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A novel kinetic-fluid model is presented, which de-
scribes collisionless time evolution of zonal flows in
toroidal plasmas [1]. The new zonal-flow closure rela-
tions are derived from the gyrokinetic model and they
can reproduce the gyrokinetic long-time zonal-flow re-
sponses to the initial condition and to the turbulence
source.

The velocity moments of the gyrokinetic
equation are taken to obtain the equations
which govern time evolution of the fluid wvari-

ables defined by [5nf(g2,n0u”kw5p||kL,5plkL] =
Jdbv 6£
the perturbed gyrocenter distribution function. Con-
sequently, for the zonal flow component with the
wave number vector k; = £k, Vr perpendicular to
the magnetic flux surface, we obtain the perturbed
gyrocenter density equation,
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the parallel momentum balance equation,
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the perturbed parallel pressure equation,
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and the perturbed perpendicular pressure equation,
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where Mok, , Nk, , Nojk,, and Najy, are the non-
linear source terms. Here, the perturbed paral-
lel and perpendicular temperatures (5T||k” 0Tk, )
are defined by dpj, = nodljk, + T5nl((gj and
opix, = mnodl 1k, + Tdnl((gl). The right-hand
sides of Eqs. (2)—(4) contain the third-order fluid
variables (or parallel heat fluxes), [qk, ,qik,] =
[ d®v 5fl({gjv|| [(mvﬁ 3T), (5mwv?  T)], and the fourth-
order fluid variables, [67) |k, ;07| 1k, 071, 1k, ]
[d3v df, (g) [v”, QUﬁvﬁ_, vl

We erte the parallel heat fluxes as the sum of long-
and short-time evolution parts,
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Using the analytical solution of the gyrokinetic equa-
tion, which describes the long-time behavior of the per-
turbed gyrocenter distribution function, we obtain
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and B); denotes the maximum field strength over the
flux surface. For the short-time evolution, the parallel
heat fluxes are given in the same dissipative form as
in Hammett and Perkins [2],
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where m denotes the poloidal Fourier mode number.
The fourth-order variables are approximated by

(07 i, Ok 01 uk, ] = wPTon?) [3,1,2). (11)
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