## §6. Reliability of Cryogenic Composite Electrical Insulation for LHD

Nagao, M., Hozumi, N., Murakami, Y. (Toyohashi Univ. of Technology), Hara, M., Suehiro, J. (Kyushu Univ.), Shimizu, Y., Muramoto, Y. (Meijo Univ.), Mizuno, Y. (Nagoya Inst. of Technology), Minoda, A. (Matsue College of Technology), Yamada, S.

The world's largest class superconducting coil is used for the "Large-scale Helical Device". Its electrical insulation system might be exposed to considerably severe multiple stresses including cryogenic temperature, large mechanical stresses and strong magnetic fields. It is therefore very important to study its electrical insulation performance under these severe conditions in order to establish the reliability of the coil. If a superconductor quenches from superconducting state to normal state, the liquid coolant vaporizes very easily and turns into high-density gas at cryogenic temperature. In these bubbles partial discharge (PD) easily occurs and would lead to the breakdown. So it is required to clarify the influence of the PD on the insulation performances.

This research was conducted using electrode system that simulated the insulation system included triple junction, which is consisting of the electrode, solid insulator and LN<sub>2</sub> (or GN<sub>2</sub>) in Fig.1, to investigate the PD phenomena at cryogenic temperature.

Figure 2 shows typical PD current waveform in (a) (b) LN<sub>2</sub> under the atmosphere pressure and (c) GN<sub>2</sub> at 77 K. The bandwidth of short type and the bandwidth of long type on the PD current waveform were typically observed in LN<sub>2</sub> under the atmosphere pressure while the PD current of long type was only observed in GN<sub>2</sub> at 77 K. After the higher frequencies than 6 dB in the power spectrum in Fig.2 on the frequency domain were eliminated by low-pass filter, the bandwidth was estimated by the inverse Fourier transformation.

Figure 3 shows classification of the PD current waveform by the half bandwidth. In Fig.3, the horizontal axis and vertical axis indicate the phase of applied voltage and the half-bandwidth, respectively. In  $LN_2$  under the atmosphere pressure, the PD pattern was clearly separated into two clusters as open circles shown in Fig3. The half bandwidth, being larger in the two clusters, also agreed with that in  $GN_2$  at 77K. It is thought that the larger half-bandwidth and smaller half-bandwidth in Fig.3 indicate the PD in micro bubble and in  $LN_2$ , respectively. Therefore, it is suggested that the current waveform measurement with the measurement of the PD

pattern brings the possibility to ascertain presence of the micro bubble in  $LN_2$ . And a frequency analysis of PD current waveform also leads to the appropriate separation between the PD in  $LN_2$  and that in micro bubble.

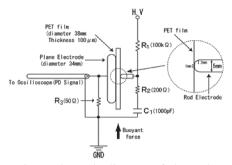



Fig.1 Schematic diagram of electrode

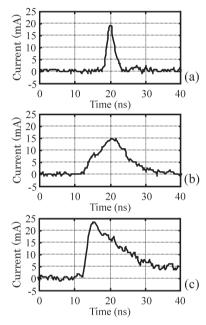



Fig.2 Typical PD current waveform



Fig.3 Classification of the PD current waveform by the half bandwidth

## Reference

- 1) Nakamura E., Murakami.Y., Minoda A., Hozumi.N., Yamada S., & Nagao.M., RECORD OF 2006 TOKAI-SECTION JOINT CONFERENCE OF THE EIGHT INSTITUTES OD ELECTRICAL AND RELATED ENGINEERS CD-ROM, O-101(2006)
- 2) Nakamura E., Murakami.Y., Minoda A., Hozumi.N., Yamada S., & Nagao.M., THE 2007 ANNUAL MEETING RECORD I.E.E. JAPAN [2], p.102 (2007)