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Plasma Waves and WKB Method
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Heiji Sanuki
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Abstract

In this series of lectures, an attempt giving an introductory
presentation of a variety of complementary methods and viewpoints that may
be used in the study of broad spectrum of linear and nonlinear phenomena
is presented. The organization of this series of lectures consists of the
three perspectives such as (1) mathematical tools of nonlinear phenomena,
(2) plasma wave analyses, WKB Method and related Topics in inhomogeneous
plasmas, and (3) topics associated with the bifurcation phenomena in
plasmas.

Second, selected topics on nonlocal analyses of plasma wave and WKB
( Wentzel- Kramers— Brillouin) method in inhomogeneous plasmas are

presented in this article (Lecture Series—II).

Keyword: Linear plasma waves(electrostatic and electromagnetic modes),
local and nonlocal dispersion relations, nonlocal stability
analyses, integral equation in K-space, WKB methods, direct
numerical integration method, saddle point method of
integration, asymptotic behavior near turning points,
temperature gradient instabilities( sheared slab and toroidal

ITG, ETG, SWITG and SWETG)
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1. Introduction
An enormous number of particles and lots of modes are contained in

plasma systems. Mathematical models are often discussed based on
assumptions and simplifications. Considerations from these models have
formed the basis for the study of plasma waves involved in systems under
consideration in this lecture.

These modes and models are characterized according to the following
key features:

(1) Modes are the electron modes or ion modes, and also electrostatic
or electromagnetic modes,

(2) Modes propagate in the parallel or perpendicular direction to the
magnetic field,

(3) Modes are the collisional or collisionless,

(4) Magnetic field is uniform or nonuniform (magnetic shear),

(5) Electric field is homogeneous or inhomogeneous (velocity shear),

(6) Density or temperature, or both density and temperature are homogeneous
or inhomogeneous (density and/or temperature gradients),

(7) Plasma is composed of electrons and ions, or together with other
components such as impurities, trapped particles and energetic
particles (ions or electrons),

(8) Local or nonlocal,

(9) Linear or nonlinear,

(10) Other features.

In addition, it is usually employed to restrict the range of parameters
under consideration and also some assumptions are made in order for an
approximate dispersion relation to be valid. In particularly, various
analytical methods have been discussed to study the stability of
microinstabilities in inhomogeneous plasmas. Typical these methods are
the analyses to solve the local dispersion relation, eigenvalue problems
based on differential equation and integral equation in real space or wave

number space (k—space). To solve these problems, the WKB method and



numerical analyses such as shooting method for differential equations and
direct numerical integration method for integral equation were
investigated. Analytical methods based on the second order differential
equation yield lots of information associated with stability
characteristics and the WKB method based on differential equation in the
configuration space is also well developed. It should be noted that this
method is not applicable to the stability analysis in short wavelength
regime because it is based on the assumption, kp<<1, where k is the wave
number in the inhomogeneous direction and p is the Larmor radius. Then,
the eigenvalue problems based on the integral equation should be solved
to get more precise information of stability feature of the waves.

As mentioned above, the success in solving the integral equation has
come from two approaches: WKB method [1-4] and direct integration methods
[5-8]. In the WKB method, an eikonal form [9] is postulated for the
eigenfunction, and the integral is done analytically by the method of
steepest descent. The algebraic equation must then be solved numerically
along with a quantization condition to determine the integration contour
of the eikonal. In direct numerical integration, the integral equation is
reduced to quadrature, turning the integral into a numerical matrix
equation. The two methods are complementary in that they work best at
opposite ends of the k—space spectrum. Eigenvalue analyses based on the
integral equation in k—space have been extended into multi—species plasma
[10], electromagnetic modes and drift waves in cylindrical plasmas [11].
This method is applicable to the stability analysis of highly localized
modes in case of kp=1. It should be noted that the analysis based on WKB
method is restricted to the case of weakly unstable modes. Recently,
intensive research attention is focused on understanding the anomalous
transport in magnetically confined plasmas. Experimental evidence shows
that this anomalous transport is governed by short wavelength mode
turbulence. So, the drift waves such as the ion temperature gradient (ITG)
mode and also electron temperature gradient (ETG) modes are actively

studied with a gyrokinetic integral equation codes in sheared slab plasmas



[12-15].

In the next Chapter, the stability analysis based on the local dispersion
relation is briefly surveyed. In the chapter 3, eigenmode analysis (WKB
solution) based on 2™ order differential equation will be discussed.
Eigenmodes analysis for both electrostatic and electromagnetic modes based
on integral equation in k—space is introduced in Chapter 4. Both the WKB
method and the direct numerical integration method will be discussed in
this Chapter. Also, asymptotic behavior near turning points in k—space will
be discussed. Chapter b5 will be devoted to examples of nonlocal stability
analysis based on integral equation in k—space. The Concluding remarks will

be presented in the last Chapter.

2. Stability Analysis based on “Local Dispersion Relation”

An assortment of plasma modes appears often in plasma textbooks. Modes
are identified sometimes by the name of their discoverer or by a descriptive
name, but more frequently they are identified by so called dispersion
relation. Since a several of approximations are applied to obtain
relatively simple dispersion relations for these modes, the mutual
relationships between different modes are usually not straightforward. One
of the elegant representations of these modes is so called

“Clemmow—Mullaly-Allis Diagram (CMA-Diagram). In this diagram, a
particular mode may be identified with an entire wave—normal surface, and
the surface can be traced in the parameter space until it disappears due
to the appearance of a cutoff or a resonance. (See, Ref.16) We have
essentially two approaches, namely, fluid theory and a more refined
treatment— kinetic theory. In general, the kinetic approach requires more
mathematical calculations than the fluid one. In some plasma problems,
neither fluid nor kinetic theory is sufficient to describe the complicated
behavior of plasmas because we have to fall back on the tedious process
of following the individual particle trajectories. Although it can solve
only problems often in one or two dimensions, computer simulations may play

an important role in these problems. Other lecturer will give the lecture



associated with this topic.

As an example, we here consider the dispersion relation in inhomogeneous
plasmas. For simplicity, we employ the slab geometry with uniform magnetic
field l%éz, which is along the z-direction. Also, the density and
temperature change only in the x—direction, namely, (Vn)e, (VT)e, where
éwéwéz are the unit vector along x, y, z—directions, respectively. If we
discuss the low-f collisionless plasma, and also neglect the magnetic
compression effect (A, =0) and modes propagate in y-z plane (£==leyk),
the perturbed fields are given approximately under these conditions as

E=—V¢-1%éz, B=Vx(Aé,), (2-1)
c ot

and we express the scalar and vector potentials in the following Fourier
expansion form

{((F,0,AG,0} = {§(x), A(x)ye ™", (2-2)
where k-7=ky+kz. Substitution of (2-1) and (2-2) into Maxwell and
Poisson equations yields the following relation (Ref.17)

(k2+Q—P (w/kc)P ¢

“|=0. (2-3)
~(w/k )P k*+(w/ke)P)\A

From the determinant of (2-3), we have the following dispersion relation
2
pll %

k.c

0- k2] +k°0=0, (2-4)
where we neglected k> term compared with Q-P term in the (1,1) metric
component of (2-3) on the basis of the assumption, k2<s<kd2, in which
k,’ = (4mne®/T) is the Debye wave number. The explicit forms for P and Q
in (2-3) or (2-4) are defined as (see, Esq. (2.9b)-(2-10) in Ref.17))

, w,

Ye ' ILW —

1
n(=-¢’W)e™l,}, (2-5)
w w 2

P=k {1+

a)*

=Sk -+ Pty -
0 E{ e

ge—blo} , (2_6)

where vT2=(2YVn0 is the thermal velocity, b==k;;f/2, I (b) is the nth
order modified Bessel function (n=0, 1,2--:). In (2-5) and (2-6), we define



the following notation,

y kv
W=wlk|v,)=|dv. ——=—F =-1+cZ(<)], (2-7)
(s =affklr=J TR O
with the abbreviation of
1 exp(-x?)
Z(c)= dx , (2-8)
©O-gla

which is the well-known dispersion function. We also used the notations

1,()

1, n=VInT/Vinn, (2-9)
1,(b)

. m[l—%n(n 01, x=2b{1-

and F,=(m/2Tm)?exp[-(m/2T)v.*] in (2-7) 1is the z—component of the
Maxwellian velocity distribution function and ¢u*=(CTVqBXVﬁ%/kay in
(2-9) 1is the diamagnetic drift frequency. It should be noted that the
dispersion relation (2-4) with (2-5) and (2-6) is the general form of local
dispersion relation in inhomogeneous plasmas and it includes lots
of modes such as the drift waves and temperature gradient modes. It should
be noted that we have electrostatic modes in case of f<<m,/m, and
electromagnetic modes for m,/m;<p <<1. We note that plasma dispersion
function W(¢) instead of Z(¢) is often used in Russian textbooks (see,
(2-8) and (2-9)). Taking the electrostatic limit, A—=0, w/kc—0, the
dispersion relation can be simplified to be a dispersion relation for
electrostatic modes,
(k> + Q- P)p(k) =0, (2-10)

and for A =0, (2-2) becomes (3x3) metric equation

M, M, M,|¢

M, M, M,|A |=0. (2-11)

M, M, M;|A,

We finally obtain the dispersion relation from det(M;)=0.

3. Eigenvalue Analysis based on Differential Equation

For simplicity, we here consider the eigenvalue program for



electrostatic modes in inhomogeneous plasmas based on the differential
equation. If a quasiclassical approximation is employed, we can express
perturbed quantities as

$(F.1) = pexpli( [ k,(x)dx'+ k,y + kz - )], (3-1)
where x is the coordinate in the direction of inhomogeneity. The local
dispersion relation in this case is given by

ek, (x),k, K ;) = 0, (3-2)

from which we can determine the frequency w as a function of k}(x),ky and
k, . Although this type of dispersion relation may give us certain
qualitative information, we cannot determine the frequency
quantitatively because the spatial structure of k (x) cannot be determined
by the local dispersion relation. The standard treatment of eigenmode
analysis in inhomogeneous plasmas is the following. We first replace
k.(x) by id/dx in the local dispersion relation such as (3-2) and then
expand it up to the second order with respect to kp with kp<<I1. We finally
have the following second order differential equation

d*¢

5=
X

P(x,k,,k ;0)p(x)=0. (3-3)

In the derivation of (3-3), we used some useful relations associated
with the dispersion function Z(s) and modified Bessel function [,(b) in

the forms (Ref.18 and Ref.19).

1) Differential equation for Z(c=x+iy):
2
Y2 _ i+, d—f+2gd—z+22=o, Z(0) =ir. (3-4)
ds ds ds
2) Real argument (y=0):
Z(x)=e ™ [iWm -2 [ dte" 1. (3-5)
0
3) Imaginary argument (x=0):

Z(iy) = iNmw exp(y)[1 - erf (V)] (3-6)

4) Power series (small argument) :



2(6) = i exp(=¢?) —2g[1—§g2 + %g‘* el (3-7)

5) Asymptotic series (k|>>1)3

_i ey e L3 .
Z(g) = imoexp(-¢?) g[1+ R -, (3-8)
where o=0 (y >1/|x), 1 (|y|<1/|x), 2 (-y >1/|x|).

For the terms including the modified Bessel Function, we have the

following power series and asymptotic series formulae

6) I,(b)e™” <1, (for all of b). (3-9)
) I(b)e’ =1-b+.., (for b<1). (3-10)
8) I,(b)e’ =1/\2mb + ..., (for b>>1). (3-11)

We note that we used the power series expansion (3-10) in the derivation
of (3-3). Since kp<<1 is assumed for the derivation of (3-3), this method
becomes inappropriate for strongly localized modes with k p=1. Eigenmode
analysis applicable to the case with k p=1 has been developed based on an
integral equation instead of the differential equation, which will be
discussed in the next Chapter.

The eigenfrequency w is determined from the localization condition
(well known quantization condition in quantum mechanics) for the solution

of (3-3).

3.1 WKB solution
We here discuss the WKB analysis on the basis of the second order
differential equation. For simplicity, we consider electrostatic modes in

inhomogeneous plasma, which is described by
d*¢

2~ 2@9=0, (3-12)

where 9(2) is the electrostatic potential and 0@ is complex in general.

We now define the two turning points of ¢(2) in the complex plane, <% and

%, where Q@) =0(2,)=0_ 1 one define a curve Cas Q@ =X +1.) is real

10



along C, then Q@)<0(z<z,<2) and Q2J)>0(z, <2,2,>2) We finally
obtain the WKB solution as

$(z.) = Y A0 (z)expl= le/ *(2)dzl, (3-13)

21522
where A, are constants and this solution is valid on gz, far from gz,z,.
The derivation of this type of WKB solution for differential equation such
as Schrédinger equation will be discussed in Appendix [1]. Eigenvalue
relation can be derived from the connection formulae between the solutions
of inside and outside of turning points, in other word, from the existence

of the solution along z, for which ¢(z,) =0 as z — o,
[1-0Gz)17dz, = w(n+1/2), (0 =0,1.2,....). (3-14)

The relation (3—-14) is called the Bohr—Sommerfeld quantization condition.
Typical example of Stokes line, anti—-Stokes line, branch cuts and

corresponding eigenfunction are roughly illustrated in Fig. 1.

