, =1.

i
< B‘;V 17

S A4

N\

o - o —

»
L4

-

1
(a) (b)

Fig. 23 Poloidal viscosity for tokamaks (a), helical systems (b) and

nonlinear theory(c) is illustrated briefly.

Following the paper by Shaing Hazeltine and Sanuki (Ref. (23)), we
briefly explain how to solve the strong shock problem and to derive the

formula applicable even near M, =1 by using the Hope-Cole Transformation

method. If we introduce the function yx in the form
x=In(N/N)=e¢/T (4-4-1)
we can derive an equation describing the function x as

%Dgl+(l M) x+24'(x" - (x*)) = 2¢Gosn. (4-4-2)
n

If we apply the well-known Hopf-Cole Transformation in the following,

x=(%al) t-4-)

the nonlinear equation (4-4-2) reduces to the following homogeneous

equation
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1-M,? '
7" 4 _ZA—'I;'LZ/ - [((27)2>+ %COST)]Z =0. (4-4-4)

Noting that ((Z'/Z)Z)E(Z”/Z), at M, =1, we finally have the following

Mathieu equation

(z)z + LCOS
7 72 n

which is the periodic Mathieu function of order zero, ce, that

Z"- Z=0, (4-4-5)

satisfies the conditions that x must be . finite and periodic. We
consequently obtain atM, =1, the following solution

D (dcey) 1 .
= — —_ 4-4-6
x 3A’( dn )ceo ( :

Note that the nonlinear equation (4-4-2) may be reduced to linear
equation (4-4-4) or (4-4-5) by Hopf-Cole transformation (4-4-3)
and we finally obtain the exact solution (4-4-6).

4.5 Periodic Mathieu function of order zero

We here briefly introduce the general characteristics of the periodic
Mathieu functions, which have been discussed in the session 4. 4.
To explain this function, we refer the table by A. Abramowitz and I. A.
Stegun: ” Handbook of Mathematical Function” (Dover, New York, 1968)) pp722
(Ref. 9)

We now consider the following canonical form of the differential equation

d2y

—=+(a-2gcos2v)y =0, (4-5-1)
dv

which is the Mathieu equation as the same as (2-4-2).

If (4-5-1) has non-zero periodic solutions for a given constant q when a
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is selected as an appropriate eigenvalue, we call these periodic solutions
as the Mathieu function. Noting that a=n” is the eigenvalue in case of
q=0 and the fundamental solutions are described by cosnz, sinnm, the
solutions of (4-5-1) approach cosnx, sinnt as q approaches zero. These
Mathieu functions are represented by ce,(v,q), se,(v,q), respectively where
these are called the nth order Mathieu functions. It should be noted that
it is convenient to separate the characteristic curves into two major
subsets! a=a,, associated with even periodic solutions and a=b,,
associated with odd periodic functions, respectively.
If q is real, then the Sturmian theory of second order linear
differential equations yields the following key features: |
1) For a fixed real g, characteristic values a, and b, are real and
distinct, provided ¢=0; a,<b <a <b,<a,...,q>0 and al(q),b.(q)
approach r? as g approaches zero.
2) A solution of (4-5-1) associated with a, or b, has r zeros in the
interval O<z<xm, (q: real)
3) For a given point (a, q) there can be at most one periodic solution of
period mw or 2w if ¢=0. This no longer holds for solutions of period

s, s>3 for these all solution are periodic, provided one is.

We now introduce the first few power series for characteristic values

(See, pp722 of Ref.9). These are given as

2
q 7 4 29 6
=— s =5, (4-5-2)
@D ==+ * 73047
2 4
¢ q
—q)=b(q)=1-g-L+4 _ ... , (4-5-3)
a(-q9)=b(q) q st ea
5 763
=4+ e —G* , (4-5-4)
D@ =4+ 54~ ag0ad
b(q)=4_iq2+—5—q“— . (4-5-5)
. T

The explicit forms for these characteristic values and higher order values

are given in Ref.9. For r>7, and |g| not too large, a, is approximately
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equal to b,, and the following approximation may be used.

2. q (5r*+7) "
@ )= S D -0 -

+ ... . (4-5-6)

These characteristic values are illustrated in Fig. 24.
o

24

24

Fig. 24 Characteristic values, a, and b, (Ref.9)

Also, the power series in q for the periodic functions for sufficient small

lg| are given as (see, page 725 in Ref.9)

1 cosdz 1
.q) =V2|1-=gcos2z +g* -—|-4%(.... ..., 4-5-7
cey(z,9) '\/_[ 2‘] 4 Q( 32 16) q’( )} ( )

cos5z cos3z cosz| 3( )+
192 64 128 ’

ce(z,q) =cosz~ —g—cos 3z+ qz[ q (... (4-5-8)

sc,(z,q) = sinz - %sinf&z + qz[ + 7(... (4-5-9)

sin5z sin3z_sinz _ 3( )+
192 64 128 ’

ce,(z,q) = cos2z - q(COS4z - l) + @ (o) ¥ ey (4-5-10)
12 4
. sindz
se,(z,9) = sin2z—q ot (o)t (4-5-11)

where the explicit forms for these periodic functions are given in Ref. 9.

Typical functions are plotted in Fig. 25 for fixed value of g=1.
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(a) (b)

Fig. 25 Even periodic Mathieu functions (a) with orders 0-5 and odd periodic

functions (b) with orders 1-5 are plotted for fixed g=1. (Ref.9)

5. Nonlinear Waves —?A La Carte-—

5.1 Dawn of “solitons”
We here list up a couple of topics associated with nonlinear waves,
particularly, “solitons” phenomena.
# At the second half of 19" century, idea of wave packet, group velocity
# In 1834, J. Scott Russell (180871882), discovery of “soliton”.
~ Note that Scott is the name of mother, Russell is the name of father.
# J. Boussinesq, Sir Stokes, Lord Rayleigh, Lord Kelvin, Sir Airy and
others discussed whether Scott Russell’ s discovery is true or not.

Sir G. B. Airy claimed that his discovery of “soliton” might be

a solution of the shallow water wave. Lord Rayleigh supported the
existence of this solution analytically.

# Korteweg de Vries (K-dV) (1895) developed an equation for shallow

water waves, which provided the basis for an analytical study of
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solitary waves. After the paper by Korteweg de Vries, no much attention
has not been paid on these topics.

# Recent discovery, which was due to the modern computer, was an
outstanding example of what Ulam referred to us “synergetics” , which
means the intelligence, selective use of computer for exploring idea
(N. Zabusky) ’

Note: I(Sanuki) started the “soliton physics” from 1970 and leaned lots
of physics and mathematical tools associated with solitons at so—called

Toda School, which was organized by Prof. M. Toda in Tokyo.

