§12. Cyclic Reduction Method for Block Pentagonal Matrix

Yamagishi, O.

Cyclic reduction method for trigonal matrix can be found in the standard text book. Here we consider a problem with block pentagonal matrix.

First a problem with pentagonal matrix of dimension $n=2^k-1$, Mx=f, is considered.

c_1	d_1	e_1					\mathbf{x}_1		\mathbf{f}_1
b_2	c_2	d_2	e_2				\mathbf{x}_2		f_2
a ₃	b_3	c_3	d_3	e_3			X 3		f_3
	a_4	b ₄	c ₄	d_4	e_4		X4	=	f_4
		a_5	b_5	c ₅	d_5	e ₅	X5		f_5
				a _n	b _n	c_n	Xn		\mathbf{f}_{n}

For a fixed even i, we write

$$\begin{array}{lll} a_{i-2}x_{i-4}+b_{i-2}x_{i-3}+c_{i-2}x_{i-2}+d_{i-2}x_{i-1}+e_{i-2}x_{i}=f_{i-2} & ----(1)\\ a_{i-1}x_{i-3}+b_{i-1}x_{i-2}+c_{i-1}x_{i-1}+d_{i-1}x_{i}+e_{i-1}x_{i+1}=f_{i-1} & ----(2)\\ a_{i}x_{i-2}+b_{i}x_{i-1}+c_{i}x_{i}+d_{i}x_{i+1}+e_{i}x_{i+2}=f_{i} & ----(3)\\ a_{i+1}x_{i-1}+b_{i+1}x_{i}+c_{i+1}x_{i+1}+d_{i+1}x_{i+2}+e_{i+1}x_{i+3}=f_{i+1} & ----(4)\\ a_{i+2}x_{i}+b_{i+2}x_{i+1}+c_{i+2}x_{i+2}+d_{i+2}x_{i+3}+e_{i+2}x_{i+4}=f_{i+2} & ----(5) \end{array}$$

By multiplying k_1,k_2,k_3,k_4,k_5 to Eqs.(1)-(5), the condition to annihilate coefficients of x_i with odd j are,

$$\begin{array}{lll} k_1b_{i-2} + k_2a_{i-1} = 0 \; (\text{for} \; x_{i-3}) & -------(1^*) \\ k_1d_{i-2} + k_2c_{i-1} + k_3b_i + k_4a_{i+1} = 0 \; (\text{for} \; x_{i-1}) & -------(2^*) \\ k_2e_{i-1} + k_3d_i + k_4c_{i+1} + k_5b_{i+2} = 0 \; (\text{for} \; x_{i+1}) & -------(3^*) \\ k_4e_{i+1} + k_5d_{i+2} = 0 \; (\text{for} \; x_{i+3}) & -------(4^*) \end{array}$$

From (1*) and (4*), we have $\begin{aligned} k_1 &= -k_2(a_{i-1}/b_{i-2}), ------(1**) \\ k_5 &= -k_4(e_{i+1}/d_{i+2}), ------(2**) \\ \text{and substituting these to (2*) and (3*) gives} \\ k_3 &= -k_4 \big[e_{i-1}d_{i+2}a_{i+1}b_{i-2} + (c_{i+1}d_{i+2}-e_{i+1}b_{i+2})(a_{i-1}d_{i-2}-c_{i-1}b_{i-2}) \big] / \\ \big[e_{i-1}d_{i+2}b_{i-2}b_i + d_id_{i+2}(a_{i-1}d_{i-2}-c_{i-1}b_{i-2}) \big] &------(3**) \end{aligned}$

Choosing $k_2=b_{i-2}$ and $k_4=d_{i+2}$ gives $k_1=-a_{i-1}$, $k_5=-e_{i+1}$, and $k_3=-\left[e_{i-1}d_{i+2}a_{i+1}b_{i-2}+\left(c_{i+1}d_{i+2}-e_{i+1}b_{i+2}\right)\left(a_{i-1}d_{i-2}-c_{i-1}b_{i-2}\right)\right]/\left[e_{i-1}b_{i-2}b_i+d_i(a_{i-1}d_{i-2}-c_{i-1}b_{i-2})\right]$. By using these k_1-k_5 , sum of eqs.(1)-(5) becomes

$$\begin{array}{l} [k_1a_{i-2}]x_{i-4} + [k_1c_{i-2} + k_2b_{i-1} + k_3a_i]x_{i-2} + [k_1e_{i-2} + k_2d_{i-1} + k_3c_i \\ + k_4b_{i+1} + k_5a_{i+2}]x_{i} + [k_3e_i + k_4d_{i+1} + k_5c_{i+2}]x_{i+2} + [k_5e_{i+2}]x_{i+4} \\ = k_1f_{i-2} + k_2f_{i-1} + k_3f_i + k_4f_{i+1} + k_5f_{i+2}. \end{array}$$