70
/
Z - plaone //
/
A /
\\p‘ Za\ R.Z
\\ / P2\~ e
A4S = \‘
l ~
C *TmQ(2):0
--—-— Anti-Stokes Lines
. 8ranch Cuts of Q¥2(2)
//
8
rO(X)
i 2~
P \\
R AW AWAY VAW AW AW AR,
S GVAVAVAVAVAVE =i
~! e

Fig. 1 Turning points, Stokes lines, anti—Stokes lines, branch cuts and

corresponding eigenfunction are plotted (from[20]).
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Questions

Two questions arise in connection with the applications at hand.
Q1: Can ¢(z.) be analytically continued to the x-axis to give
desired solution ¢(x)?

Ans. @ From (3-13), we see that the answer will be “Yes” provided we do
not cross the branch cuts of the function VEXES emanating from the two
zeros in going from the curve C to the x—axis. This can be arranged by letting
the branch cut from z,z, joinat z=0o as shown inFig.1l. Then, we can write
approximately the solution along the x—axis as

o0 -3 4.0 Wexplz [0 ()l (3-15)

21,2

Q2: Does the solution ¢(x) go to zero as x—>=z»?
Ans. : To answer this question, we have to examine the exponential factor
near two turning points(see, (3-18)). Assuming that Q has the only

first—order zeros, near the turning point z,, we expand Q (z)
LY
0(2) =(z~- zz)(a—z)zw =(2-2,)0.,, (3-16)
and the exponential becomes

exp[](z—zz)vz\/Q_zzdz] =exp[%(z—z2)3/ZJQ_ﬁ]. (3-17)

In order for the solution to be completely oscillatory, the relation (3-17)

tends to
Re[%(z—zz)yz\/Q_ﬁhO. (3-18)

If one introduce the following amplitude and phase variables through

(z-2,)=pe'’, 2/3,)0., =Re™, the relation (3-18) reduces to

%

Re[R;<)3/2ei(a+2 )] =0 namely, a+§19 = (n+%)ﬂ, (n=0,12....). (3-19)

Therefore, near gz,, the exponential factors will be purely oscillatory
along three lines separated by angles of 2m/3. These lines are the

so—called “anti-Stokes” 1lines, which are also illustrated in Fig. 1.

12



It should be noted that when we can not expand Q(z) in the form of (3-15),
namely, the expansion fails far from the turning point gz,; we must use the

relation,
Re[]\/Q(z')dz'] =0, (3-19)

which determines the anti—Stokes lines. These lines are also defined for
the turning point gz and since we know that the exponent is purely
oscillatory along the curve C between z and z,, this portion of the curve
must be an anti—Stokes lines for both turning points. The significance of
the anti—Stokes lines lies in the fact that, for points in the z—plane other
than ones on these lines, the exponential factors change from one to other
when an anti—-Stokes line is crossed. In other words, if a solution is
exponentially decreasing in the region to the right of the line D, gz,, E,
for instance, it will be exponentially increasing in the region above A,
7, 2z, and D or in the region below B, gz, z, and E. Since ¢(z,) is
exponentially decreasing along C outside of gz and z,, the analytically
continued solution, ¢(z), is also exponentially decreasing in the regions
to the right of D, z,, E, and to the left of A, gz, B. Therefore, the answer
to the second question is also “yes” , that is ¢(x) =0 as x —=zo0, if the
relation (3-14) is satisfied, provided the x axis lies in these same regions
as h|—>ax This statement is equivalent to requirement that the anti—Stokes
lines A z; and z,E cross the x axis at some points P, P,, respectively, as
was shown in Fig. 1. Examples how to derive the WKB solution and
corresponding eigenvalue relation in some 1imiting cases have been studied
in [20].

As for the mathematical discussions associated with the WKB solution
for differential equations, in general, the structure near turning point
is not always simple one in the case represented by (3-16). Extended
theories for the WKB solution, which are applicable to more general cases
with complicated potential structure, have been discussed by many authors
[Refs. 9, 21,22,23,24 and 25]. In Ref. [9], N. Froman discussed the

double-well potential problem according to the general theory for higher

13



order approximations of the WKB type approach and derived the generalized
quantization condition, which is not always same as (3-14). In order to
check this situation, we study the quantization condition by considering
the example of a one -dimensional square well with infinitely high walls.
In this case, we have the following quantization condition [Ref.21]

[k,dx=k,L=(n+Dm. (3-20)

The right hand side of (3-10) is different from (n+1/2)x. Here, L is the
width of the well. Also, we see that when we consider the quantization
condition for the Coulomb radial wave functions based on the
quasiclassical approximation, the right hand side of the quantization
condition reduces to (ntl) for [=0 and (n+1/2) for [=0. Detailed

derivation will be discussed in Appendix II.

3.2 Matching of quasi-classical functions

We here discuss how to match the quasi—classical wave function in the
acceptable region to the wave function in the evanescent region. As an
example, we employ the wave potential shown in Fig.2, where the origin of

coordinates corresponds to the point in which V (x)=E.

T+ V)

A__ ___E

V(x)

Region I Region JL.

> X

Fig. 2 Wave potential profile is plotted. The region I (V (x)>E)
is the evanescent region and the region Il corresponds to

the region accessible in the classical mechanism.
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The quasi-classical solution in the region Il in Fig.2 is given as from

(A1-7) and (A1-8),
@= %exp(i{kdx) + %exp(—i{ kdx), (3-21)

while it is in the region I

b | b [
@ = —=exp, |k|dx) + —2exp(— |k|dx). (3-22)
freo{ o fresl-f

If the solution would be an analytic function of x around x=0, we have to
continue the solution analytically from region II to region I to determine
the relation between q,a, and b,b,. It should be noted that we can not
pass fromregion II to region I along the real axis since the quasi—classical
approximation may break down in the neighborhood of x=0, in other word,
as was mentioned in Appendix I, the condition klI>>1 is not fulfilled
because k(0)=0 there. However, we will be able to overcome this difficulty
by going around the point x=0 in the complex plane along an arc of large
radius. To evaluate an appreciate radius of an arc in complex plane, we
expand the potential V (x) around x=0, V(x)=E +V'(0)x. Then the momentum
K (x) is given as k(x)=\/W=on/;, where azmzko/l with the
abbreviations of k0=‘J§Ef and [ is the distance over which potential
changes appreciably. Therefore, we finally obtain the following relation
for the arc radius in order that the quasi—classical approximation should

be applicable,

W << xl << l (3_23)
0

Although we can find the matching condition around x=0 from the properties
of the Airy function, which will be discussed later, we here derive these
relations from a different approach instead of the method based on the Airy
function.

We choose the radius p of the arc around the point x=0 of order of x,,
which is shown in Fig. 3. By taking the potential to be linear with respect

12

to x, we have approximately k(x)=ax’". Since in the complex plane we can

put A:=;xf¢, we easily obtain the relation

15
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Stokes lines //

\/
/ 4TL
// 3

Fig.3 Integration path around x=0 point in complex plane

——exp ifkdx I exp[zap3/2(icosé(p—siném)]. (3-24)
0" 3 277

As we go around the circle of radius p in the upper plane as shown in Fig. 3,

i 32 . . . .
23" o6es over firstly into s decreasing exponential and

the expression e
then, after crossing the line ¢ =2m/3, which is shown by dotted line in
Fig. 3, into an increasing one. As soon as the increasing exponential appears,
an exponential small error may come due to the inexactness nature of the
quasi—classical approximation. It should be noted that the analytic
continuation procedure gives us only the coefficient of the increasing

exponent. Consequently we get

1 : T 1 ¢
— i( | kdx -=)]— kldx], (3-25)
@exp[z<{ =) i\/mexp[[llx]

where we lost a term, which is exponentially small compared with the
right—hand side of (3-25). If we go around the point x=0 in the lower half
plane, the solution (3-25) goes over firstly into an increasing exponential,
and then goes into a decreasing one after crossing the line ¢=-2x/3.

The exponentially small correction lost in the region -2m/3<@<0 due to

16



quasi—-classical approximation goes over into an exponentially large term,
after cross into the region -m<g@<-2m/3.
Suppose that there is only a decreasing exponential in the region (V>E),

namely,
1 0
= Wexp[—ﬂﬂdx]. (3-26)
On the other hand, the solution for VKE is given as

Y= f/%exp[szdx Q]+ %exp[ lfkdx+zq02] (3-27)

We are now in the position to find the coefficients C;,C, and the phase
factors @@, in (3-27). To derive those constants, we have to continue the
decreasing solution (3-26) into the region with x>0. The analytical

continuation of (3-26) in the upper half-plane yields

1 0
W= —exp[- |k|dx]
Nl

ein/4

- T

For ¢=0, we get the second term in (3-27) with ¢, =m/4, C,=1. Also, the

32

exp[- szdxﬂZ] (sing(p—icosgcp)]. (3-28)

analytical continuation of (3-26) in the lower half-plane gives
-in/4
e

1 y T 2
—expli | kdx —-i—] = ———=exp[—-«
" p{ 7 plSop

apl/Zel(p/él

Comparison between (3-27) and (3-29) gives the relation ¢, =x/4, C, =1.

3/2

3 3
—sin=@+icos—@)]. (3-29)
( ZCP l 290)]

The detailed derivation of the connection formula between region I and

region I as shown in Fig. 2, was discussed by Bohm [28] and Schiff [29].
When we carry out the analytical continuation of the solution (3-26) in

the region I into the one in region II (see.Fig.2), we finally obtain

the formula

1 r 2 r m
Wexp[— f |k|dx] Wcos( { kd _Z)' (3-30)

Although the quasi—classical solution of the Schrédinger equation (Al-1)

in the case of the potential as shown in Fig.2 is given by

17



/6
\/IkT (f |’<|dX) All(-x/|x)(3/2 f Ik|dx)?°1, (3-31)

where Ailz] are the Airy function and the asymptotic expansion form

z>0 and z<0 are given as [23, 30]

A,,(Z)oc%n-lﬂz-‘“exp(_%f/z), for z>0, (3-32)

A(2) xx(=2)™"* cos i( 1)3/2——], for z<0. (3-33)

The asymptotic behavior near turning point can be studied based on the
formula (3-32) and (3-33) and will be discussed later.

For the potential profile as shown in Fig. 2, from the properties of the
Airy function such as (3-32) and (3-33), we get the following connection
formula (right matching condition) (see, Ref. [29])

1 1
exp[hfkdx im/4]— exp[JWkpk]+ ——exp[- jWkM&], (3-34)
K h/|k| 1/|k|

1 X
——expl-i | kdx +im/4] — expl [ |kldx]+ —=exp[- [ |kldx].  (3-35)
poelif T i o It

From these relations (3-34) and (3-35), we easily obtain the relation
(3-30).

3.3 Quantization condition
To derive the so called the quantization condition, we here consider the

potential as shown in Fig. 4.

A V(X)

Fig.4 Potential profile V (x). Here, x, and x, are the turning points.
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The quasi—-classical solution of the Schrédinger equation can be written
by matching the oscillating solutions to the exponentially decreasing ones
at x, and x,. The requirement that the two solutions should be identical
yields the quantization condition.

These two solutions are given as

4 cos fkdx—ler , Y, = &cos(fkdx—Czn , (3-36)

N N

where Cm(C,r) is the phase resulting from matching to the decreasing

exponential for x<ux, (x>x,), respectively. It should be noted that

C,=1/4, C,=1/4 in cases where the potential has a linear dependence near

the turning points, x=x, x=x,. Finally, the requirement that the two

solutions should agree, gives the following quantization condition
[kdx=(n+C +C)m . (3-37)

In the case where the potential has a linear dependence near the turning

points, x = x,, x =x, as mentioned above, (3-37) reduces to the well known

quantization condition (3-14).

4. Eigenmode Analysis based on Integral Equation in K—-Space
Since the effect of resonant wave—particle interaction and finite Lamor
radius effect play an important role in plasmas, an eigenmode analysis
including these effects in an inhomogeneous plasma is particularly
important for studying stability, transport, heating of magnetically
confined plasmas. As mentioned in the introduction, the conventional
eigenmode analysis based on second order differential equation is
applicable only to the case kp<<l, whereas a systematic method for
eigenmode analysis of electrostatic waves has been developed based on an
integral equation in the wavenumber space (k—-space). This method has an
advantage where it can treat the case kp=1. When the plasma beta value
becomes large, microscopic low frequency modes are accompanied by magnhetic

perturbations. However, an analysis for electromagnetic waves 1is
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substantially difficult than that for electrostatic waves, since the former
requires solutions of coupled and/or vector equations, whereas the latter
needs only a scalar equation for electrostatic waves.