Solitary Disturbances (Solitaires)
We here introduce briefly a historical event associated with
“Discovery of Solitons” by J. Scott Russell in the month of August
1834[from the book by E. Atree Jackson, Vol.2 pp349, Ref.1].

“I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped——not the mass
of water in the channel which it had put in motion; it accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving
it behind, rolled forward with great velocity, assuming the form of a large
solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form
or diminution of speed. I followed it on horseback, and overlook it still
rolling on at a rate of some eight or nine miles an hour, preserving its
original figures some thirty feet long and a foot to a foot and a half in
height. Its height gradually diminished, and after a chase of one or two

miles I lost it in the winding of the channel.”
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Fig. 26 M. Toda, $1®HeA 4. IV I K, BA X, 750 %)). IEEROHTR,
AEEE, "Iyl MMEERER (19 8 44)” plos &b

Much later (after 60 years from the discovery by J. Scott Russell), Korteweg
and de Vries (1895) developed an equation for shallow water waves, which

provided the basis for an analytic study of solitary waves (Solitons).

Fig. 27 Profile for Russell’ s heap of water

The solution as shown in Fig.27 is described by the following formula

u(x,t)=h+ asechz(x ;Ct) , (5-1-1)

where ¢ is the velocity, h the ambient depth, a the amplitude, and b is

the width of the heap of water, respectively.
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5.2 Korteweg de Vries (K-dV) equation

We briefly introduce the experiment of solitary wave by Scott—Russell.
The experiment by Scott—Russell is illustrated in Fig. 28. The three typical
states (state 1, state 2 and state 3) are plotted in Fig. 28. There are two
partition walls (a and b) at both sides as shown in this figure. At the
state 1, the partition (a) is closed and the water is stored between the
left hand end wall and the partition (a), and then the heap of water
propagates keeping its profile toward the right side when one opens the
partition (a), which is shown in the state (b). Finally, if one closes the
partition (b) when the heap of water reaches the right end of the wall,
it turns out that the water stored at the state 1 propagates to the region
between the partition (b) and the right end wall. They called this nonlinear

wave as the “solitary wave” .

a b
Stagel :

Stage2

Stage3

Fig. 28 Experiment of Scott-Russell

Scott—-Russell Empirical Scaling:

The velocity of shallow water wave is given by ¢, =Jg_h, where h is
the water depth from the bottom and g is the gravity. On the other hand,
the velocity of solitary Wave is described by the formula,c==4ﬁﬁﬁi7%j,
where m, is the height of the solitary wave from the average water surface.

The configuration of the water wave is plotted in Fig. 29.
y

y=nlmt) _ %

. 3
5\\\~d//f/’f—"\\\\$k

x

0
Fig. 29 Configuration of water wave
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The K-dV equation is described by
n 3¢, 0 29
m, 3%, 0 oo _g (5-2-1)
at 2h 3§ 6 9E

and its solution is given as

1 !3 |
n="n, secﬁz(E %(x - ct)) , (6-2-2)

with the abbreviation of

c=c0(1+;7—;) =Jg_h(1+ ;7—]01) . (5-2-3)

If we take the shallow water limit, n,<<#h, the velocity (5-3-3) is in good

agreement with the Scott —Russell empirical scaling mentioned above.

5.3 Discovery of soliton
Nonlinear interactions among “ solitary-wave pulses” propagating
in nonlinear dispersive media were actively investigated in various fields.

These phenomena were observed in the numerical solution of the K-dV euagtion

u, +uu, +8u_ =0. (5-3-1)
As was discussed in the previous session, this equation can be used to
describe the one-dimensional, long-time asymptotic behavior of small but
finite amplitude disturbances such as shallow-water waves, collisionless
plasma MHD waves, long waves in anharmonic crystals and so on.

N. J. Zabusky and M. D. Kruskal discussed numerically the interaction
of “solitons” in collisionless plasma in Ref.25. They sought stationary
solutions of (5-3-1) in a frame moving with velocity c. If we substitute

u=U(x-ct), (5-3-2)
we obtain a third order nonlinear ordinary differential equation, which
has periodic solutions representing wave trains. However. If we study a
solution, which is asymptotically constant at infinity, the solution is
described by the equation
U= u, + (uy — u,)sech’[(x - x,)/Al, (5-3-3)
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with the abbreviations of

A =8(uy—u) 12T, c=u, +(u,-u,)/3 . (5-3-4)
Thus, the larger the pulse amplitude and the smaller &, the narrower is
the pulse. As was shown by Zabusky and Kruskal, it should be noted that
the computational phenomena observed is characterized in terms of three
time intervals.
Stage (1) : initially, the first two terms of (5-3-1), as already discussed
in session 4-1(see, (4-1-6)), dominate and u steepness in regions where
it has a negative slope.
Stage (2): after u steepened sufficiently, the third term (dispersive)
becomes important and serves to prevent the discontinuity. Oscillations
with small wavelength develop on the left of the front due to the dispersive
effect. Finally, each oscillation achieves almost steady amplitudes and
has a shape almost identical to that of an individual solitary— wave
solution of (5-3-1) in a form (5-3-3).
Stage (3) : finally, each such solitary-wave pulse begins to move uniformly

at a rate, which is linearly proportional to its amplitude. (See, (5-3-4))

The surprising thing is that these pulses (5-3-3) with (5-3-4), which are
strict solution only when completely isolated, can exist in close proximity
and interact without losing their form or identity. To demonstrate the time
evolution of the form, the numerical calculation was carried out by Zabusky
and Kruskal, in which these phenomena were started with 6=0.022 and the
periodic initial condition, wu(t=0)=cosmx . Since the third term is
negligible for this parameter, its solution is given approximately by the
following implicit relation,
u=cosm(x - ut), (5-3-5)

and u becomes discontinuous at x=1/2 and t=T, =1/n, the breaking time.
The time evolution of the solution is plotted in Fig.31. The curve A gives
the initial condition, and curve B shows the solution at ¢t=T, =1/x. Curve
Cat t=3.6T, shows a train of “solitons” (numbered 1-8), which developed

from the oscillations.

