§3. Tritium Control for Flibe/V-alloy Blanket System Muroga, T., Sagara, A., Tanaka, T. Reduced Activation Ferritic/Martensitic Steel (RAFM) and molten salt Flibe was used in FFHR blanket design. On the other hand, the use of vanadium alloys (V-4Cr-4Ti) can increase the maximum operation temperature and ΔT of the coolant Flibe in the blanket, which is significantly beneficial for reducing viscosity of the fluid and enhancing thermal efficiency of the plant. However, combination of high partial pressure of T_2 in Flibe and high tritium solubility of V-alloy structure would result in large tritium inventory in the blanket structural components. As a solution to this issue, it was proposed to dope MoF_6 or WF_6 into Flibe for corrosion protection of the wall surfaces by precipitation of Mo or W, and for reduction of the tritium inventory by enhancing the reaction from T_2 to TF which is more soluble in Flibe. Fig. 1 is a schematic illustration of the REDOX control by WF_6 doping into Flibe. The reaction of the doped WF_6 with T_2 results in extremely biased equilibrium of TF over T_2 . At the wall surface, the reaction of WF_6 with V results in dissolution of V into Flibe and plating of the wall surface with W. The W plating is thought to be effective as a corrosion barrier for the wall. In addition, the plating has a self-healing capability. The present study investigated possible tritium management scenario by quantitative thermodynamic calculations. Fig. 1 Schematic illustration of REDOX control of Flibe by doping WF₆. The reaction of WF_6 with T_2 is given as follows. $$1/6 \text{ WF}_6 + 1/2 \text{ T}_2 = 1/6 \text{ W} + \text{TF}$$ (1) For this reaction, the chemical equilibrium equation at temperature T is given by $$\Delta G_f^o = -RT \ln P_{TF}/P_{WF6}^{1/6}P_{T2}^{1/2}$$ (2) here $\Delta G_f^{\,o}$, R, P_{TF} , P_{WF6} and P_{T2} are the difference in the free energy for fluoride formation, gas constant, partial pressure of TF, WF₆ and T₂, respectively. For evaluation of tritium inventory in the V-4Cr-4Ti, the blanket structure of FFHR-FV was assumed, where the breeding blanket is composed of 700 tons of V-4Cr-4Ti structure, 1140 tons of Flibe, and neutron/thermal shield. Fig. 2 shows partial pressure and tritium molar fraction of TF and T_2 in various levels of MoF₆ or WF₆ doping into Flibe. In the figure, tritium inventory in V-4Cr-4Ti structure and in Flibe were also indicated assuming FFHR-FV blanket structure. It should be noted that the tritium inventory in V-4Cr-4Ti structure and in Flibe are dominated by the partial pressure of T_2 and concentration of TF in Flibe, respectively. Fig. 2 Partial pressure and tritium molar fraction of TF and T_2 in Flibe for various levels of MoF₆ or WF₆ doping into Flibe at 1000K. Tritium inventory in V-4Cr-4Ti structure and in Flibe were also indicated assuming FFHR-FV blanket structure. The level of TF in Flibe is a key parameter for the tritium management in the system. The tritium inventories in 700 tons of V-4Cr-4Ti structure and 1140 tons of Flibe in the blanket area were compared in Fig. 3 as a function of the tritium molar fraction as TF in Flibe in two cases of MoF_6 and WF_6 doping. Fig. 3 The tritium inventories in V-4Cr-4Ti structure and Flibe in the blanket area as a function of the tritium molar fraction as TF in Flibe at 1000K. The blanket structure of FFHR-FV was assumed, which is composed of 700 ton of V-4Cr-4Ti structure and 1140 ton of Flibe. Assuming the guideline of the total tritium inventory in the blanket area of 100g, the acceptable maximum level of TF in Flibe can be estimated to be \sim 3 ppm and \sim 0.1 ppm for MoF₆ and WF₆ doping, respectively. According to the previous analysis of tritium management, in which tritium level in Flibe was designed to be \sim 0.1 ppm, the WF₆ doping seems to be feasible for the tritium management.