There are two key problems in the eigenmode analysis based on an integral
equation: (1) derivation of integral kernel, (2) development of numerical
scheme to get the eigenfrequency. As for the derivation of integral kernel,
an efficient method to obtain the integral kernel has been discussed for
the case of a Gaussian density profile in a uniform magnetic field. [1, 2]
although it is not so easy to obtain the integral kernel for a general
density profile. For the modes with low radial mode number, the direct
integration method gives the eigenfunction and eigenfrequency without
requiring much computer time. For the modes with high radial mode number,
the direct integration method requires an enormous computer time and memory
because a fine spatial structure of eigenfunction may appear. In this case,
we can apply a WKB approximation to the mode analysis. Although we discussed
the so—called Bohr—Sommerfeld quantization condition, (3-14) and (3-37)
for the second-order differential equation, a similar form of the
quantization condition has been derived based on the integral equation
method, which will be discussed later in this lecture. A generalized
quantization condition valid for the electromagnetic case is also discussed
by Berk and Pfirsch [31] and Watanabe et al. [32]. In [31], the WKB
approximation based on an integral equation in the real space has been
discussed. As mentioned in Sec. 3.2, the WKB approximation is invalid near
turning points. Therefore, Berk and Pfirsch rewrote the original
integration equation in the k—space and derived a quantization condition
in the form

Plk(x) + Sk(x)ldx = 2n + D, (4-1)
where Ok(x) denotes the electromagnetic correction which is absent in the
electrostatic case. However, the practical method to obtain
eigenfrequencies on the basis of (4-1) has not been discussed in [31].
A systematic numerical scheme to calculate the eigenfrequency from the

generalized quantization condition in the electromagnetic case 1is
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discussed in [32], which will be introduced briefly later.

4.1 Integral equation for electrostatic modes and
electromagnetic modes
We here discuss an eigenmode analysis for electrostatic modes with
kp=1 in inhomogeneous plasma. The analysis is based on an integral
equation instead of a differential equation. Expressing a perturbed

potential in the following Fourier integration form,
o(r,1) = j‘dkd)(k)exp(ikx +ik, y+ik,z—iowr), (4-2)
we can obtain the_following integral equation for ¢(k) as
F(k)p(k) = jK(k,k’)¢(k’)dk', (4-3)

where F(k)=k>+k,>+k, and we suppress the subscript x attached to the
variables k_and k;, which are the wave numbers in the direction of in
homogeneity (x). It should be noted that the kernel K(k,k) in (4-3) depends
not only on k_ and k; but also on k, ,k, and w, although they are not
explicitly written in the expression of K(k,k"). The integral equation for
drift waves in the plasma including hot electron component together with
the bulk components was derived in [10]. The integral equation for the Drift
Cyclotron Loss Cone (DCLC) mode in slab geometry was also discussed [33].
By assuming low—beta electrostatic plasma in a straight magnetic field with
a Gaussian density profile, an analysis of drift wave, drift cyclotron (DC)
waves and drift cyclotron loss cone (DCLC) waves have been discussed in
cylindrical geometry [11]. In the reference [11], we take the magnetic field
to be uniform in space and directed along the x—axis. Also, the equilibrium
distribution function for each species is chosen to be uniform in z and
cylindrical symmetric, with a density profile which is Gaussian in r, the
radial coordinate. Using a simplification associated with a decomposition

of the potential into azimuthal eigenmodes with the definition

27
¥ (k)= %ﬂ f da"W(k, e ™ . (4-4)
0

o
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The final equation is an integral equation in k=|k | for a single azumuthal
eigenmode of the perturbed potential

(k* + k/,z)‘l’m (k) = fdk'k“Pm(k’)K(k,k'), (4-5)

0
with the abbreviation of
i 22 _(k2 + k,z)Rz 12 12
K(k,k') = —Ejij R exp(f 21,(kkR e)l,,, (kk'R*[1-¢])B,, (4-6)
where
2 2
Bl =£+ £+M g[Z(g[) (4—7)
T, T, -1

Here, Z is the plasma dispersion function (2-8), I is the modified Bessel
function as mentioned in Sec.2, and T,(7,) the perpendicular (parallel)
temperature component, )/J.2 =,oj2/Lj2 , RJ.2 =LJ.2+,oj2 ( p;,L; are the the
Larmor radius and the guiding center scale length, respectively), and Rj
is the density scale length in the present cylindrical coordinate system.
The explicit expressions for other notations involved in (4-6) and (4-7)
are represented in [10].

We next consider an integral equation in the k—space for electromagnetic
modes 1in the nonuniform and magnetized plasma. For simplicity, the
zeroth—-order velocity space distribution function is assumed to be
anisotropic Maxwellian with Gaussian density distribution. After the

lengthy calculations, we obtain the following linear integral equation in

k—space for the electromagnetic waves

(C—2/€l€ - i)E(k) ~ < k(k- E(k))
w w

(_ (k' - k)*L;

L. - T \w .’ - _
= L | dk'ex K(k,k)+[1- =L |=2-N G' (5, )M ;(k,k)]E(K'),
Emf p [K(k,K) ( T,/j)szg (S )M (e KDE(K)
(4-8)
where I is the unit tensor, I%(k,k’) and A;I(k,k’) are the 3x3 metric

tensor, and E is the vector representation of electric field. If we apply

the following relations,
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E(F,t)==Vo(F,1), (k> +k.”+k,)p(k) = ﬂ% -Gk, k) k'gpk"y,  (4-9)
14103}

the linear integral equation (4-8) for the electromagnetic modes can be

transformed into that of electrostatic modes [34]

2 Vo,

L - (k'-k)’L*\w, >
(K + k> + k) )pk) ==Y —== [ dk’exp(— L | =2
~ 27 %,

%EG@”)I” O %(l ) %)E G'(s,)1,(b)Ig(k)).  (4-10)

n

x[1+

When we consider an isotopic temperature case, namely, 7, =7,, the integral
equation (4-10) reduces to the integral equation foe the electrostatic
modes (4-3), which has been discussed in [1,2]. Also, it should be noted
that the equation (4-8) could be transformed into the homogeneous local
dispersion relation for the electromagnetic modes, when the condition
L—0 is satisfied. The notation G(g,) and/or G'(s,) in (4-8) and/or
(4-10) is defined by Eq. (26.a) in [34].

4-2 WKB method

We are now in the position how to solve the eigenvalue problem based on
the integral equation, (4-3), (4-5) and (4-8). Here, we discuss a WKB method
for an integral equation although the WKB approach has been already

discussed in Sec. 3.

4-2-1 Eikonal function in k—-space and solution of integral
equation (electrostatic modes)
We consider plasma with special inhomogeneity in the x—direction,
and the inhomogeneous scale length k™' is of the order of L. Assuming that
the typical wavelength k is in the range with kL >>1; we can introduce an
eikonal function f (x) in the case of differential equation such as (3-12)

as
P(x) = exp(—ij J(x)dx), (4-11)

and one can determine f (x) in the form of an asymptotic series with respect
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to (kL)' and the eikonal function may give a “ Bohr-Sommerfeld
quantization condition” [9]. Also, we can introduce an eikonal function

g (k) in the k-space for the integral equation (4-3) as
k
$(k) = exp(i [ g(k")dk"). (4-12)

It should be noted that the eikonal function could be determined after
substituting it into the integral equation (4-3). The physical meaning of
the eikonal function g (k) is discussed in Appendix 3.

Substitution of (4-12) into (4-3) yields the following integral equation
© k'
F(k)= [ dk'K (k.k")exp[i [ g(k")dk"]. (4-13)
—o0 k

Here, we note that the integral equation (4-3) can be regarded as a three
wave coupling equation among k, k' and k, being of the order of L' where
K 1s a typical wave number of density inhomogeneity. Since a wave number
matching condition, k=k'+k is to be satisfied in the three wave coupling
process, the values of k' fall in the range M——kWslﬂ, where we assumed
the relation k1slﬂ.

If the relations kL>>1 and |k—k’|sL‘1 are satisfied, the eikonal
function g(k") in the integral of (4-13) can be expanded around k

g(k"y = g(k)+ (k" = k)g'(k) + O[L- (kL)1 + -+ (4-14)
where k indicates a position of the wave with wavenumber k, and g is of
the order of L. Also, we use an asymptotic expansion of the eikonal function
as
g(k) = g, (k) + g, (k) ++++, (4-15)

where g,(k), g(k),-- are determined to the order of (kL)",(kL)”, and so on,
respectively. Substituting (4-14) and (4-15) into (3-13) and using an
asymptotic expansion with respect to (kL)', we obtain

v
exp[—i f g(k"dk" = |1-i(k' - k)g,(k) - %(k’ —k)? % + O[(kI)]
k

xexp[—i(k' - k)g,(k)]. (4-16)

From (4-13) and (4-16), we finally get the following relations
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0=H(k.g)= [ K(k.k')exp[-i(k' - k)g,(k)ldk' - F (k), (4-17)

o ()= [ PHG0) Y H k2| dz(b) (4-18)
‘ 2\ g, g, dk
with the abbreviations of
Z—H =—i f (k' - k)K (k,k"yexp[-i(k' - k)g,(k)]dk, (4-19)
80
2
3;2 =—i f (k' - k)’ K (k,k"Yexp[-i(k' - k)g,(k)]dk . (4-20)

Equation (17) can be regarded as the Hamiltonian form in the (k, g)—space
and determines the zeroth order eikonal function g,(k) and equation (4-18)
gives the first order eikonal function g(k). We can obtain the higher order

terms of eikonal function in a similar way.

It should be noted that we could discuss a couple of different problems,
depending on a profile of eikonal function in the g (k)-k plan. Typical
three cases, namely, an elliptic function (Fig.5 (a)), hyperbolic functions

(Fig.5 () and 5(c)) are briefly illustrated in Fig.b.
2 9(R) + J(R) + 3R
N | S

VAL TN

) (b) ce)

B
P

R

Fig.5 Typical three types of eikonal functions, namely Elliptic (a),
hyperbolic (b) and (c) are illustrated.

Figures 5(a), 5(b) and 5(c) correspond to the cases associated with the
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localized solutions, the reflection and/or penetration of waves, and mode

conversion, respectively. These topics will be discussed in other lectures.

Using the eikonal function in the k—space, we next derive the quantization
condition, which determines the eigenfrequency of the waves in
inhomogeneous plasma. As we discussed in Sec. 3, the eigenfrequency of the
wave is determined from the condition for the existence of a spatially
localized solution. Although we discussed the localized modes in the
configuration (real) space in the previous session, we here restrict our

discussion to localized modes in the k—space in the following analysis.

Derivation of quantization condition in the k-space

As discussed in Appendix 3, the eikonal function in the k—space g (k)
denotes the x—coordinate of the wave with wave number k. From Eq. (4-17),
we obtain the relation between g, (k) and k for fixed w. In general, the
curve g=g (k) for a localized mode becomes a closed loop in (k,g,) plane.

A typical case is illustrated in Fig. 6.

x
*
=
~+
N
x

Fig. 6 Schematic plot of g=g (k) curve for a spatially localized mode.
Turning points in both configuration and k—space are also

illustrated.

In Fig. 6, x,(x,,) is the turning point in x— coordinate and k,(k,) is

the turning point in k space. In this case the solution of localized mode
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can be constructed by the superposition of two independent plane waves with
different k, in the range of k,<k=<k,. We next investigate a behavior of
the wave in the neighborhood of the turning points, where the expansion
of the eikonal function (4-15) breaks down. Using the Hamiltonian (4-17),

the turning points in the k—space are determined from the following relation

H(k,.g,) =0 =[dH (k.g,)/35,] (4-21)

k=k;.80=8, )

We note that k, and g, are complex due to dissipation effects in plasmas.
We here expand H(k,g,) around the turning point (k,, g) as
H(k,g,) = a(k-k)+b(g,-g)°, (4-22)
with
a=[0H(k,8))/ )y oey,» b=1/200°H(Kk.8))/ 98, Nicr ges, - (4-23)

where the relation (4-21) is used and higher order terms are neglected.
From (4-17), (4-18), (4-21) and (4-22), we obtain the expressions for g,
and g, as
2o(k) = g, = (~a/b) (k- k,)"*, (4-24)
i1
k)=-— . (4-25)
$O0="3n,

We note that the zeroth and the first order terms of the eikonal function
g (k) have a branch point and a pole at the turning point, respectively.
To discuss problems associated with the branch point and the pole, we have
to know the properties of a multivalued function such as (4-24).
Mathematical basis for a multivalued function is briefly discussed in
Appendix 4.

We introduce the branch cuts as shown in Fig. 7 and construct a Riemann
surface with two sheets in the k—space in order to make the eikonal function
g (k) single-valued. Two independent solutions, w,(k) and w,(k), which
correspond to the double values of g (k) as shown in eq. (4-24), may be

expressed as

P, (k) =exp[—i [ stkydk|, (4-26)

.G,
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where C, and C, represent two independent paths of the integration from
an arbitrary fixed point k, to k. The integration paths C, and C, are on

the upper and on the lower Riemann surfaces, respectively.

k;

~
—

Ky

Fig. 7 Branch cuts in the k—space and two integration paths C, and C,, which
give two independent solutions (k) and ,(k). The shaded lines
denote the branch cuts of eikonal function g (k), the solid curve
represents the path in the upper Riemann surface and the dotted curve

corresponds the path in the lower Riemann surface (from [1]).