47




]7§

3.0

Fig. 30 Temporal development of the wave form (from Fig.1 of Ref.25)
u(x,0) =cosax, 6 =0.022,
t = 0(A,dotted), t=1[n(B,dotpoint), t=3.6/x(C,solid)

Fig. 31 Sketch of Enrico Fermi (from the pamphlet of Fermi Natiohal

‘Accelerator Laboratory




5.4 Fermi-Pasta-Ulam recurrence phenomena

We here consider the 1D lattice system as shown below

Yn-1 n Ine1
—_— —_— —_—

J (J (J J (J
n—1 n nt+1

Fig. 32 1D lattice system

“Hooke Formula” describes the motion in linear and/or nonlinear systems.
In the early nineteenth century, Enrico Fermi analyzed numerically the
nonlinear 1D lattice problem instead of analytically by using ” MANIAC1
Computer” associated with ” Ergode Problem”. If we discuss
the linear spring lattice model, the oscillations in this system is composed
of the normal modes and each mode is independent, and the s?stem is not
ergodic. When the nonlinear spring model is employed, however, one expect
this system to exhibit thermalization, namely, complete energy sharing
among the corresponding normal modes after long times (Ergotic). To study
this problem, Fermi, J.R. Pasta and S. M. Ulam carried out the numerical
analysis based on the 1D nonlinear lattice model,“where the system is

composed of 32 or 64 atoms, and fixed boundary condition is assumed.

300

200

100

t

Fig. 33 Fermi-Pasta-Ulam recurrence phenomena (Ref. 25)
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At t=0, mode 1 is excited and it evolves in time. Then, a couple of other
modes (2, 3, 4, 5) are also excited with suppression of mode 1 but system
| returns to only initial state, namely, mode 1 is only excited after long
time. This result was different one from that expected. This is called as
the Fermi-Pasta-Ulam recurrence phenomena and it demonstrated that

the computer is a powerful tool to analyze nonlinear phenomena.

The discovery of solitons by Zabusky et al. and recurrence phenomena by
Fermi-Pasta-Ulam were the remarkable examples to find new physics by
computer science. J. Von Neumann developed a new idea, namely,

“Synergetics ” with combined numerical experiment (EtEHEEER)
and analytical tool (RHTRIFE) .

5.5 Gardner— Morikawa transformation
We discuss the 1D anharmonic lattice. .Taking account of the”
discreetness “of the lattice, the motion in this system is given as the

following nonlinear discrete equation
mj}n =K[yn+l “ Y, t a(yn+l - yn)z] _K[yn “VYpa t a(yn _yn~l)2]’ (5—5—1)

Defining a new coordinate through x =na (a is the lattice distance) and

taking the continuum limit, we have the nonlinear differential equation

a’ a*

2 1 5
= —y_ __+— +..+2aa +—aa +..|, (6-5-2)
ytt CO (yxx lzyxxx.x 360yxxxxa:x yxyxx 3 yxxyxxx (

which is reduced to the following approximate equation

a2
Yo = coz(yu * g Vet 2aayxyxx) : (5-5-3)
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This equation is called the “Boussinesq Equation”. It should be noted
that the original Boussinesq Equation (1972), which is well known in the
fluid dynamics, is given by

a2
Yo =Co (yu + 15 Ve + 2aayxyn) , (56-5-4)

and (5-5-4) reduces to (5-5-3) under “Boussinesq Approximation”, which
is often used in the shallow water wave analysis.

Introducing the new slow variables (& v) instead of fast ones (x, t),

&= s"(x - cot)/ a, T==¢%t/la, y(x,0) =y E1), (5-5-5)
where these coordinates is called “Stretching Coordinates” . Then,
(5-5-3) can be written in the form
£2pco2 a2y _ £p+qco2 a2y . £2qco2 aZy
a®> o a* 9t a* ar?
2p 62 4p 64 3p+r a 82
=02£2 )2""82%:"'20582_}]}2/Y
a’ 0&8° 12a° 9 a’* 9E dE

(5-5-6)

+O0(%7) + ...

From each order of (5-5-6), we have the following relétions,

i) From 0 (g?), it is automatically satisfied,

2) If p>q, we assume the ordering, p+q=4p=3p+r,

3) If we choose r=1/2, then we obtain b=1/2, q=3/2 and we finally have the

following equation,
1
u+uu +—u_ =0, u=ay,, (5-5-7)

which is the Korteweg deVries (K-dV) equation. It should be_ noted how to
choose what kind of Gardner-Morikawa Transformation is determined by
the fact that we consider what kind of dispersion relation. To demonstrate
this situation, we consider the linear dispersion relation, which is given
as

0’ = 4—’5—sin2(k—2a). (5-5-8)

m
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If k is small, the dispersion relation can be approximately given by
w(k) =c4k - %cok(ka)2 F o , (5-5-9)

provided we keep the terms up to the second order with respect-to k.

If we put k=¢’k, we have the phase relation
kx — wt = ke? (x —cot) + %Ig%oazsi"’t + e (5-5-10)

In order to discuss the slow variation of wave propagation, we have to select
the slow variables as

E=el(x-cyt)la, T=¢6"cytla, (5-5-11)
which is the same as the Gardner-Morikawa Transformation (5-5-5). If we

select p=1/2, q=3/2 and r=0, we have well known modified K—dV equation,
1
2
u+u ME + azuggg =0. (5"5_12)

So, the Gardner—Morikawa Transformation is the ordering associated

with mutual relation among the amplitude, space and time.

5.6 Sine—Gordon equation (S-G eq.)
One of the well—-known equations in the field.theory is the 1 dimensional
Klein—-Gordon equation
¢, — ¢, +m’$p=0, (5-6-1)

and if we replace the term m’¢ by m’sing, we have the following equation

¢tt - ¢xx + mZSin¢ =0. (5_6_2)

This is the Sine-Gordon equation as known as a nonlinear model equation
describing the soliton phenomena. It should be noted that the S-G equation
satisfiestheinvarianceforthefbllowing “Lorentz Transformation” ,
' x'=y(x-vt), t'=y(t-vx), y=>10-v>)"2.
We next discuss the stationary solution of the S-G equation, which is
described by
¢, —m’sing =0, (5-6-3)
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under the boundary condition, namely, ¢(x)¥>0 (mod 27) ,(|x|—>oo). If we

introduce ¢/2=®, &E/a=n, (5-6-3) reduces to

——d——log(tan 2) =-1, (56-6-4)
dn 2

which gives the solution
P(x) = 4arctan[e*'"(x""°)]. (5-6-5)

By taking account of the Lorentz Invariant, we finally obtain

M&0=4mampmmﬂmﬂ,' (5-6-6)

which is composed of the so—called “Kink” and “Anti~Kink” solutions.