Taking the right hand side to be new f_i , and defining new coefficients a_{i-4} , b_{i-2} , c_i , d_{i+2} , and e_{i+4} for x_{i-4} , x_{i-2} , x_i ,

x_{i+2} , and x_{i+4} , we have a nan size matrix problem,									
c_2	d_2	e_2						\mathbf{x}_2	
b_4	c ₄	d_4	e_4					X4	
a_6	d_6	d_6	d_6	e ₆				x ₆	
	a_8	b_8	c_8	d_8	e ₈			X ₈	
				a _{n'-2}	b _{n'-2}	c _{n'-2}	$d_{n'-2}$	X _n '-3	
					a _n ,	b_{n}	c_{n}	x _n ,	

 $= (f_2, f_4, \dots, f_{n'-1})^T,$

with matrix dimension $n'=2^{k-1}-1$. This process can be repeated k times to obtain $c_jx_j=f_j$ with $j=2^{k-1}$. Then all the x_j with even j is determined by (1^*) and (4^*) , and then they are used again to obtain x_j with odd j.

Next we consider a problem with block pentagonal matrix,

\mathbf{c}_1	\mathbf{d}_1	\mathbf{e}_1					\mathbf{x}_1		\mathbf{f}_1
\mathbf{b}_2	\mathbf{c}_2	\mathbf{d}_2	\mathbf{e}_2				X ₂		\mathbf{f}_2
\mathbf{a}_3	b ₃	\mathbf{c}_3	\mathbf{d}_3	\mathbf{e}_3			X 3		\mathbf{f}_3
	\mathbf{a}_4	b ₄	c ₄	\mathbf{d}_4	\mathbf{e}_4		X 4	=	\mathbf{f}_4
		\mathbf{a}_5	b ₅	c ₅	\mathbf{d}_5	\mathbf{e}_5	X 5		f ₅
				\mathbf{a}_{n}	b _n	\mathbf{c}_{n}	\mathbf{x}_{n}		\mathbf{f}_{n}

where again n is an odd number, $n=2^k-1$, and each $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$ is a dense, m x m matrix, and \mathbf{x} and \mathbf{f} are vector with m components. Then m x m matrix \mathbf{k}_1 to \mathbf{k}_5 are multiplied to eqs.(1)-(5), to see that eqs.(1)-(5) are only replaced by a matrix-vector product, for example, $\mathbf{a}_{i-2}\mathbf{x}_{i-4}$ becomes $\mathbf{a}_{i-2}\mathbf{x}_{i-4}$. Then \mathbf{k}_1 to \mathbf{k}_5 to annihilate the odd \mathbf{x}_i are

odd
$$\mathbf{x}_{j}$$
 are $\mathbf{k}_{1} = -\mathbf{k}_{2} \, \mathbf{a}_{i-1} \, \mathbf{b}_{i-2}^{-1}, \qquad ------(1***)$
 $\mathbf{k}_{5} = -\mathbf{k}_{4} \, \mathbf{e}_{i+1} \, \mathbf{d}_{i+2}^{-1}, \qquad ------(2***)$
to obtain $\mathbf{k}_{3} = -\mathbf{k}_{4} \, \mathbf{p} \, \mathbf{q}^{-1} \qquad ------(3***)$
with $\mathbf{p} = \mathbf{a}_{i+1} \, \mathbf{r}^{-1} - \mathbf{s} \, \mathbf{e}_{i-1}^{-1}$ and $\mathbf{q} = \mathbf{b}_{i} \, \mathbf{r}^{-1} - \mathbf{d}_{i} \, \mathbf{e}_{i-1}^{-1}$ and $\mathbf{r} = \mathbf{c}_{i-1} - \mathbf{a}_{i-1} \, \mathbf{b}_{i-2}^{-1} \, \mathbf{d}_{i-2}$ and $\mathbf{s} = \mathbf{c}_{i+1} - \mathbf{e}_{i+1} \, \mathbf{d}_{i+2}^{-1} \, \mathbf{b}_{i+2}$.

Choosing \mathbf{k}_2 and \mathbf{k}_4 be unit matrix, $\mathbf{k}_1,...,\mathbf{k}_5$ are obtained by inversing matrixes in eqs.(1***)-(3***) five times. Then we have a equation corresponding to eq.(4**) in matrix-vector version, and the problem is reduced to be half size. The same procedure will be repeated k times to obtain a m x m matrix problem, $\mathbf{c}_j\mathbf{x}_j=\mathbf{f}_j$ with $j=2^{k-1}$. Although number of matrix inversion $\sim \Sigma_{j=1}^k [5(2^{k-j-1})]$ needed is not so different from the total block number $\sim [5(2^k-1)]$, the reduction method has independent loops to be suitable for parallelization.