Substitution of (4-15) with (4-24) and (4-25) into (4-16) and carrying

out the integration with respect to k yields
Yo (k=) explilg (k- )+ 5 Ca/b) (k- k) PTn (4-2D)

where the sign of the term (k——kt)3/2 should be chosen appropriately
depending on the location of k, that is either on the upper or lower Riemann
surface. Also, some integration constant factor is omitted in (4-27).
Although we discussed the anti—Stokes and Stokes lines of the differential
equation (3-12) in the configuration space in the previous chapter, we here
define both anti-Stokes and Stokes lines of (4-27) on the complex k—space

in the following way: the Stokes lines from the relation

Re gt(k—kr)+%(—a/b)l/z(k—kr)S/z =0, (4-28)
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and the anti—-Stokes lines from the relation
Im[g,(k—kr)+%(—a/b)l/z(k—kl)3/2 =0|. (4-29)

In order to understand an asymptotic behavior of (4-28) and (4-20) for large

k, we consider the following term in the exponential part of (4-27)
F(k) = —i%(— a/b)*(k-k,)"* . (4-30)
Introducing k-k, =re'”, (4-30) reduces to
F(k) = %(— a/b)*r? exp[%(sﬁ —m)]. (4-31)

Then, the relation defines the Stokes lines

39_7 (4-32)
27 2

which gives @ =a/3(n=0),57/3(n=2),37(n=4) on the upper Riemann surface,
where F is real and positive, and also & =a(n=1),77/3(n=3),117/3(n=5)
on the lower Riemann surface, where F is real and negative. Also, the

anti—-Stokes lines are defined by

éﬁ—£=(l’l+l)f[, (4_33)
2 2 2

which gives ©=2a/3(n=0),27(n=2),10m/3(n=4) on the upper Riemann
surface and O =4mx/3(n=1),87/3(n =3),4x(n=5) on the lower Riemann surface

where F is real and purely imaginary.
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Fig. 8 Asymptotic behavior of Stokes (solid lines) and anti-Stokes (dotted

—

lines) lines are briefly illustrated in complex k plane.
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In order to study the fine structure of the Stokes and anti—Stokes lines
around the turning point (left turning point) as shown in Fig.7, we solve
(4-28) and (4-29) numerically for the following parameters, g, =l,a/b=-9/4
and k, =0 as an example. The anti-Stokes and Stokes lines on the upper and

lower Riemann surfaces are shown in Fig.9 (a) and 9(b), respectively.

/

-
2 A A A A Ak i A A,
LTy T

2§
@ ®

Fig.9 Structure of upper (a) and lower (b) Riemann surfaces around the

left turning point as shown in Fig.7. The anti—Stokes lines are

represented by solid lines and the Stokes 1ines are denoted by dotted lines.

Also, the branch cut of eikonal function is illustrated by shaded solid

line and path of analytical continuation is shown by thick solid line.
(Ref. [1])

It turns out from Fig. 9 that the behavior of anti—Stokes and Stokes lines
far away from the origin in Fig. 9 agree well with the asymptotic structure
of Fig.8. The solution w,(k) defined by (4-26) monotonically increases
along the Stokes line §,, which is shown in Fig.9 (a), while the other
independent solution ,(k) monotonically decreases along the Stokes line
S, in Fig. 9 (b) as the point k moves away from the turning point. So, the
localized solution w (k) in the left hand region of the turning point k,

is given as
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Y(k) = exp[—i [ stkydk|. (4-34)

Gy

We connect the solution (4-34) into the one at the right hand region of
the turning point k, and make an analytical continuation of the solution
(4-34) along the path T, in Fig.9 (b). As was discussed in Sec. 3.2, the
solution (4-34) becomes an exponentially increasing function as the point
k goes across the anti-Stokes line A,, and we finally obtained the

analytical continuation in the upper half plane in the following form

(k) = expl-i [ g(k)dk]+ arexpl-i [ g(k)dk], (4-35)

Cs C,
where the integration paths C, and C, are shown in Fig. 10. The
coefficient o cannot be determined from this analytical continuation
along 7, and it is determined by the analytical continuation in the lower

half plane along T, in Fig.9 (b). We finally obtain a=1.

ki/\
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v “5
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/ 1\ \
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\\ ktl ' N :
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\'\-._‘__-,’ ko S~ —— = -
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~

Fig. 10 Integration paths, giving the localized solutions (4-35) and (4-36)
in the region between k, and k,. (Ref. [1])

Similar argument can be done around the turning point k,, as shown in Fig. 7.

Then, we find the following localized solution

(k) = B{exp[—i [ stk)dk1+expl-i [ g(k)dk]}, (4-36)

c, Cs

where the integration paths C, and C, are shown in Fig.10. and B is some
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constant. Since the solutions (4-35) and (4-36) should be identical, we
finally have
B=1, (4-37)

1=expl-i [ g(k)dk +i [ g(k)dk]. (4-38)

Cs Cs
It should be noted that the integrations along C, and C, in (4-38) could

be replaced by a single integration along a single path I' shown in Fig. 12.

ki P

L)

Fig. 11 Contour of integration path I’ toobtain the quantization condition.

(Ref. [1])

The equation (4-38) yields the so—called “Quantization condition” which

determines the eigenfrequency:

[ stydk =2(n+ 1w, (n=x1x2:--). (4-39)

r
Substitution of (4-15) into (4-39) and carrying out the integration of
g(k) gives the quantization condition in the following form

1

[ gotk)dk = 2(n + D (n=x1,22-"), (4-40)

r
where we assumed that the function g (k) has poles at the turning points
but has no other singularities, so that we can deform the integration path

[ such that g(k) can be approximated by the equation (4-25).

We finally discuss the derivation of quantization condition (4-40) on
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the basis of a symbolic representation form. If we define the eikonal
function g,(k) in both upper and lower Riemann surfaces,
8o =8 —(-a/b)*(k-k)"” +g, (4-41)
g =8 +(=ab)*(k-k)" +g,. (4-42)
The analytical continuation around the turning point k,, which is shown
in Fig. 10, is represented by the following formulary
Y(k) = (golkork) = i( go1lkg ke ) ool ok ) (4-43)
and the analytical continuation around the turning point &k, is also
represented by
Y(k) = (golko:k) = i( go1lkg ke, ) 8ol oK) - (4-44)
Here, we used the symbolic notation
k
(8o1lko-k) = expl~i [ gy, (k)dk]. (4-45)
ko
Since the solutions (4-43) and (4-44) should be identical as mentioned
before, we obtain the relation
kiy
expli [ (8, ~ go)dk1=1, (4-46)
kyy

which gives
k

f(g02 - go)dk=2(n+1)m. (4-47)

krl
Substitution of the expressions for g, and g, into (4-47) vields

the quantization condition (4-40).

4-2-2 Asymptotic behavior near turning point

Although we can determine the structure of eikonal function g=g (k)
by solving the relation (4-17), H(k,g,;w)=0 for w =fixed, we here
consider an asymptotic behavior of waves in a case where one of the turning
point locates at (g,,k, =0). We expand the Hamiltonian H(k,g,;w)=0 around
the turning point as

oH 1(*H), ,
H(k,g;w)=|—|(g,-g)+—= k* 4o, (4-48)
(k,85) (ago)(gO 8:) 2(&2)
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which yields

) -1
8 ~—8& = -l(& H)(ﬁ) k. (4-49)
(980

Noting that the contribution from g, becomes negligibly small because
JH/dg, —> o near the turning point (gﬂkt=()), we have the asymptotic form

of the solution near the turning point in the following form

¢(x) = [ dkexplik(x-g,)+ ié(i}i’ )(ZZ) 1k3]. (4-50)
/3
Introducing a new variable z=[1(CV{5){fg£)] k , we carry out the
2\ dk g,
integration in (4-50) and finally obtain the asymptotic solution
¢(x) =27F - A[F(x =g, (4-51)

with abbreviation of

oo (208 7H -
A ag, \ok* )’

where A,[z] is the Airy function. The leading term of Airy function has been

already mentioned in (3-32) and (3-33) as

Ai(Z)‘X%ﬂ_vzz—lﬂexp(—%ﬂZ) , for z>0,

2 T
A(2) e (=)™ cos[g(—z)3/2 - Z] , for z<0.
The asymptotic behavior of waves near turning point is essentially the same

as that in the configuration space, which is shown in Fig. 1.

4-2-3 Stability analysis of electrostatic waves for weakly
dissipative cases
The wavenumber k, the frequency w, and the eikonal function, which
appear in the Hamiltonian (4-17) and the quantization condition (4-40),
are complex, in general. When dissipative effects are weak, however, the
imaginary part of H(k,g,;w), namely, H, 1is small compared with the real

part H_, provided k,, g,(k) and w areall real. In this case, the imaginary
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part of w, also becomes small, and we can expand (4-17) as

JH,

)s (4-52)
ag,

0=H,(k,g,;0,)+ (H (k. g, ;w,)+iw, ZHO + 8o,
w

r r

where g,=g, +8, and w=w, +iw, . The functions g, and g, are

determined from the zeroth— and the first—order parts of (4-52) as

H(k,gy;0,) =0, (4-53)
-1
8o =1 oH, w; o, +H,|. (4-54)
agOr awr
Equation (4-53) can be solved by orbit integration and we obtain
dk _(oH, &Hb, a@m,=_(de) oH, ’ (4-55)
dt \dg, ) \dw, | dt ok )\ dw,

provided that the initial values of k and g, satisfy the relation,
H,(k(t=0),g,,(t=0);w,)=0. Then, the zeroth-order quantization condition

reduces to
dk 1
—dt=2(n+—-)m, (4-56)
¢g0r dt ( 2)

which determines the real frequency w, and the first-order quantization

condition gives the following growth rate w, as

@={¢H/?%my¢mf. (4-57)

Fig. 12 Relation for g, vs. k for given values of frequency w, are shown.
Several contour lines express the constant , surfaces. The turning
points in (g, k) plane is also illustrated and g, and k, are the
position of localization center and typical wavenumber,

respectively.
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Let us explain briefly the physical picture how to look at Fig. 12.
Corresponding mode is purely oscillatory between —k, and k,, and must be
exponentially increasing or decreasing as one moves away from a turning
point. Therefore, the wave changes from one to the other when crossing
turning points. The left hand side of (4-40) corresponds to the area covered
by the contour for fixed frequency w,. We can determine the eigenfrequency
from the quantization of the area covered by the contour. In practice,

we first solve (4-55) numerically using Runge—Kutta method, and then

determine the eigenfrequency and the growth rate from (4-56) and (4-57).

As an example, the present eigenmode analysis has been applied to the
electrostatic drift waves. It has been pointed out in [2] that without the
magnetic shear effect, drift waves may be localized in the following two
cases: (1) drift frequency has a peak at a critical position of plasma
density, (2) drift frequency does not have a peak for all positions, but
the quasi—neutrality condition is not imposed. Therefore, whether drift
waves are localized or not, depends sensitively on the density profile.
We apply the numerical treatment of drift waves in the case of (1) by
following the procedure mentioned in this chapter and we also can discuss
analytical treatment of drift waves in case of (2) by expanding the
Hamiltonian H(k,g,;) around the localization center g, because the
structure of g,(k) is symmetrical around the localization center and the

structure becomes highly symmetrical as k,p is increased. [1,10]

4-2-4 Eikonal function in k—-space and solution of integral

equation (electromagnetic modes)

We here consider inhomogeneous plasma in the x—direction but is
uniform in the y—z plane and expand the electric field vector in the

following Fourier series,

E(F,t) = f dkE (k,k ,k,;)expliCkx + k,y + k,z - wt)]. (4-58)
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The integral equation for electromagnetic waves can be derived from the
Vlasov-Maxwell equations, which is given in the following vectorial form

(see, Eq.4-8, [34])
}E(k,k')- E(k)dk' =0, (4-59)

where the kernel <f(hk3 is a metric tensor and other arguments are
suppressed for simplicity. It is convenient to introduce an eikonal
function g (k) in the wavenumber space in the similar way as (4-12)
E(k) = R(kyexp[i [ g(k")dk], (4-60)
where R(k) is the polarization vector, which is assumed to vary slowly as
a function of k. By expanding R(k) and g(k") in powers of (k,L)"', where

k=k,, k, is a typical wavenumber under consideration, we have

E(k') =[R(k)+ (k - k') dR/dk + --]exp{—i f g(k"dk" —i(k' - k)g(k) —1/2(k' - k)’ g'(k) +- }
= {R(k) - é(k’ - k)’ g (k)R(k) + (k' - k) dR/dk + O([kL]‘z}

xexp{—i(k’ ~kgk)-if g(k”)dk"}, (4-61)

where we used the following ordering, namely,
g/L=0(), (k'-k)’g'(k)=O(kL]"). Substitution of (4-61) into (4-59) and
neglecting the terms of order (kL)? yield the equation determining the

eikonal function g (k) as

. 2277 rT 1D
id iI~R(k)g’(k)+ l‘ﬁ_dR(k), (4-62)
2 Jg dg dk

0=H(k,g) R(k)+
where we used the notation
H(k,g) = [ dk'K (k.K'yexp[-i(k' - k)g(k)]. (4-63)

We note that physically, f?(khg) corresponds to the local dispersion tensor
in the WKB approximation and (4-63) determines the eikonal function g (k)
correct up to the order (kL)' for given eigenfrequency .