Anti-kink

Fig.34 Kink and anti-kink solutions

We hare introduce a couple of examples, which are described by the S-G
equation, namely

# Nonlinear pendulum,

# Slip dislocation model (Frenkel-Kontorova equation (1939)),

# Josephson junction phenomena, etc..

5.7 Backlund transformation
A. B. Backlund discussed the differential geometry theory associated with
So called “ Backlund transformation” , 1875. Let us briefly explain
the scheme of Bdcklund Transformation. We now consider two coupled
differential equations
U, = f(u,u;,uxx,........'..), (5-7-1)
Vi =8V,V,,V e, ). (5-7-2)
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If we can obtain the following coupled equations from (5-7-1) and (5-7-2)
F(uv, ) =0, (5-7-3)
G(UysV pyeeneene )=0, (5-7-4)

»

is included in
(5-7-3) and (5-7-4). Then, we call the relations (5-7-3) and (5-7-4) the

[ {2

“ Bicklund Transformation” . In this case, the solution “u” of (5-7-1)

where only first order derivative with respective to “t

«_»

is transformed into the solution “v” of (5-7-2) through the relations
(5-7-3) and (5-7-4).

5.7.1 Backlund transformation for S—-G equation
We here consider the S-G equation

Gy — Pyx + sing =0. (5-7-5) ‘

Introducing new variables, t=(T+X)/2 and x=(T-X)/2, (5-7-5) reduces
to '
¢, + sing=0. (5-7-6)

Since the detailed derivation of the Bicklund Transformation for the S—G
equation is reported in Ref. 12 and Ref. 27, we briefly introduce the Bicklund

Transformation in the form _
) .
(¢ -9),= Zasm[E(fl) +¢)]

(@' +9), =2 sin[~ (&'~ )]
a 2

If ¢(¢") is a solution, ¢'(¢) is also a solution. Here, ¢, and ¢, are

, (5-7-7)

assumed to be the solutions of (5-7-7) but we choose ¢, =0 (vacuum solution)

of the S=G equation. Then, (5-7-7) reduces to
1 (1 1 1 . (1
5¢lt = aszn(—2—¢1), —2_¢lx = —ZSln(E(Pl)’ (5_7_8)

Which yields the solution
$,(§) = 4arctan[e™¢ "], (5-7-9)

where &=x-a’t, a is the constant and the solution with a<0 is the Kink
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solution and one with a>0 corresponds to the anti—Kink solution, as was

shown in Fig. 34.

(a) (b)

Fig. 35 Diagram of Backlund Transformation for two (a) and four (b) solutions.

The diagram of Backlund Transformation for two and four solutions are
illustrated in Fig. 35. Figure 35(a) corresponds to the Bicklund
transformation from ¢, to ¢ with constant a. Figure35 (b) is the diagram
for Backlund transformation for four solutions, ¢, to ¢, with a, ¢, to
¢, with a,, ¢ to ¢, with a, and ¢, to ¢, with q. These diagrams are

represented by the following relations
d 1 1 1
;5(% + @)= '"a—lsmi(‘l’l - &)
d 1 1 .1
g'i(‘pz + @)= "'a_zsm'i(q)z - &),

i R (5-7-10)
3;'2'(¢12 +¢)= _Z;SinE(¢12 - &),

d 1 1 1
-é;-i-(qﬁu+¢2)=—Z~5'm5(¢12—¢2)’

By eliminating the x-derivative terms in (5-7-10), we have the following

solution for ¢,
b = o + 4arctan(u tan[—l—(gbl —o|.  (-7-11)
a-a, 4

It should be noted that the solution ¢, can be constructed from known
solutions, ¢,, ¢ and ¢, through the relation (6-7-11). For an example,
if one assume the vacuum solution ¢,=0 and one soliton solution for ¢ and

¢,, which are given as
¢i = 4arctan[exp(—§l. /ai)]’ gi =X- a,'zt - EiO’ (]'_:1, 2) ’ (5—7_12)
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we obtain the following solution from (5-7-11)

o1 v
-—sznhE(EI/a1 -&,/a,)

+a
¢,, = 4arctan hrd

i , (5-7-12)
4G —a, cosh—z—(&l/a1 +&,/a,) ‘

which is the two-soliton solution. Thus, we can construct the N-soliton
solution by repeating the same way. This solution is generally described
in the form, ¢ =4arctan(f/g).

5. 7.2 Biacklund transformation for K-dV equation and conservation
law
We now write the K-dV equation in the form
u,-6uu, +u,_ =0. (56-7-13)
If we introduce the funbtions,
ux,t)=w (%0, WG, =w, (x5 ,  (5-7-14)
we have the following Bidcklund transformation for K-dV equation

w, +w, =-2n+ %(w -w?, (5-7-15)

wo+w, =2[w+wow, +(w, ) 1-(w-ww, -w,), (5-7-16)
where 71 is an arbitrary constant.

In order to derive the formula for the conservation law, we rewrite
(5-7-15) and (5-7-16) in the forms

W+ wx' =-2n"+ %(W -w')?

(5-7-17)
w,—w, =-[2w_ —2w (w—-w')+ 4 (w - w')]_
If we expand the term w-w' as
w-w'=2n+ Y fn™, (5-7-18)
n=1
substitution of (5-7-18) into (5-7-17) yields
‘ 1 1 n-1
fn+1=u6n,0—_2—fn,x—22fmfn-m ) .
m=1 , (5-7-19)
a, d ‘
L 4+ —(2uf, +4 =0
(;t ax ( fn fn+2) ]
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where f, is the conserved density. We here show the explicit forms of some

conserved quantities,
3

2
fi=u, f,= ——;-ux, fo= —(%) W -uy), f,= (%) Qu'-uy),. (5-7-20)

5.7.3 Konno- Sanuki transformation
We consider a nonlinear one-dimensional lattice system under a weak
dislocation potential associated with the slip dislocation model , in which
the equation of motion of the n—th atom is of the form (Ref. 12 and Ref. 29)
du,
or?

=u,, -2u +uU,_ + %{(un+1 -u,) -(u,-u,)’}-2ac*sin(u,), (5-7-21)

where u, is a dimensionless displacement of the n-th atom and a measure
of the size of the displaéement. In case of disturbance of long wavelength
compared to the spacing of the atoms in the anharmonic lattice, a continuum
approximation may be adopted. If we introduce a stretching
E =e&(nh-AT), t=£T, (5-7-22)

where h is a lattice spacing and A is the group velocity, the displacement
may be expanded as a Taylor series in the small parameterleh. Keeping the
terms  up to O(e*) and introducing the new variables,
x=Q4)"*E/h, t=ht/[(24)"*A], we finally obtain

"+ %ujun ru —asin(u)=0 . (5-7-23)

In (5-7-23), the equation without the last term, namely, dislocation
potential term, reduces to the modified K-dV equation. Also, if we neglect
the second and third terms, the equation tends to the S-G equation. It is
well known that both modified K-dV equation and S—G equation can be solved
and have the soliton solutions. How to solve the complicated nonlinear
equation including nonlinear effects of both anharmomic lattice and
dislocation.potential such as (5-7-23) had not solved yet.

