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The ellipticity criteria for the partial differential equations
of axisymmetric single-fluid and Hall
magnetohydrodynamic (MHD) equilibria with flow and
pressure anisotropy are investigated. In the ideal MHD
description of plasmas, axisymmetric toroidal equilibria
with flow are obtained by solving the so-called
generalized Grad-Shafranov (GS) equation and the
Bernoulli law. When the flow is strong, the characteristics
of this system of equations are quite different from for
static case. The generalized GS partial differential
equation (PDE) can be either elliptic or hyperbolic
depending on the magnitude of the poloidal flow velocity
relative to the velocities of MHD waves and, in particular,
transonic flow profiles become hyperbolic [1]. Two-fluid
effects resolve the Alfvén singularity and modify the
conditions for ellipticity. In order to include further
multisclale effects, one has to adopt proper fluid
equations since the characteristics of flowing equilibria
depend also on the closure models. As a simple example
that brings the closure problem to the two-fluid theory,
we consider Hall MHD in the presence of pressure
anisotropy. The MHD systems are closed with cold ions
and electron pressures derived from their parallel heat
flux equations [2], a closure that reproduces the
corresponding kinetic dispersion relation. This is different
from the CGL double-adiabatic closure which, as is well
known, is not consistent with kinetic theory. We have
studied the conditions for ellipticity of the PDEs for
single-fluid and Hall MHD axisymmetric equilibria with
flow and pressure anisotropy [3].

Anisotropic single-fluid MHD equations are obtained
by omitting the Hall term in the generalized Ohm’s law.
Equations for axisymmetric equilibrium with flow are the
generalized GS equation and the Bernoulli law. In the
absence of poloidal flow, the equilibrium is elliptic if the
kinetic stability conditions for the firehose and mirror
modes are satisfied. In the presence of poloidal flow,
there are three elliptic regions for the poloidal flow

velocity with the critical velocities corresponding to the
velocities of the MHD waves modified by the pressure
anisotropy. These critical velocities can be obtained from
the kinetic dispersion relation in its single-fluid limit, and
are different from those found with the double-adiabatic
CGL model [4].

For Hall MHD, a set
equilibrium equations has been derived. It consists of the

of anisotropic-pressure

coupled GS equations for the magnetic flux and the ion
stream function and the Bernoulli law for ions. Unlike the
isotropic case [5], in the presence of pressure anisotropy,
the characteristic determinants for each GS equation are
coupled and cannot be examined their ellipticity
separately. One can find the conditions for ellipticity of
such systems involving higher order derivatives by
examining the existence of wave type solutions, a method
also applicable to second order differential equations. If
we consider a wave propagating in one-dimensional
space and time and having discontinuity across the wave
front, ellipticity of the coupled GS equations requires the
non-existence of real values of the velocity of the wave
front. If there is no poloidal flow, the condition for the
ellipticity is satisfied by that of single-fluid MHD
equilibria with purely toroidal flow. Provided this
condition holds, we have examined the dependence of the
ellipticity condition on the poloidal flow velocity in the
presence of pressure anisotropy. We have obtained a
sufficient condition for ellipticity corresponding to a
poloidal flow velocity slightly smaller than the ion sound
velocity.

The fluid moment equations used in this study include
the Hall term and the pressure anisotropy for electrons. To
include more small scale effects such as the
gyro-viscosity and the Landau damping, a more advanced
closure model applicable to finite ion pressures should be
adopted.
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