The boundary condition for the solution to be localized, is given as

E(k)—0 at k—>=m. For the case where there exist two turning points in
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the k—space, the condition determining the eigenfrequency is written by

the following the quantization condition

$ gldk =2nm, (0=0,1,2:+), (4-64)

which is essentially same as (4-39) for the electrostatic modes. Let us
next explain the actual method how to obtain g (k). Expanding R(k) and g
(k) as

R(k) = R, (k) + R (k) + O([KLT™), g(k) = g,(k) + g,(k) + O([KL]*).  (4-65)
Substituting (4-65) into (4-62), we obtain from the order unity

H(k,g)" Ry (k) =0, (4-66)
and we also get from the order (kL)
oH(k,g,) = - _ i PHk,g) =
6.0 180 ) 4 kg R )+ £ THES) R g1k
98 2 g,
+ JH(k.g,) . dR,(k,g,) -0. (4-67)
g, dk

The function g (k) is determined from (4-66) as

0 =D(k,g,) = dey{H(k,g,)}, (4-68)
and ii(k) is given as the right eigenvector of f?(ké%). We can also define
the left eigenvector Ly (k), which is given as

L,(k)- H(k,g,)=0. (4-68)

Taking scalar product of L, (k) to (4-67) and using the relation (4-68),

we get the equation for g (k) as

i(l/z)on ) (52ﬁ/5go2) : Rogol + EOT ’ (é’ﬁ/{?&) : (dRo/dk)
L, - (6H/dg,)" R,

g (k)=- (4-69)

We note that (4-29) can be derived from the compatibility condition where
R,(k) should be finite. Noting that ﬁ(k,go) can be denoted by the 3x3
matrix as

ay 4y 4y

H=|a, a, ay|, (4-70)

a3 dy Ay

we can write L, (k) and R,(k) from the cofactor forms of the matrix (4-70)
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as

Ry =|A,| L, =(A, A, A,). (4-71)

3
Noting the relation, :SLJaUAﬁw=6ﬁ[Xk;g), we get the relation for any set

of k and g in the form
D
H-R,=|0|, L/ -H=(D 0 0). (4-72)
0
Differentiation of (4-72) with respect to g and taking the scalar product

of these relations with EJ(k) yields the following relations

. D A . . ’D A
L H, Ry =4,"2 - D” “,LOT-Hgg-R0=—2LOT-Hg-ROg+A”a—2—Da—2“.
§ dg dg dg dg
(4-73)
From (4-73) and the relation,
R, IR ' OR
dR, =‘? 0 yg, J 0
dk  Jk g,
we can rewrite (4-69) in the following form
19°D - R, . -
E?go +L0T'H0g'7];)A11 1
g =—i—250 D : (4-74)
98,

We finally summarize briefly the procedure how to obtain the

eigenfrequency:

(1) Given an integral kernel K(k,k'),

(2) Calculate the local dispersion relation from (4-63),

(3) Solve (4-68) for g, and calculate g from (4-69) or (4-74) for given
frequency w,

(4) Substitution of these results into the quantization condition (4-64).
Numerical scheme to obtain the eigenfrequency has been discussed in

detail in the reference [32].
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4-3. Direct numerical integration method
We here discuss the numerical methods to solve the linear integral
equation and/or integral—-differential equations. An integral equation is
a functional equation involving integral transforms of the unknown function
¢(x). If the functional equation also involves a derivative of ¢(x), the
equation reduces to an integro—differential equation. A given integral
equation is homogeneous if and only if every multiple a¢(x) of any
solution¢(x) is a solution. The linear integral equations are given in the

following form
Bx)$(x) - A [ K(x.E)PE)dE = F(x), (4-3-1)

where K(x,§), P(x) and F(x) are given functions, and the integration
domain V may be given (Fredholm—type integral equations) or variable (e. g.,

Volterra—type integral equations). Three types of problems arise:

(1) A linear integral equation of the first kind, where B(x)=0,
A =1, requires one to find an unknown function ¢(x) with the given integral
transform F (x). The corresponding operator equation K¢ =F is analogous

to a matrix equation.

(2) A homogeneous linear integration of the second kind, where
F(x)=0, p(x)=1, A is unknown, represents an eigenvalue problem. The

corresponding operator equation AK¢=¢ is analogous to amatrix equation.

(3) A nonhomogeneous linear integration of the second kind, where

P(x)=1, A is given, may be written as ¢-AK¢=F.

It should be noted that if B(x) is a real positive function throughout
V, one can reduce the general linear integral equation (4-3-1) to a linear

integral equation of the second kind with the following transformation

P(x) = jﬁ((% F(x) = F(x)4/B(x), K(x,8) = K (x.)/B(x)BE). (4-3-2)
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We note that these three types of problems are discussed in detail in the
references [36,37]. Since the integral equation under consideration such
as (4-3) and (4-59) is a linear homogeneous Fredholm type of equation, we
hereafter restrict the present discussion to this case and briefly sketch
the procedure how to solve the equation.

We here discuss the problem in the following two different approaches,
namely, (1) method based on Gaussian quadrature [38], (2) method using
orthogonal basis sets [11].

(1) Method based on Gaussian quadrature

We consider a simplified linear homogeneous Fredholm type of equation,
which is given as
Kp=Ap , (4-3-3)
where K is an integral operator and A is the eigenvalue. An approximate
solution ¢, can be written as an expansion in terms of known functions

[See, 38]

N

oy = Eanj ’ (4-3-4)

j=1
where the X; may be Chebyshev polynomials, trigonometric functions,

splines, etc. In practice, the choice of the X is important in determining

the numerical accuracy obtainable for a given value of N. [39] In order

to calculate the a; in (4-3-4), we employ the Raleigh-Ritz (or Galerkin)
method and construct the quadratic form
N N , , ,
Ei=12j=1aiajfdkdk X (KK (k,k )Xj(k )
N N , ) .
Ei=12j=1aiajfdkdkxi(k)xj‘(k)

flgy]= (4-3-5)

The best choice for the a; is obtained by making I[¢] extremal and results

in the following system of linear algebraic equations:

(H; - AM)a; =0 (i,j=1,...N), (4-3-6)
with abbreviations

Hy = [ dkdk'x, (K (kK x (k') (4-3-7)

M, = [ dkdk’y (k) (k') (4-3-8)
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In general, }{ﬁ and Ady are given, and A and a; have to be determined.
In the case where }{ﬁ is a function of  (frequency of the mode), however,
(4-3-6) can be rewritten as
Aja;=0, A, =H;-AM; (i,j=1...N), (4-3-9)
and then the frequency of the mode is now determined by the following
condition
det[A;]=0. (4-3-10)
If ‘4ﬁ is large matrix, 1t might be convenient to solve the following
equation instead of (4-3-10)
det[A,; - u(w)d,]1=0, (4-3-11)

and we determine the values of w to realize the relation u(w)=0.

(2) Method based on representation in an orthogonal basis set

It should be noted that the method under consideration differs from
the approach based on Gaussian quadrature discussed before. We decompose
the radial eigenfunction into its representation in an orthogonal basis
set, chosen according to satisfying two conditions: (a) the basis functions
exhibit the same asymptotic behavior as the radial eigenfunction, and (b)
the choice allows the k—space integration analytically. We choose the
associated Laguerre functions

L"(x)=[p/(p+m"*x" e L " (x), (4-3-12)

where l?” is the usual Laguerre polynomial and the normalization has been

chosen such that
[ axd," (L," (x) =35, (4-3-13)
Substituting the following function

p, (k) = Ewpip‘m‘(szz), (4-3-14)
p=0
into (4-5) (see, page 21) and operating on the both sides with

‘ﬁjd%kiJmkszz), gives the following matrix equation

M-W =0, (4-3-15)
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where

M, = (kR +2p +|m|+ 1)5,,q - J(p +D(p+|m|+ 13,

—/p(p+w W+E EB,,D &), (4-3-16)

with

D, ()= [ ax [ ax'L" ()L, N )., [0 - )Vxx e (4-3-17)

It should be noted that l%wl is independent of w, so that it need only be

calculated once foe a given azumuthal quantum number m. This matrix

equation is truncated and solved for the eigenvalues o,,, and the
eigenfunctions W, , in (4-3-15) which determines the solutions of the
integral equation. The eigenfunctions in k—space are reconstructed using
(4-3-14). Once we obtain the eigenfunction in k-space, the real space

eigenfunctions are recovered from the relation
J, axL,” (), (fxy) =2¢-1"L," (), (4-3-18)
and then we finally have the solution
. 2
im ~ il F
Bu (1) =z BEDW,L ). (4-3-19)
P

Varying the size of the truncated matrix and noting the sensitivity of the
eigenfrequencies and eigenfunctions to this change may test the numerical

convergence of this method.

4-4 Extension of ray tracing theory for inhomogeneous

plasmas based on eikonal function formula

Traditional approach to study the wave propagation in inhomogeneous
plasmas is based on the so—called geometrical optic approximation. However,
it is well known that this approach based on the ray tracing equation and
the wave energy conservation equation is not always convenient for
numerical computation because the conservation equation is the partial

differential equation. Since the present approach is based on the integral
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equation in the k—space, the formula may include a couple of kinetic effects
such as the finite Larmor radius effect, cyclotron and Landau damping
effects etec.
Following the discussions in Chapter4. 2, we explain briefly an extended
ray tracing formula [40]. We here consider the following case
$(%) = [ d*ke" “p(k), (4-4-1)
Kk = [ d* kK (k.kYo(k') (4-4-2)
which corresponds to the case of F(k)=k> in ((4-3) [see, Chapter4.1].

Introducing the eikonal function

(k) = exp[-iS(k)], (4-4-3)
where the eikonal function S(k) is determined by the following equations
H(k,G)=0, (4-4-4)
. 2 2
Vi 5 DG, 4
with the abbreviations of
H(k.G) = [ K(k.KNe ™ dk - &2, (4-4-6)
S(k) = S, (k) + S, (k) + O[(kL)™], (4-4-7)
G=V_5S, (k). (4-4-8)

Substitution of (4-4-3) into (4-4-1) and carrying out the integral by

the steepest descent method, which have been discussed in Chapter4.3 of

“Sokendai Lecture Note-1" , gives the following wave propagation formula
$(X) = A(®)e™™, A(F) = (=i2)[det(P)] e ™ ® (4-4-9)
7S,

@(X)=k-%-S,(k), =G, P, = ok (j,1=12,3). (4-4-10)
As mentioned before, (4-4-6) can be regarded as the Hamiltonian—Jacobi
equation of the classical dynamics. Therefore, the quantities k and G
are determined by a numerical integration of the “ Hamiltonian system”

%b%, Z_f=%’ (4-4-11)

which is essentially the same as (4-55). The other amplitude and phase

factors ¢, S, and P, are obtained by the numerical integration of the

following ordinary differential equations
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dp _ ;. H (4-4-12)
dt d
. ,
a5, i IH (4-4-13)
dv  24i19G dG,
dP 2 3 2 2H 3 2H
ﬂ=‘”¥+2 ot &ﬁii—ﬁm+ —j——ﬂﬁw(##m)
dv  Jkok, 4|k ,dG, k,dG,, ~ G, dG,

It should be noted that the profiles of amplitude and phase of the wave
could be determined by the local dispersion relation I?(EJ§)=(). As an
example, the wave fronts and ray trajectories of electromagnetic modes
radiated from a local source in an inhomogeneous magnetoplasma waveguide
are studied numerically using the extended ray tracing theory just
discussed in this chapter. Typical ray trajectories (solid lines) and wave
fronts (dotted lines) of an electromagnetic mode radiated from a local
source below the electron cyclotron frequency 1in an inhomogeneous

magnetoplasma are shown in Fig. 13.

Wave

tp21 f2=20
f/fc=07
Te =100

~200 0

Fig. 13 Wave fronts and ray trajectories of an electromaghetic mode.

Radiating source location is not at the plasma center. [Ref.41]

Reflection and refraction of the radio—frequency field are clearly shown

in this figure. The reflection may occur at the electron plasma frequency
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layer, which is the same as that of he resonance cone fields observed
experimentally [42]. As was shown in Fig.13, the reflections of the
electromagnetic waves lead the trapping of the modes in the inhomogeneous
magnetoplasma and the repetition of those reflections results in a plasma

waveguide.