Although (5-7-23) was solved by Konno, Kameyama and Sanuki (Ref.29) by -

the inverse scattering method, the Backlund transformation for (5-7-23)
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was later derived by Konno and Sanuki [Ref.30], which is represented by

the following Backlund transformation

U, +u. = —4/’\sin%(u— u')

: | i ) (5-7-24)
u,—u, =2[C-B]-2[C+ B]cos—z—(u— u')+ 4Asin§(u -u")
where the coefficient A, B, C are given as
1 ‘a .
A=—4) -= 24 (-—)cos
ZMu,) an (u)
B=lu + Au +2fu-wlu3+thﬁMu) ' (5-7-15)
2 4T \4A C

= —lum +Au, -2Xu_ - —l-ux3 + (i)sin(u)
2 4 4A

The permutability theorem based on the spatial part (5-7-24) of this
Backlund transformation may now be generated in the manner earlier
indicated for the S-G equation. The second- generated solution is given
by (5-7-11) with some modifications of coefficients. Note that (5-7-23)
has a kink solution and its derivative is given by a soliton solution.
The head-on collision of the two—component soliton solution in the spatial
derivative of the two-kink solution is illustrated in Fig.36 (a). The
collision process of two soliton solutions having amplitude of opposite
sign in the spatial derivative of the kink—- antikink solutions is also shown
in Fig. 36 (b).

(_9_‘!-(0) .

Fig.36 (a) Collision of two solitons having amplitudes of

same sign (repulsive collision) (Ref.29)
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Fig. 36 (b) Collision of two solitons having amplitudes of opposite
sign (attractive collision) (Ref. 29)

6. Reductive Perturbation Method (EMRIEBIFR)

The reductive perturbation method is a perturbation theory based on
multi-time and -space expansion technique and a general perturbation
formula which is extended from “ Gardner— Morikawa Transformation” .
(See, references, 2, 3, 4 and 31) |

We here introduce two examples of the application of reductive
perturbation theory associated with the shallow water wave and convective

cell formation in plasmas.

6.1 “Propagation of nonlinear gravitational wave” (Ref.32)
The gravitational wave propagating in the water with a uniform depth
h is described by the following Lap lace equation
% + g-;—‘ﬁl -0, (6-1-1)
which can be derived from V-¥ =0 (imcompressive) and Vx# =0 (vortex
free), which satisfies ¥ =V¢. The configuration under consideration is

illustrated in Fig. 37.
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Fig. 37 Configuration for gravitational wave.

The following boundary conditions are applied,

W0 at y=-h, - (6-1-2)

dy

9% _on, 9¢om - i

& +'ax o at y=n(x,1), (6-1-3)

a6 11(a¢\ (o)

737+5{(5;) +(5) }+G77=0 At y=n(x1), . (6-1-4)
_ol 299 L 10 o -

¢(x,y,0) =9 _,+ 0yy,0n 23y Mn +. (6-1-5)

Introducing stretched new variables (&t) in addition to fast scale
variables (x, y, t), E=&(x-A), T=¢%, and we expand the velocity

potential ¢ and the displacement 7 around free surface as

U= ze."U("’, U™ = EU,(")(E,‘E; y)explil(kx - wr)] . (6-1-7)

The procedure to get the solution by the reductive perturbation

method is roughly explained as

1) 0 (¢): the dispersion relation, w=w(k) is obtained,

2) 0(¢*): the moving velocity A in the stretched variable,
E=¢e(x-At) is determined as the group velocity,

3) 0(’): the equation for slow variation with (£,7) is obtained.
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From the first order with respect to ¢!
‘cosh{lk(y + h}
cosh(lky)
and the dispersion relation foi’ the fundamental mode with [==x1 is

determined as

w(k)? = Gk - tanh(kh), (6-1-9)

¢ = A(&,T) , A_,=0,4,, =0, (6-1-8)

which is the linear gravitational wave dispersion relation and k is

the wavenumber and h is the depth of the water from the bottom.

From the second order:

Substitution of (6-1-7) into (6-1-2)-(6-1-5) together with stretched

variables give the'following relations

2
R 'kE sech®(kh)A,[", (6-1-10)
@ = smh{k(y + h)} ,0A 1
=F(v+h - £ s (6_1_11)
O =FOH I ) oE
@ cosh{2k(y+h)} , @
= AP, : (6-1-12)
¢ cosh(2kh) 2 ’
3 k% 1+ tanh®(kh
4@ 22 K I tanh Rh) (6-1-13)
4 w sinh“(kh)
2 . 2
772(2) _ __I_c__ 3+ 2sinh”(kh) (6-1-14)

T2G  sinh*(kh) U

Since we also have the relation for the equation for I=1 in the form

i{2wA - G(tanh(kh) + khtanh(kh))}9236‘“—1 =0, (6-1-15)

In order for this equation to have a non—trivial solution, A should be

A=0w/dk, which is the group velocity of the fundamental mode.

From the third order:

We obtain the nonlinear equation, which describes the fundamental mode

(here, we put A=A, for simplicity)
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JA  J*A 2
— + p——+qglA A=0, (6-1-16
Yor TP gE 94 )
_ 1 d*w
LAY
ZZ]: 9 — 10tanh®(kh) + tanh* (kk) (6-1-17)
g=-——[— T — sech® (kh)]
2w, 2tanh”(kh)

Equation (6-1-16) is so called “ Nonlinear Schrédinger equation.

Whether the solution is stable or not agalnst amplitude modulation, is
determined by the relation between coeff101ents p and q (6-1-17), namely
the case with pg<0 is modulationally stable but the case with pg>0 follows
the modulational instability. Since pg>0 for (6-1-16 )with (6-1-17), the
plane wave solution for the nonlinear gravitational wave may become

modulational unstable.

