§17. Application of the Kinetic-Fluid Model to ITG- and ETG-Mode-Driven Zonal Flows

Sugama, H., Watanabe, T.-H., Horton, W. (Inst. Fusion Studies, Univ. Texas)

The kinetic-fluid model is used to study time evolution of zonal flows driven by either ion or electron temperature gradient (ITG or ETG) turbulence [1].

We first consider the wave-number region $k_{\perp}a_i < 1$ $(a_i \equiv \sqrt{T_i/m_i}/\Omega_i)$. In order to determine the zonal flow driven by the ITG turbulence source, we use the ion kinetic-fluid equations for ions and the quasineutrality condition which is given by

$$e^{-b_i/2} \left(\frac{\delta n_{i\mathbf{k}_{\perp}}^{(g)}}{n_0} - \frac{b_i}{2} \frac{\delta T_{i\perp\mathbf{k}_{\perp}}}{T_i} \right) - \frac{e\phi_{\mathbf{k}_{\perp}}}{T_i} \left[1 - \Gamma_0(b_i) \right]$$
$$= \frac{e}{T_e} \left(\phi_{\mathbf{k}_{\perp}} - \langle \phi_{\mathbf{k}_{\perp}} \rangle \right).$$

Here, we consider large-aspect-ratio tokamaks, in which flux surfaces have concentric circular cross sections. The magnetic-field strength is written as $B = B_0(1 - \epsilon \cos \theta)$ with $\epsilon \equiv r/R_0 \ll 1$, where R_0 denotes the distance from the toroidal major axis to the magnetic axis, r is the minor radius, and θ is the poloidal angle. Time evolution of the zonal-flow potential is shown in Fig. 1(a) for q = 1.5, $\tau_e \equiv T_e/T_i = 1$, $\epsilon = 0.1$, and $k_r a_i = 0.131$. Here, solid circular symbols and solid curves correspond to results from the gyrokinetic simulation and those from the fluid simulation, respectively, and the horizontal dashed line represents the residual zonal-flow level predicted by Rosenbluth and Hinton [2],

$$\frac{\phi_{\mathbf{k}}(t)}{\phi_{\mathbf{k}}(0)} = \frac{1}{1 + 1.6q^2/\epsilon^{1/2}}.$$

The initial condition is given by $\delta f_{i\mathbf{k}_{\perp}}^{(g)}(0) = (\delta n_{i\mathbf{k}_{\perp}}^{(g)}(0)/n_0)F_{e0}$ with $\delta n_{i\mathbf{k}_{\perp}}^{(g)}(0)/n_0 = [1 - \Gamma_0(b_i)]e\phi_{\mathbf{k}_{\perp}}(0)/T_i$. We see a good agreement between the gyrokinetic and fluid simulation results in that both of them show the convergence to the Rosenbluth-Hinton zonal-flow level as well as nearly the same frequency of the GAM oscillations.

Next, we take the wave-number regions $a_i^{-1} \ll k_{\perp} < a_e^{-1}$ ($a_e \equiv \sqrt{T_e/m_e}/|\Omega_e|$) relevant to zonal flows in the ETG turbulence. Then, we use the kinetic-fluid equations for electrons and Poisson's equation which is written as

$$e^{-b_e/2} \left(\frac{\delta n_{e\mathbf{k}_{\perp}}^{(\mathrm{g})}}{n_0} - \frac{b_e}{2} \frac{\delta T_{e\perp\mathbf{k}_{\perp}}}{T_e} \right) + \frac{e\phi_{\mathbf{k}_{\perp}}}{T_e} \left(\frac{T_e}{T_i} + 1 - \Gamma_0(b_e) + k_{\perp}^2 \lambda_{De}^2 \right) = 0.$$

The gyrokinetic and fluid simulation results for $k_r a_e = 0.1715$ are shown by solid circular symbols and solid

curves, respectively, in Fig. 1(b), where the horizontal dashed line represents the residual zonal-flow level given by the theoretical prediction,

$$\begin{split} \frac{\phi_{\mathbf{k}_{\perp}}(t)}{\phi_{\mathbf{k}_{\perp}}(0)} = & \\ \frac{T_e/T_i + \langle k_{\perp}^2(a_e^2 + \lambda_{De}^2) \rangle}{T_e/T_i + \langle k_{\perp}^2 a_e^2 \rangle [1 + 1.6(1 + T_e/T_i)q^2/\epsilon^{1/2}] + \langle k_{\perp}^2 \lambda_{De}^2 \rangle}. \end{split}$$

In Fig. 1(b), q=1.4, $\tau_e=T_e/T_i=1$, $\epsilon=0.18$, and $k_r\lambda_{De}=0$ are used, and the initial condition is given by $\delta f_{e\mathbf{k}_{\perp}}^{(g)}(0)=(\delta n_{e\mathbf{k}_{\perp}}^{(g)}(0)/n_0)F_{e0}$ with $e^{-b_e/2}\delta n_{e\mathbf{k}_{\perp}}^{(g)}(0)/n_0=[T_e/T_i+1-\Gamma_0(b_e)]e\phi_{\mathbf{k}_{\perp}}(0)/T_e$ The gyrokinetic and fluid simulation results both show a good agreement with the predicted zonal-flow level.

Fig.1. Time evolution of the zonal-flow potential for $k_r a_i = 0.131$ (a) and for $k_r a_e = 0.1715$ (b).

References

- 1) H. Sugama, T.-H. Watanabe, and W. Horton, Phys. Plasmas 14, 022502 (2007).
- 2) M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. **80**, 724 (1998).