5. Examples of Nonlocal Stability Analysis based on Integral

Equation in K-space

5-1.Example of WKB -type eigenmode analysis
We first discuss the WKB—type of eigenmode analysis for collisionless
drift waves using the formula discussed in Sec.4-2-3. Typical results
for g,(k) for values of w,/w,;,, where w,, is the ion diamagnetic drift

Frequency, corresponding to given radial mode number are presented in
Fig. 14.
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Fig. 14 Results for g (k) for given values of w /w,, are shown for three
cases, (a) pk, =04, (b) 0.8, and (¢) 1.2, respectively. The parameters
used are w’y/w’: =100, T/T,=1.0, A/p, =100, k,p, =107 (from [2]).
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From this figure (Fig.14), we can determine the mode localization center,
the localized region, and corresponding wavenumber,ésskpr As shown there,
the localization center shifts toward the high density side and the
localized region becomes narrower as pk, increases. Also, it turns out
that the wave structure becomes more symmetric around the localization

center and the corresponding wavelength increases as p,k, becomes large.

O WwN = oY

Fig. 15 Results of w,/w,, (solid lines) and w,/w,, (dashed lines) vs. pk,
for the mode numbers n=0-6 are illustrated. The parameters used

here are the same ones in Fig. 14 (from [2]).

It turns out from the results in Fig. 15 that the growth rate of the

fundamental mode (n=0) is the largest one for these parameters.

5—-2. Examples of eigenmode analysis based on representation in
an orthogonal basis sets

Next, we introduce an example of the eigenmode analysis using the method

based on the representation in an orthogonal basis set, which has been

discussed in Sec.3-4-(2). To demonstrate this problem, we here consider

a nonlocal analysis of drift and drift-cyclotron waves in cylindrical
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geometry (see, Ref.11). The instability associated with the drift
cyclotron wave arises from the coupling of an ion cyclotron (ion Bernstein)
wave with an ion diamagnetic drift wave. The central cell region of mirror
devices such as TMX was often predicted to be unstable to such drift
cyclotron waves. We consider the following two cases, namely, drift
cyclotron modes near threshold (Fig.16) and also far from threshold
(Fig.17). In Fig. 16 (a), the density scale length has been sufficiently
shorted to cross the stability boundary and it allows coupling between the
first three radial eigenmodes of the ion cyclotron branch and the drift

wave branch.

L5 T N 4 v + T v v v T v
3 o (o)

0.5

o5+ ——————————1

04t ) B

0.3 -

Im @

0.2}

0.1

Fig. 16 Dispersion relation for drift cyclotron modes near threshold for
modes propagating in the ion diamagnetic direction (m<0). Crosses indicate
the growing modes. R/p,=3 (Ris the density scale length) and w,’/Q =50.
(a)Real frequency versus m, (b) growth rate (imaginary frequency) versus

m(from [11]).
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As m increases, the fundamental mode (n=0) becomes unstable first, followed
by n=1 and n=2. The corresponding growth rates for the unstable modes are
plotted in Fig. 16 (b). In this case close to threshold, the fundamental
mode is the most unstable and persistent mode. It should be noted fromFig. 16
that the lowest azimuthal mode number to support unstable modes is well
approximated by

2
i

mp

R2 =1 l} (5_1)

which corresponds to the relation Q,=w,, in local theories. The lowest
stable radial eigenmode family is n=3 in the case of Fig. 16 (a), bounding
the higher families below the ion cyclotron harmonic. Also, the
eigenfrequencies of the higher radial eigenmode families always asymptote
to the ion cyclotron harmonic. Since the term (w-w,,)/(w+nQ,) is involved
in the local dispersion relation for the drift cyclotron wave [see the text
book by K. Miyamoto, Ref.43], the relation w,; =, should be satisfied on
w=Q. toavoid the divergence. From(5—1),Weeasilyobtahjm=9forEVpi=3,
which is shown in Fig. 16 (a).

Far above threshold (see. Fig.17), many families of radial eigenmodes
become unstable, with frequencies both above and below the ion—cyclotron
frequency. The growth rates of the unstable modes are all of the same order,

and can be as large as one—third of the real frequency. The most unstable

mode is not the fundamental branch, nor is it the most persistent. The

present results close to instability threshold (Fig. 16) indicate that what
one would observe is a very narrow frequency, comprised of a number of
fundamental radial eigenmodes with different azimuthal mode numbers. Away
from threshold (Fig.17), lots of unstable modes exist with growth rates
all of the same order of magnitude. Assuming that these modes all saturate
at approximately the same amplitude, the frequency spectrum would appear
turbulent with a broad peak around the ion—cyclotron frequency. The
eigenfunction calculations indicate a spatial structure characteristic of
global modes, and are probably sensitive to the exact plasma profile. It

should be pointed out that variation of the plasma density and magnetic
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field along the plasma column introduces boundary conditions on k, that

are not involved here.
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Fig. 17 Dispersion relation for drift—cyclotron waves far from threshold.
Crosses indicate growing modes. R/p,=3 and abf/g%2==200.
(a)Real frequency versus m. (b) Growth rate (imaginary frequency)

versus m.

5-3. Comparison between experimental observation and theoretical
results ( Bumpy torus and mirror devices )

The cross field particle, momentum, and energy transport 1in
magnetically confined toroidal plasmas generally exceeds neoclassical
transport by more than one order of magnitude. Understanding and
controlling such anomalous transport is one of the most important topics.

There is strong experimental evidence that this anomaly can be attributed
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to a small scale turbulent driven by gradients of plasma parameters such
as density, temperature, velocity and so on. As was mentioned in the
introduction, in the 1970 s, electrons were found to be the main channel
for energy loss. Therefore, the electron temperature gradient (ETG) driven
instability was the plausible candidate for the anomalous transport. Later,
in the early 1990° s, it was found that ions became the energy loss channel
in neutral beam injection (NBI) heating tokamak plasmas. Associated with
these observations, the ion temperature gradient (ITG) driven instability
has been studied intensively. Currently, it is widely accepted that linear
and nonlinear theories and simulations for ITG instability are enough to
explain the ion anomalous transport qualitatively and the ion thermal
diffusivity reduces to the neoclassical level in advanced tokamak plasmas
with internal transport barrier (ITB’ s). Recent experimental observations
seem to indicate, however, that the electron thermal diffusivity is often
still anomalous even in discharges with ITB.

Improvement of both theories and diagnostics with high spatial and
temporal resolution really encourage definite comparison between
theoretical predictions and experimental observations. We here show an
example for comparison between theoretical prediction based on the nonlocal
WKB analysis and experimental observation. The stability aspects
associated with low frequency fluctuations have been investigated in ELMO
Bumpy Torus (EBT) and Nagoya Bumpy Torus (NBT) experiments. The Heavy lon
Beam Probing (HIBP) has also measured potential profile in detail. In EBT
and NBT, there are three typical operations, namely so—called quiescent
mode (C-mode) operation, Torus mode (T-mode) operation and Mirror mode
(M-mode) operation as the background pressure is decreased.

Also, the hot electron component is created by ECH second resonance heating,
in other word, the radiation increases and the deep potential well is formed
in the T-mode operation.

A typical example for these operations is shown in Fig. 18. Low frequency
fluctuation of density with 100 kHz, potential variation, and hot electron

production (radiation power) are shown in Fig. 18
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Fig. 18 Density fluctuation (100 kHz), plasma potential, radiation power

versus background pressure (C-, T—- and M- modes) operations in NBT

experiments.
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Fig. 19 Normalized maximum growth rate of electrostatic drift mode versus
ExB shear parameter y,(=w, /w,). The result from WKB type solution
based on integral eigenvalue equation (a)[Ref.10] and fluctuation level

as a function of y.(=w, /w,’) observed in Gamma—10 mirror (b) [Ref.44].
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Since the fluctuations with less than 100kHz as shown in Fig. 18 are strongly
localized at the position of the steepest density gradient with k,p, <1,
we carried out the nonlocal stability analysis to study these fluctuation
events and compared the theoretical results with experimental
observations.

Since the low frequency fluctuations (electrostatic drift waves) are
enhanced and then decrease at the T-mode operation and this enhanced
fluctuations are correlated with deep potential wells as shown in Fig. 18,
we consider the effect of ambipolar field on the electrostatic drift waves
to explain these low frequency fluctuation phenomena as was seen in EBT
and NBT experiments (see, Fig.18).

The result of WKB type solution based on integral eigenvalue equation
and fluctuation level observed in Gamma—10 mirror device are plotted as
a function of y(=w,’/w) in Fig.19 (a) and Fig. 19 (b), respectively. As
shown in Fig. 19, the most unstable situation is shifted toward somehow
negative electric field side, where ExB drift cancels the electron
diamagnetic drift. But the sheared flow, which is large enough compared
to the diamagnetic drift, may enhance the perpendicular Landau damping (see,
Ref.5), and it may suppress the drift wave instability, regardless of its
polarity of electric field. As shown in Fig.19 (b), this theoretical
prediction was confirmed by experimental observations in the Gamma—10
mirror experiment and also by the biasing experiment of Tokamak de Varennes.

[Ref. 45]

5-4. Nonlocal ITG and ETG modes based on electrostatic, low f
and full B models

There are remarkable improvements on methods how to solve the integral

eigenmode equation. We discussed the effects of finite beta, magnetic shear,

and perpendicular velocity shear on a couple of modes such as local slab

short wavelength ion temperature gradient (SWITG) modes, nonlocal slab

SWITG modes, electron temperature gradient (ETG) modes, nonlocal toroidal

SWITG modes and so on. We here introduce some typical results, which are
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obtained by the direct numerical integration method discussed in Sec. 4.
We first explain briefly about SWITG modes. This mode is characterized by
w, <0 and R&pJ>],. Normalized frequency and growth rate for the
conventional ion temperature gradient (ITG) mode, SWITG mode, conventional
electron temperature gradient (ETG) mode and SWETG mode are plotted in
Fig. 20.
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Fig. 20 Normalized frequency (a) and growth rate (b) for ITG (left panel)
and ETG (right panel) modes. Solid line shows conventional ITG and SWITG
modes and dotted line indicates conventional ETG and SWETG modes

(from Ref. [46]).
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It turns out from Fig. 20 that two new unstable branches exist in the regions
k,p;z1 and kp,=1. Since the wavelength of the SWITG mode is shorter than
that of the conventional ITG mode, namely, k&pizl, we have to solve the
eigenvalue problem based on integral equation instead of differential
equation. The ITG mode may produce a significant level of anomalous
transport, which is evaluated based on the so—called mixing length
theory. Recently, it has been emphasized that the SWETG mode can be
significantly modified by the Debye shielding effect and is strongly
stabilized in high temperature plasma for AD/pe>1[12].

We next explain briefly the Gyro—kinetic Integration Model, which
is composed of the gyro—kinetic equation together with the basic equations,
namely Poisson’ s equation and the Ampere’ s law. The gyro—kinetic
integration model is solved for following two configurations, namely for
the sheared slab configuration (with magnetic gradient) and also for the
toroidal configuration, where the ballooning representation for an
axisymmetric toroidal geometry in s—a equilibrium is employed. Since both
ions and electrons are assumed to be nonadiabatic in this model, the
transit effect, finite Larmor radius effect, and curvature and magnetic
gradient drifts are automatically included. The integral equation for the
study of ITG modes in arbitrary beta plasmas is upgraded and employed for
nonlocal study of short wavelength modes in a sheared slab model. In the

nonlocal model, the parallel wave number, k,=(x/L)k,, where L is the

y’

magnetic shear length, is related to the mode structure and the cross—field
wave number, kl=hﬁkj-kk2 includes poloidal and radial components. So,

there are several distinctive modes with different spatial structure in
different frequency regions. In the long wavelength regime k&pisl, the
conventional ITG modes have been identified. A new series of short
wavelength modes are also identified. For the nonlocal modes, we only set
the ky, whereas the k_ spectrum is determined by the solutions to the
eigenmode equation.

Shown in Fig.3 (a) are the eigenvalues of the dispersion equations for
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kype=0.1, i.e., SO, S1, CO, Cl, and so on, in the complex plane of the
.- Also,

the normalized growth rate of the nonlocal modes as function of k},pe.

frequency normalized to the electron diamagnetic drift frequency w,
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Fig.21 Eigenvalues of the nonlocal modes (a). The letter C, and S denote
different series and the numbers denote different harmonic order.

Normalized growth rate of the nonlocal modes as functions of kp, (b) in case
of B=0. The solid, dashed, dotted, and dashed-dotted lines denote the SO,
S1, €O, and Cl modes, respectively (from Ref. [13]).
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In Fig. 21, we choose the parameters: n,=2, n,=2, T,/T.=1, m,/m,=1836,
L,/L,=0.025 and k,p,=0.1. The even and odd numbers denote the even and odd
modes, respectively. The mode structure becomes more complicated as the
mode number increases. The solutions with higher frequencies, the C series
as shown in Fig.21 (a), seem to be on the short wavelength tai of the
conventional ITG modes, e.g., the CO, Cl, and C2 are verified to be the
conventional ITG modes at kp,=0.1 with harmonic order number
[=0,]=1, and [=2, respectively. It should be noted that only the
fundamental mode is unstable in the short wavelength regime for these
parameters and higher order modes are rather stable. The low frequency modes,
the S series, are the short wavelength modes. The ky spectra of the lowest
even and odd short wavelength modes are shown in Fig. 21 (b), together with

those for the lowest even and odd conventional ITG modes.
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Fig.22 Mode structures of the SO and CO in Fig. 22 (a) and Fig. 22 (b),

respectively. The parameters used in Fig. 22 are same as Fig.21. (from Ref.