6.2 Elecroromagnetic drift wave furbulence and convective cell
formation ’

Nonlinear properties of electrostatic drift waves and convective cell
formation have attracted much interest associated with the turbulence and
related anomalous transport. Hasegawa and Mima discussed the electrostatic
convective cell formation based on a nonlinear drift wave model, so—calléd

Hasegawa-Mima eq. (See, Ref.32), which is given as
—(Alqb $)=[(V,$x2) V, ]A LP- ln( )] 0. (6-2-1)

Sanuki and Weiland extended the model for electrostatic convective cells
into the electromagnetic convective cells(see. Ref. 33) based(nlso—callea

“ Sanuki-Weiland Model” , which describes the drift Alfven wave driven
electromagnetic convective cell formation.

In Cartesian co-ordinates, the model equation is given by

9* 3* d d
(?_ Aza 2 _VDIVL——_“A_LE;)A_L¢
(6-2-2)
c kv,2 9 dpad dp d
____(1 IIA) (¢____¢__ l¢

B, w® "t dy dx  dx dy
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Applying the reductive perturbation method to (6-2-2), we analyze the
electromagnetic convective cell formation and its spatial structure.
We here briefly explain the convective cell formation process

by introducing the following stretching coordinates and ordering

¢ = ¢(0)(x) + Eead)(a)’

¢ = Y ¢, (x.Ev)exp(illk,z + k,y - ar)), (6-2-3)

)

x=x, E=e(y-At), T=¢£t, u=0(£%)
where the ordering for viscosity is assumed as the second order. In the
x—direction, we apply periodic boundary conditions, i.e.

P0,8,1) = ¢(LET)=0, (a=0), (6-2-4)

where L is the dimension in the x-direction and the reality condition

is assumed for the potential.

Derivation of solution of convective cells

From the first Order, we have the linear dispersion relation for
drift Alfven wave as
@ =k, + k(v = co)w=0. (6-2-5)
Assuming a sinusoidal variation of the solution in x—direction, we have

‘the first order solution as
. 2\V?
¢ = ¢,“’(§,r)(z) sin(k,x), k, =m(2x/L), (6-2-6)

where m is the radial mode number.

From the second Order, A is determined by the compatibility

condition , which yields
= dw . _o_
A= Ak . (6-2-7)

After lengthy and tedious calculations, from the third order, the

amplitude for shear Alfven wave and convective cell mode are given
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) ,
ky C k//

@ _ VA W
7)| sin(2k, x 6-2-8
TP O sin2k,2), (6-2-8)
(l) (1)
is ‘78 Q|¢1“) b = -ivg®, (6-2-9)
with the abbreviations
s=Qw+ kv, - kc)k,” +k,7),
U=-AA+vp—c)k,” +k2),
Q _ _(1 _ k/lsz2) wky2(3km2 - kyz) _C_ z. (6—2—]'0) )
w® " L(A+vp—cy) ’

V= —w,u(k,,,2 + kyz)

Using an analytical method by Sanuki et al. (1972, Ref. 35), we can solve
(6-9-2) and have the solution

" = a(r)sechl( % ) a0 - 2vt)exP(i%(§ - +i3 f @ (dr), (6-2-11)

where p=g, g=g, da/ =_2va. It should be noted that the structure of
s s ot

created vortex is determined by the modulational instability

condition, which is given by
UQ x(3k,’ ~ k) =0. (6-2-12)
We always have modulational instability for ky2<3km2 and stability for

ky2>3km2. The characteristic shape of the created vortices is shown in

Fig. 38.
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X=0 X=L2

Fig. 38 Created vortex structure of electromagnetfc convective cells
(Ref. 34)

We note that the typical size in y-direction of created vortex is determined
by the nonlinear effect through the modulational instability although the
size in x-direction is characterized by the boundary condition, giving
dimensional scaling between x and y with ky==V§km. This characteristic
structure has some similarity to the elongated structure of zonal flow
and/or streamer, which is’actively discussed, associated with turbulence
in plasmas (Ref. 36).

6.3 Simple derivation of nonlinear Schrédinger equation
In nonlinear dispersive media, the nonlinear dispersion relation is
generally giﬁen as
e(w,ki|A[) =0, w=w(k|A]") . (6-3-1)

Here, the derivation of (6-3-1) was discussed in Ref.37 and Ref. 38.

Assuming the monochromatic approximation for nonlinear waves, we can

expand the dispersion relation around (kyw,) of expli(kyr —wyt)] as

&D) 1{dw , | dw 2
w-w,=| (k—k)+—(—) (k=ko)* +|—— | |A] +... (6-3-2)
’ (é’k o 20k, Y g4l )
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If we put a)—-woei%, k—kos—i%x, we have the following nonlinear
Schrédinger equation (NLS equation),

| 9A (aw) JA| 1{dw) ¢*A | dw
NW—+|—| —+3| = >+ 5
gt \dkJyox) 2\k" ), ox" |44

In the wave frame, (6-3-3) reduces to the general form of NLS equation.

la’A=0. (6-3-3)

0

A Solution of NLS equation
The solution of nonlinear Schrédinger equation is described by

@(x,t) = \/§sech[\/£_2(x -Vt - xo)]'exp[i%x - i(%— -Q)r]. (6-3-4)

It should be noted that the solution (6-3-4) has two characteristic
parameters, namely, one is V, which is the velocity parameter and he other
is Q, which is related to the wave profile. The existence of these two
parameters is different from the case of K-dV equation (one parameter) and
it is associated with the fact that ¢ is complex and the NLS equation has
one more freedom than K-dV equation.

Since the solution (6-3-4) is characterized by a solitary envelope
shape, (6-3-4) is called the envelop soliton solution. Depending on
two parameters (L,V), the envelop soliton solutions has two typical shapes,
Namely, the bright soliton and dark soliton solutions. These solutions are

illustrated in Fig. 39.

T

“Phase”

Bright Soliton ‘ Dark Soliton
Fig. 39 Bright and dark solitons
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6.4 2D-nonlinear wave equations
We here introduce a couple of typical examples of 2 dimensional nonlinear

equations and its properties of solutions.

(1) Kadomtsev-Petviashivili (K-P) equation
Obliquely propagating nonlinear waves are discussed in shallow water
and in plasmas. The K-P equation is given as

(u,+6uu +u,) +ou, =0, (a==l). (6-4-1)

The equation (6-4-1) reduces to the K-dV equation in case of a=0.

For example, we consider the two—soliton solution with a=1, which

propagates obliquely in x-y plane with the angle tan'lp and the solution

is described by

2
u(x,y.1) =2 510g f (5,30, (6-4-2)
with abbreviations of
f=l+em+e™ +A,e™™,
n=k(x+py-wt), o,=k’+op?, . - (6-4-3)

_ 3k -k) -a(p - p,)°
? 3k + k) —a(p, - p,)°

The two—soliton solution of K-P equation is plotted in Fig. 40. We note that

the first two terms in f gives one soliton solution and we obtain the two
soliton solution by keeping e™,e™ terms. However, each soliton is far away
and the last term ( A,) describes the two-soliton solution at the

overlapping phase.