[13]).
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Fig. 23 Normalized growth rate as functions of B,. Solid lines: the SO mode
from the full p model; dashed lines: the S1 mode from the full B model;
dotted lines: the SO mode from the low B model; dashed-dotted lines: the
S1 mode from the low B model. The other parameters are the same as in

Fig. 21 (from [13]).

Shown in Fig. 23 are the growth rates of SO and S1 modes as function of
pB,, obtained from low B and full B models. It should be noted that only
¢ and A, components are involved in the low  model and the A, component
in addition to ¢ and A, is also involved in the full B model. It turns
out from Fig.23 that the S1 mode may be stabilized by a finite B effect
in both of the models. However, the fundamental mode cannot be stabilized
by the B effect when the magnetic gradient effect is considered in the full
B model. Therefore, the S1 mode is more unstable at the low B and weak
magnetic shear regions than the fundamental. There is an obvious difference

between the local and nonlocal results. The frequency of the local mode
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is continuous as bi=(kyp)2/2, while the conventional mode and the short
wavelength mode are separated as shown in Fig.21 (b). However, the
conventional and short wavelength modes couple to each other when n,
increases. Consequently, this coupling results in a continuous ky spectrum
with two humps in both short wavelength and long wavelength regimes. Local
dispersion relation and simple eigenvalue analyses based on differential
equations cannot discuss these nonlocal features of highly localized modes.

Although we discussed the E xB sheared flow effect on electrostatic
drift wave, as was shown in Fig. 19, we here discuss the effect of the effects
of Ex B sheared flow and f on the SWITG mode. A typical result is shown
in Fig. 24.
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LV,

Fig.24 Normalized growth rate (yL, /v.) as functions of normalized shear

flow velocity (L%V;/$ﬁ) for k,p,=0.1. The solid, dashed, and dotted lines

denote the results for B, =0, 0.005 and 0.05, respectively. The parameters,
n.=2, n,=2, T/T,=1, m/m, =1836, L,/L ,=0.025 and QS°/w >=1 are
employed (from [66]).

As was shown in Fig. 24, the initial rise in V, causes an increase in

the growth and a decrease in the frequency. The growth rate reaches its

maximum value at some specific value of vg', depending on different f
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values. After the frequency approximately reverses its direction, further
increase of Vg’ causes a decrease in the growth rate. Then, the mode is fully
stabilized by a large enough V;C This tendency of the growth rate is similar
to the results for electrostatic drift wave [10] and the conventional
electron temperature gradient mode [12].

We finally discuss effect of non—adiabatic electron on toroidal SWITG
modes. We employ the following coupled integration equations for ¢ and

Ay

¢ > f = x[HJ.OO(k,k’)¢+Hjm(k,k’)A//], (5-2)

/ze—oo

(1+ZT

Efdk’ x[H " (k.kYp+H " (kk)A,], (5-3)

J= l€—°°

where ¢(k) and A, (k) are the extended Fourier components in ballooning
space of ¢(r) and -v, A(r)/c, and k(k')=kysHO), 1v,=T,/T,Z, = ‘q}.‘/e,
andA4j=rnj/n%, and we have normalized the wave numbers, ky, k and k' to
p,”, and the frequency ® to w,. The derivations of Egs. (5-2) and (5-3)
and explicit expressions for l{;m,I{;”,I{fzare given in [14] and [15] and
other parameters included in (5-2) and (5-3) are the standard notations.
We should also note that the non—adiabatic electron response is taken into
account in the set of equations (5-2) and (5-3).

Coupled equations (5-2) and (5-3) are solved numerically with the
gyrokinetic integral equation code HD7. Previous results based on the
electron adiabatic model can be easily recovered from the integral equation
where ions and electrons are assumed to be adiabatic. The normalized growth
rate multiplied by k,p, is shown in Fig.24. Three unstable branches are
presented with and without non—adiabatic electron effects under
consideration, respectively. As kyp, increases, the growth rate shows
double humps, namely, the first peak around k,p, <1 is the conventional ITG
mode, and the second peak at larger kyp, is the SWITG mode. The normalized
growth rate multiplied by kyp, is shown in Fig.24. Three unstable branches
are presented with and without non-adiabatic electron effects under

consideration, respectively. As kyp, increases, the growth rate shows
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double humps, namely, the first peak around k,p, <1 is the conventional ITG

mode, and the second peak at larger k,p, is the SWITG mode.
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Fig.25  Fig.3 Normalized growth rate vs. kyp, for n,=n, =2.5,
T,=M=Z,=1,5=08,g=15,¢, =0.1and B, =0. (from [27])

In Fig. 25, solid, dashed and dotted lines denote the different
harmonic modes with 1= 0, 1 and 2, respectively. The lines with squares are
the corresponding results when electrons are assumed adiabatic. The
unstable SWITG mode still exists even with adiabatic electron assumption.
It turns out from this result that the ion contribution is essential for
the SWITG mode especially at large ky,p,. A series of SWITG modes are found
in a sheared slab configuration, showing the double -humped behavior in
the growth rate, which is similar to the result as shown in Fig.3. So,
it might be important to compare the similarity and difference between the
toroidal SWITG and slab SWITG modes. It should be noted that the
localization of the eigenmode in the ballooning space is strongly
influenced by the nonadiabatic electron effect. In case of the adiabatic

electron assumption, the eigenfunctions are rather smooth and localized
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in @ space. When the non—adiabatic electron kinetics is taken into account,
however, the eigenfunctions have broad structure along the magnetic field
line and have oscillatory tails. This oscillatory structure in the tail

leads to a large expenditure of computer time.

Fig.26 Stability diagram for 1=0 and 1=1 modes in n,-n, space, where the
solid and dashed curves denote the critical stability boundary of 1=0 and

1=1 modes. Parameters are the same as Fig.25. ([27])

Previous studies based on the adiabatic calculation indicates that the
SWITG mode is unstable when both n, and 7, exceed thresholds. When the
nonadiabatic electron kinetics is considered, however, this conclusion is
still valid for the fundamental mode (1=0) and not for the higher order
modes. Temperature gradient dependence of the 1=0 and 1=1 modes for kyp, =2
is clearly shown in Fig. 26. Three critical lines divide the n,-n, diagram
into five regions: both 1=0 and 1-1 modes are stable in the region “A” ,
the 1=0 mode is unstable in the region “B”, “C”, “D”, and the 1=1
mode is unstable in the regions “C”, “D”, and “E” . So, the

nonadiabatic electron kinetics strongly influences the 1=0 mode. As the
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result, in the region C and D, both 1=0 and 1=1 modes are unstable and in
the region D (shown in Fig.4 by shaded region), where n, is relatively
smaller than 7, the 1=1 mode grows faster than the 1=0 mode. Such situation

has also been discussed in the bumpy torus plasmas [10].

5-5. Algebraic formula for critical gradient associated with
anomalous transport

As mentioned in the introduction, understanding and controlling the
anomalous transport experimentally observed are one of the key topics for
magnetic confinement devices. There are strong evidence showing that an
anomaly may be attributed to a various of small scale turbulences driven
by gradients of plasma parameters such as density, temperature, velocity
and so on. Particularly, the temperature gradient (TG) instabilities were
the candidates responsible for the anomalous thermal transport. One of the
most important achievements associated with this issue is identification
of the ion temperature gradient (ITG) driven instability as the most
plausible candidate responsible for the anomaly of ion thermal transport
and the discovery of suppression effect of drift modes due to E x B sheared
flow, which was discussed at the beginning of this Chapter. Recent
experiments [48,49] show that ion thermal transport could be reduced to
the neoclassical level with ion internal transport barriers (ITBs)
but electron thermal transport hardly changes within ITBs, which was
observed in the DITI-D tokamak [50]. On the other hand, electron ITBs
were created in JET tokamak electron heating dominant discharges with
T,)T =3 [51]. From these observations, electron temperature gradient (ETG)
driven instability was also proposed as one of the driving mechanisms.

The correlation of the ETG turbulence and the electron thermal transport
was studied theoretically with quasilinear theory in the 1980s. [52, 53, 54]
The so—called electron temperature profile consistency ( “stiffness” as
termed recently) observed in experiments was successfully explained with

the formula for electron conductivity discussed in these theory works.
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Recently,

transport is actively studied by Dorland et al. [52], Jenko et al. [53.54],
Watanabe, Sugama et al. [55] and Li et al. [56] with gyrokinetic nonlinear
simulation. Also, the electron thermal transport was studied in detail in
stellarator [57] and tokamak [58, 59] experiments. These experiments showed
that the thermal fluxes are offset linear functions of the temperature
gradient (TG) parameter in regions close to the critical value of TGs. It
turns out from these results that the critical observed experimentally are

the threshold for the ETG driven instabilities from the turbulent transport

point of view.
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In specific studies of electron transport with dominant electron heating,
the similar properties were found in typical tokamaks, namely, ASDEX
Upgrade, RTP, FTU and TCV, where the heating method was ECH in L-mode plasmas.
The wide range in size and wide range in density and magnetic field has
been compared in Fig.27. (See, [59]) As was shown in this figure, despite
these quite different experimental parameters, the 7, profile in these
devices exhibit the almost constant value of VT /T, in the confinement
region and the values of EVZTg at mid -radius is quite comparable, between
8 and 12. All four machines clearly show a strong increase of electron
transport above a threshold in EVL%.

Gyrokinetic and gyrofluid simulations of ITG model and ETG instabilities
and turbulence in tokamak plasmas as well as tokamak plasma thermal
transport models have been studied to explain the experimental observations.
Comparisons and physics basis of tokamak transport models have been shown

in Fig.28. [60]

12 —————
| -+ ,‘ ~
— - : . /6- -
b o 10 L 1 ,, /0‘
N : : :/ y
L 8t t e 9 1
C va ’
wd v ;7 uaLex ®
= 6 4, flloLLNLGK = =]
[ "‘" ) 4 ‘: U. Col GK ¥
4F +, ” 94 IFSPPPL  w=a = =
[ ¢ )8 97PPPLGFL 4+
of ! - 9PPPLGFL @ ]
[- [t i Sydera QK n
r AT/R Weiand QLITG & ]
4} L d . 1 b

15 20
Ry,

Fig.28 x, vs. R/L, from the gyrofluid code using 1994, an improved 1998
gyrofluid closer, the 1994 IFS-PPPL model, the LLNL and U. Colorad flux—tube
and UCLA (Sydora) global gyrokinetic codes, and the MMM model (Weiland
QL-ITG) for the DIII-D Base case [60].
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Figure28 shows predictions from the various simulations and models for
X; vS. R/L, for a scan about the DIII-D base case parameters. The agreement
between two sets of flux—tube gyrokinetic results, namely, the U. Col.

Boulder’ s results and the LLNL’ s results are very good although there
is somehow difference at lower values of R/L.. A remarkable good fit to

LLNL gyrokinetic results is given by the following formula [60]
x.L, (p’v,)=15.4[1.0-6.0(L, /R)], (5-4)

which is shown in Fig.28. This fit corresponds to an offset linear
dependence of the thermal flux on the temperature gradient

QQM(R/lT-—R/L%ﬁ). The linear critical temperature gradient R/L

e, @S
been checked by several different theories and codes. Detailed discussion
is given in [60].

We here briefly introduce results for the ETG driven instability and
turbulent transport in toroidal plasmas with gyrokinetic theory by J. Dong
et al. [12,61]. The critical gradients, which may be compared with
experimental observations, are accurately calculated without
extrapolation. Estimations for the transport induced by the turbulence are
also formulated with qusilinear theory (the mixing length theory).
Particularly, the parameter dependence of the physics involved in the
parameter regions close to the threshold of instability is emphasized in
this study [61]. In order to study the maximum growth rate in the regime
close to the instability threshold, we numerically solve the coupled
integral dispersion equation for low beta plasmas, Egs. (5-2) and (5-3).
We finally get the following maximum growth rate and related electron

thermal conductivity,

) (5-5)

’)/ —_—

max 1 ck,"“T.| R [ R
001737 +1.957,+1.18 eBR |L,
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ct

- Dy c | bL_| 1
00173t +1.957,+1.18 w,, |L, |L,

Xe x F(g,,5,q), (5-6)

with abbreviation of

(i)” E{3.5+1.07ri+0.5ri2, 0557215 57

L, 235+2.59t, 1.5=1,<5.0

where 7,=T, /T,, D, =cT, /eB being the diffusion coefficient defined by
Bohm and F(e,,s,q) is an order unity function of the rest parameters,
respectively. It is found that increasing the temperature ratio t, is in
favor of suppression of the modes through both raising the critical TG and
dropping the proportionality coefficient between the maximum growth rate
and deviation of TG from the critical TG. This is in line with electron
ITB formation experiment where an electron ITB seems easier to be realized
in plasmas of T,/T,=3[51]. Following the experimental observations [51],
we discussed the stability criterion in this parameter space. The
stabilization diagram of the /=0 and [=1 SWITG modes in n,-n, space is
shown in Fig.29 for t,=1,2,3, where [ indicates the harmonic order and

[=0, [=1 modes are the fundamental even and odd modes, respectively.