Fig.40 2- soliton solution of K-P equation(Ref. 6)
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(2) Flierl- Petviashvili equation

It is well known that the one-dimensional equation has the solution
such as K-dV soliton as discussed in Sec.5. The two dimensional equation
has vortical monopolar solutions and Rossby wave in rotating atmosphere
is one of another examples. Starting from the one—-dimensional solution
(K-dV soliton solution), possible extension to an analytical closed form
of a two dimensional solution has been discussed by F. Spineanu et al.
based on so-called the Flierl-Petviashivili equation (Ref.40) aésociated
with the generation of radially localized layers of sheared flow (zonal
flow). In plasma physics, the Flierl-Petviashivili equation has the form

Ap = ag - Bg?, (6-4-4)

where a, B are physical parameters, which are function of x and y. When
3*[ox* << 3*/dy*, (6-4-4) is simplified and the solution can be obtained in

terms of Jacobian elliptic functions. In this case, we have the solution
3 .
¢<x,y>=(§)sech2[<w/§/2)y1, (6-4-5)

where the dependence on x is only parametric, through coefficient a, B.
The properties of the elliptic functions will be discussed in Appendix.
This solution (6-4-5) has the same form as the K-dV equation. Using the
method of positions of the singularities, a class of new exact solutions
of (5-4-4) has been discussed in Ref.40. The solutions are periodic and
have the geometry of zonal flow, namely, it has a one-dimensional geometry
consisting of layers of periodic flow with an orientation in the (y, x)

plane. Amplitude of perturbed potential is plotted in Fig. 41.

Fig. 41 Amplitude of normalized perturbed potential, e¢/T
in (x, y) plane (from Ref. 40)
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(3) Nonlinear drift wave in a collisionless nonuniform plasma

A noﬁlinear theory of the collisionless drift wave developed in a
planner geometry with an arbitrary one-dimensional density profile. Since
we consider the low—preésure collisionless plasma with T,/T;>1, the
electrons follow a linearized Boltzmann distribution. For the ions, we
solve the drift kinetic equation. The following set of equations are
employed (Ref. 41)

n, =n,exp(e¢/T,), (6-4-6)
ﬁ.,.v”f?f,.,.l f&i__afg]i}_i@i=o, (6-4-7)
ot ox B dxdy dydx Mdzav,
V) $+V 5V, ¢=dneln, - [ fdv}, (6-4-8)
where
g, =1+4xMn/B*. (6-4-9)

It should be noted that we have to solve the Poisson equation (6-4-8) by
using the guiding center coordinates provided we solve the drift kinetic
equation (6-4-7), which is described by the guiding center coordinates in
a same way for Poisson equation. Although the distribution function can
be described in the guiding center coordinates, the real coordinates
essentiallylwrite the potential. Since we solve the drift kinetic equation
described by the guiding center coordinates, we have to write the Poisson
equation in the same guiding center coordinates like (6-4-8). The second
term in the perpendicular component of dielectric tensor (6-4-9)is
associated with this situation.

If we introduce the following stretched coordinates,

x=x, E=e"(y-s1), ¢=¢z, T=£", (6-4-10)
and assume the first order of the potential in the form
¢V (x.8,6,7) = W(E,5,7)8(x), (6-4-11)

we have the following equations
d . 9 d MQ}
EX—{N(E—T)Z + no}ag(x) - no(x)(l -

p [4

v.(x)

S

)g(x) =0, (6-4-12)

2 2\qs2 2 4
gEor | OE ac® g
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Here, v, (x)=—(T,/eB)(I/n,)dn,/dx is the drift velocityv, g (x) should be
solved as eigenvalue problem for given density profile and we get the
eigenfunction g (x) and eigenvalue s by solving (6-4-12). This corresponds
to the case of localized modes in plasmas with strong inhomogeneity. The
time evolution with slow variation with (£,¢,7) is determined by (6-4-13).
~ Although the explicit forms for a,B,7,6 are given in Ref.41, these
coefficients are determined by integration form of the eigenfunction g (x)
and eigenvalue s. Without the third term due to ion motion along x—direction,
(6-4-13) reduces to the K-dV equation as was discussed in Session 5. 2.
Assuming we consider the solution in wave frame as y=y(n=&-Ar) and
rewrite (6-4-13) in a dimensionless form, we obtain

‘Zf - Z:f + 6‘?:;’; + Z:;f =0. (6-4-14)

The equation (6-4-14) is a Boussinesq equation, which is well known in
fluid dynamics (see, (5-5-4)). We can solve (6-4-14) and finally obtain

the 2D soliton solution

K’ 5 1
= Tsech [5 (kn-Pc +o]. (6-4-15)
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Appendix

“Elliptic Functions”

We here explain briefly the elliptic functions, which has been discussed
in Sec. 2.2, (see, (2-1-6)) and associated with the solution of K-dV equation
in Sec.5.1 and 5.2 and Flierl-Petviashivili equation in Sec. 6. 4.

One of the classical problems of nonlinear analysis is the determination
of motion of both linear and nonlinear pendulum. In general, the analysis
of nonlinear pendulum requires the introduction of transcendental
functions like elliptic functions. As was discussed in Sec. 2.2, the
solution of nonlinear oscillator with the cubic polynomial nonlinear force
(2-1-4) is given by the elliptic function (see, (2-1-6)).

Here, we introduce two typical elliptic functions, namely, complete
elliptic integrals and Jacobian elliptic functions.
As an example of the complete elliptic integrals, we consider the undamped‘
pendulum, which is described by

0+sin@=0 , (A-1)

where 6 is the angle of pendulum. The integration of (A-1) is given as
%92 ~cosf = E = —cos2a), (A-2)

where the integration constant E is assumed to be E<1 and a is a constant
giveﬁ by 2a=max8(@=0). If we introduce the variable ¢ through the
relation,

sin(0/2) = sin(a)sing, (max ¢ = x/2), (A-3)

we finally obtain the following relation
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¢ = cos(6/2) = [1 - sin*(0/2)]"* = [1 - k2sin*¢]"* , (A-4)
wherek = sin@;, k* <1. Integrating (A-4) yields

¢
t—ty= [[1- K*sin*0T"*d6
°, (A-5)
F(p.k)= [[1-k*sin*0T"*d0
0

Here, F(¢,k) is called the elliptic integration of the first kind.

Next we discuss the Jacobian elliptic functions. To do this, we consider

the K-dV equation, u, +6uu, +u_ =0. If we study a moving frame solution

of K-dV equation in the form u(x,f)=u(y=x-At), K-dV equation reduces to
—Au+6uu'+u" =0 , (A-6)

and integration of (A-6) vields

%u’2+u3—%)w2+Au+B=O, (A-7)

where A and B are the integration constants and are determined by the

boundary condition. Introducing a potential V (u) as

V(u) = u3—%)w2+Au+B=8u—a)(u—b)(u—c), [a>b>c]. (A-8)

The potential V (u) versus u is roughly plotted in Fig. 42.
V(u)

I\O

/c AN v

Fig. 42 Potential V (u) versus u

It should be noted that there is an oscillatory solution for a>udb. From
(A-7), we obtain

jv du
" (a-u)(u-b)u-c)

- ij\/idy, (A-9)
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~ which yields

2 _ o (1/" u ) V2(y=yo) k=22, (a-10)
a-b a-b’ a-c

where sn (z, k) is called the Jacobian elliptic function. We finally

have the solution of K-dV equation

u(x,f)=b+ (a—b)cnz[w/az;c(x - At =xy),k]. (A-11)

We call this type of propagating wave the cnoidal wave. If we search a
solution, which satisfies the boundary condition, u=0,u’'=0 as y->o,
A=B=0 and b=c=0 and a=A/2, then (A-11) reduces to

u(x,t) = %)\sechz(%ﬁ(x - M- xo)), (A-12)

which is the soliton solution discussed in (5-3-3), (6-4-4) and (6-4-15).
Noting that in this case, k tends to unity, we have the asymptotic form
of the elliptic function cn(u, k=1)=sech(u). Using these properties of
elliptic functions, we easily obtain (A-12) from (A-11).

Calculations involving the elliptic functions are complicated because
of he lack of suitable tables of formulas. Here, we summarize some formulas
in connection with the topics discussed in this lecture.
Complete elliptic integrals
a) First kind:

K=K(k)=’_’f de' =f & ,

o VI-kZsin®0 o J(1- x2)(1 - K*x?)
b) Second kind:

(A-13)

xf2

2 2
E=E(k)= f V1-k%sin*6d6 = f Lk (A-14)

c) Third kind:

I(y,k) = ’f 46 | = f dx (A-15)
T 0 (it )= Ksin® ) (14 (1 - 21 - k22

It should be noted that the adiabatic invariant form in tokamak and helical
configurations are expressed by these complete elliptic integrals.

Particularly, the adiabatic invariant form in the helical configuration
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with strong helical ripples is described by the combination form of first

kind and third kind elliptic integrals (see, Ref.42).

d) Expansions in series:

K(k)=£(1+ik2+ik“+ ....... )  (k<<1)
2\ 74" Tea

(A-16)

T 1 9 k*
E(kh)==|1-—k*-Z—— ... L (k<<1
(k) 2( 4" "6 3 ) (k<<l)
e) Limiting forms:
K(k)->log 4 —, E(k)->1, (k->1). (A-17)
1-k

f) Associated complete elliptic integrals:
We call k the‘modulus and the k' is referred to the complementary modulus
through the relation, k’=m,
K'(k)=K(k"), E'(k)= E(k"). (A-18)

g) Derivatives with respect to the modulus:

dK E-k*K dE E-K

dk Kk dk k

b

p p 5 (A-19)
—(E-k*K)=kE, —(E-K)=-—
dk ( ) dk ¢ ) k"*
Jacobian-elliptic functions
a) sn(u), cn(u), dn(u) functions:
¢ sing
ue [—2___ & (A-20)
o V1-k2sin®0 o /(- x?)(1- k*x?)
sn(u) = sing = sn(u,k), cn(u)=cos¢ =cn(u,k),
¢ ¢ : (A-21)

dn(u) = V1 - k*sn’u = dn(u,k)
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b) Limiting forms:

sn(u,0) = sin(u), cn(u,0) = cos(u),

: (A-22)

sn(u,l) = tanh(u), cn(u,l) =dn(u,l) = sech(u)

c) Expansions in series:
K>=m, 1-k*=m, k' =m,,
) e () (1 14+ m?) L
sn(u)=u-( +m)—3T+( +14m+m )5— ......
u? u'

cn(u) = 1--2—!+(1+ 4m)—‘-g-— ....... , . (A-23)

dn(u)=1- m_-+ m(m + 4)1—— .........
d) Differentiations
i(sn(u)) = cn(u)dn(u), i(cn(u)) = —sn(u)dn(u),
ou du
i(dn(u) = —k*sn(u)cn(u),
ou .
J _ dn(u)en(u) ” 2 _ cn(u) _
P (sn(u)) = —————-——kk,z [FE(u)+ k" u+ k*sn(u)cd(u)], cd(u) dn(u)’ (A-24)
9 _sn@dn(w) _ i
o (cn(u) = e [-k"“u+ E(u) - k“sn(u)cd(u)],
J _ ksn(u)en(u) T _ sn(u)
pn (dn(u) —k'2 [E(u) - k"u-dn(u)tn(u)], tn(u) on()

e) Relations between the squares of Jacobian elliptic Functions
sni(u)+ cn*(u) =1, dn*(u)+ k*sn*(uw) =1, dn’(u)-k*cn*(u)=1-k* (A-25)
f) Double and half arguments

sn2u) = 2sn(uen(Wydn(u) - Qu) = cn*(u) - sn*(u)dn®(u)
1-k*sn*(w) 1-k*sn*(u) ’
o dn®(w) = k>sn*(u)en® ()
dn(2u) = 1-k2sn* (u) ’
snz_l_(u)= l—cn(u)’ cn21(u)=dn_(u)+L(”), . (A-26)
2 1+ dn(u) 2 1+ dn(u)
dn? —l—(u) _ 1-k* + dn(u) + k’cn(u)
2 1+ dn(u)
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h)‘Additional theorems
sn(u)cn(v)dn(v) + sn(v)cn(u)dn(u)

sn(u+v) = 1-k*sn*(u)sn*(v) .

_ en(u)en(v) = sn(u)dn(u)sn(v)dn(v) :
cn(u+v) = = om0 , . (A-27)
dn(u+v) = dn(u)dn(v) - k*sn(u)cn(u)sn(v)en(v)

1- k*sn®(u)sn*(v)

The detailed formula discussed in the Appendix have been discussed in Refs. 9,

10 , 43 , other books and mathematical tables.
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