Fig. 30 Stabilization diagram for /=0 and /=1 modes in the n,-n,
space. Here, 7,=T,/T, (=1,2 and 3) is used. (From [62])
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Fig. 31 Normalized critical ITG scale length (Eylm)_ versus ¢,=L, /R,

where L and R are the density gradient scale length and major

radius, respectively (from [62]).

Marginal stability curves in ion/electron temperature gradient space
n,—n, are numerically obtained for the short wavelength ion temperature
gradient (SWITG) instability as well as the scaling of the critical gradient
with respect to temperature ratio, toroidicity, magnetic shear and safety
factor [62]. In Figs.30 and 31, these results are briefly shown. These
results agree qualitatively with the experimental observations. Following
theoretical predictions and experimental observations, experiments on
DIII-D have been performed with the purpose of searching for evidence of
acritical electron gradient or gradient scale length. Experiments employed
off-axis EC heating to vary the local value of VT,/T,. The following heat
pulse diffusivity model [63]

H,"™" = 0(x,VT)[dVT, = x, + [(T)I2(VT, /T,) =k, 1H,. (5-8)

is proposed. This model undergoes a discontinuous increase when the local

inverse gradient scale length, exceeds a critical value, % and the

crit?
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Heaviside function H, becomes nonzero. This jump in XHP produces a

nonlinear change in 7, as k_, is exceeded. Possible dependencies of

crit

x™/T* on VT /T, are shown in Fig.32 along with a critical gradient

dependence.
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Fig. 32 Dependences of normalized heat pulse diffusivity on inverse
temperature gradient scale length allowed by the experimental results
include (a) an offset linear dependence, (b) a nonlinear dependence and

(c) acritical gradient dependence described by the model (5-8) (from [63]).

It turns out that no clear evidence of an inverse critical scale length
was observed in this DIII-D experiment but the existence of the critical
scaling cannot be ruled out by the experimental observations. More improved
theory modeling and experiment are needed for close comparison between

theory predictions and experimental observations.

Thermal transport barriers with high central electron temperature
were established in the core of electron cyclotron heated plasmas on the
Compact Helical System (CHS) experiment [57]. This was the first
observation of an ITB for electrons (so—called electron ITB) on helical
toroidal device, showing that the barriers were formed in the region where

the density fluctuations associated with low frequency modes such as ITG
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or ETG modes, reduced and the potential of the electric field changed

drastically.
Pctential distribution
05 T T T T
Dome (fine structure
04+ ( ) .
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1

Fig. 33 Integrated fluctuation power as a function of radius together with
potential profiles for the “hill” and the “dome” type radial profiles.
(from [57] or [61]).

Plotted in Fig.33 is the integrated fluctuation power as a function of
radius together with the radial profiles of potential for the hill and dome
type profiles. The reduction of fluctuation power at the shear maximum point
is about 48% if the integral fluctuation level subtracted by the noise is
used for the estimation. Figure 33 shows that an integral transport barrier
(ITB) may be created at the suppression of turbulence. A unified formula
for the L-mode and the H-mode associated with anomalous transport
coefficient in the presence of inhomogeneous radial electric field is
proposed base on self-sustaining interchange mode turbulence [64]. The

thermal transport coefficient is given as
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7= (L) (5-9)

1+Go,”
where %, is the anomalous transport based on the L-mode plasma,
@y =7,,(mdE /dr)(rB)" where T,,=alv,, (v, is the poloidal Alfven
velocity), and G is the geometric factor associated with equilibrium
parameters such as the magnetic shear parameter s and ' whose explicit
form is given in [64]. The suppression of transport caused by the E xB
shear flow is prominent, provided that the shear flow is large enough.
This reduction of the thermal transport and related scaling (5-9) has also

been confirmed by the TEXTOR biasing experiment by Weynants et al. [65].
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Appendix

Appendix 1: One—dimensional WKB problem (in general)

We write the Schrodinger equation in the form
@'+ kK (x)p=0, k*(x)=2[E -V(x)], (A1-1)
where E is the energy and V (x) is the potential energy, respectively.
We here consider the case that the potential slowly changes in space with
the condition, kl>>1, where 1 is a characteristic distance over which V
(x) changes appreciably. If we put the potential in the form (eikonal form),
@ = Aexp(iS) , (A1-2)
where A and S are real functions of x. Substitution of (A1-2) into (Al-1)
yields
A"+2iA'S'+iS"A-S"A+ k’A=0. (A1-3)
From the real and imaginary parts of (A1-3), we obtain the following coupled
equations between amplitude A and phase S as
A"+ SPA+k*’A=0
S'A+24'S'=0
From (the second equation of (Al-4), we get A/A=-S"/2S', which gives

(A1-4)

A4 (A1-5)

where a is a constant. From (A1-4) and (A1-5), we also have the
relation, (S")* =k*(1+ A"/(Ak*)). Since we consider the case with kI>>1, as
mentioned under (Al-1), we get approximately

Y=k, (A1-6)
because the second term is negligible small compared with the first term

with A"/(Ak*) =1/k’I* <<1. Finally we have the solution
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a

p(x) = m exp[iizk(x’)dx’], (A1-7)

provided K>0, namely E>V. In the case of E<V (x), the solution becomes

exponentially increasing or decreasing one as

a X
@(x) = ——exp[= [ |k(x")|dx"]. (A1-8)
k()| {| |

These solutions (A1-7) and/or (A1-8) is the WKB solution same as (3—-13).

Appendix 2: Quantization and energy level for Coulomb Potential
Here, we discuss the energy level and quantization conditions for two
cases, [=0 and [=#0 in the Coulomb potential. The quantization condition

for [=0 case is given [Ref.21] as

Tinax 2
f\/Z(En +Z—%)dr=(n, +1)n, (A2-1)
el r 2r 2

where r . .r are the quasiclassical turning points which are shown in

min®" max

Fig. Al-b) and n, is the radial quantum number.

_——
s

ax

N
£ | £

) 7=0 b) 170

Fig. Al Coulomb type potentials for two cases, a) [=0 and b) [=0.

Since carrying out of the integration of the left hand side of (A2-1) yields
Zﬂ/1/—2En -(I+1/2)w, we finally obtain the energy level, E, =—Zz/(2n2),
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where n=n,+/+1 is the principal quantum number.
For large quantum numbers, the [=0 wave functions in the Coulomb field,
which is the spherically symmetric field, have the form (for r<<r_ )

[Ref. 27]

R =aZ"? (A2-2)
1

n0

J,(8Zr)
—@ )
where J, is the first order Bessel Function and g, is a normalization
coefficient. Here, we note that when we consider quasi—classical motion
in an spherically symmetric field, the angular variables ,p separate from
the variable r and the wave function can be written as
W, =R, (1Y, (9.9), (A2-3)

where R ,(r) is the radial function and Y, (&,p) is the spherical harmonics.
Using the expansions in series of Bessel function [Ref.26] for rZ>>1 in

(A2-2), we get approximately the following equation
_a,cos(V8Zr —3m/4)

3/4

R (A2-4)

n0
r

On the other hand, the quasi—classical solution for can be written as

a, cos dr-Cm
R - 2 ({p, : )=a2c0s(w/SZr—C1:r).

" P, rp,

(A2-5)

Therefore, it turns out from (A2-4) and (A2-5) that the phase appearing
in R, (r) is Cw=3m/4 instead of x/4 in the usual case. The function can

be written in the following form

Tmax

a, cos( fprdr -m/4)

PR

Where r _ is the right hand turning point. We finally obtain the condition

R, = (A2-6)

that R ,(r) should be single valued, the quantization condition in the form

Tmax

fprdr =(n +)m=nm. (A2-7)

0
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Appendix 3: Physical meaning of the eikonal function g (k)
Substitution (4-11) into (4-3) gives the profile of wave amplitude ¢(x)

in the real space is given by
k
9(x)= [ diexpli [ g(k')dk’ +ikx], (A3-1)
ko

where we expressed the expression exp(ik, +ik,—iwt) for brevity. We carry
out the integration with respect to k in (A3-1) by the method of steepest
descents, which has been discussed in Sec. 4. 3 of the Lecture Series— I and

we obtain
k
$(x) = +[-27i/ g'(k,) expl~i [ g(k")dk' + ik x], (A3-2)
ko

where k,_ is the saddle point of the integrand in (A3-1), which is determined
by x-g(k,)=0. Since the eikonal function g=g(k) is determined by solving
the integral equation (4-3), k, is a function of x. If we transform the
integration variable in (A2-2) from k' to x'(= g(k’), (A3-2) reduces to

$(x) = .| -2 dkd(x) expl- ijx’dli; iX) dx’ + ik x]

Xo

= ‘/ dkd( )exp fk (x"dx" +ik'(x,)x,]1. (A3-3)

We note that (A3-3) is the WKB solution with wavenumber k at the point

x = g(k) because x, and k'(x,) are constants. The eikonal function in the
k—space g(k) represents the x—coordinate where the local wavenumber of the

mode equals k.

Appendix 4 Multivalued Functions
Although the discussions of complex variables are often limited to
single -valued functions, many theorems such as Cauchy’ s theorem must be
reconsidered when we come to consider multivalued functions. Discussing
a following example delineates the necessary concepts:
1

f(2)=2z2. (A4-1)

Let z=re”, f(z)=Re"”. Then we have the relations, R=r"",%=¢/2. This
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function is multivalued. For a point on the z plane specified by (r, ¢) or
alternatively by (r,¢+2m) two values of f (z) are obtained, namely,
1. 1.
f=r%e?? g = e (A4-2)
The reason for the multiple values obtained here is the familiar fact that
the square root of a number may have either a plus or a minus value. If
the exponent were 1/4 instead of 1/2, there would be four possible values
for f for a given z, namely,
E A L T S T S|

(z%) =rtet, (z*), =€ (2%), (2%); =€™(2%),, (z*), =e? (z*),. (A4-3)
It should be noted that its phase may take on any value and this permits
us in a calculation where the power of z is unspecified, to choose the phase
of the function at will. This multiplicity of values introduces

1
discontinuities into f. For example, at the point z=-r, z? has the value

1/2 1/2

ir if z=re™ or the value -ir if z=re™. Such discontinuities
correspond to a representation of a barrier placed along the line ¢==x.

The mathematics of these problems involves multivalued functions.

Branch point, Branch lines, Branch cut and Riemann surfaces
The discontinuity in value may also be exhibited in a graphical manner
!
by considering the conformal transformation generated by z2. In Fig. (A2),
we have drawn a circular contour a—5b on the z—plane; its transform on
the f=utiv plane is a semicircleA — B. Since circle a—b may have any
radius, all the points on the z plane are correlated with only half of the

points on the f plane where u>0.
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z Plane

Fig. A2 Conformal transformation f“=\[_, showing multiple values and
Branch line aob. (from Ref. [35]).

The values of f with u<0 will be correlated with those values of z whose
argument lies between & and 3m. There are two values of f associated with
each value of z. These values may be divided into two independent sets,
those generated on the first tour of the x plane, -m<¢<m and those
generated on the second tour m<¢<3m. These two independent sets of
values for VE'are called the branches of VE: The line, along which the
discontinuities occur, ¢=um is called the branch lines, which will be
drawn as heavy double lines as shown in Fig. A2.

The particular reason for singling out the branch line is that, upon
crossing the branch line in the x plane, such as for contour cd, we cross
over from one branch of ‘JE to another, as we look at the transform of cd,
the solid CD. This latter is drawn on the assumption that C is on the branch
of ‘JE where u>0. If C were in the other branch, the image of cd would be
the dashed CD. From the discussion of analytic continuation we know that
there must be a singularity enclosed and z=0 is the singular point in this
case. This type of singular point is called a branch point. The branch
line runs from the branch point z=0 to the branch point at z=c, as shown
in Fig. A2.

To establish single-valuedness and continuity for the purpose of

applications of the various theorems, it i1s necessary to give separate
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geometric meanings to the two—z plane regions. It is possible to do this
process by using the notation of Riemann surfaces. For the function \/Z
under consideration, there are two Riemann sheets, namely the sheet 1
corresponding to - <¢<m, the sheet 2 corresponding to m<¢<3m. These
sheets must be joined along the branch cut. As for the notations and
definitions of the Riemann Surface and the branch cut, I would like
to recommend an elegant book by Morse and Feshbach [Ref.35]. Although
we can not discuss in detail about these topics in the present lecture,
(see, Ref. [35]), how to cut each sheet along a branch line (called the
branch cut), how to connect the lip of each side of the cut of a given sheet

are briefly illustrated in Fig.A3 in the case of the function f=\/2.

A iy |
X. /< —F / J
‘Branch Line Sheet 2

Fig. A3 Example of joining of Riemann surfaces along branch lines for the
function f=\/2. Here, the branch line is shown by heavy double line.
(Ref. [35])
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