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In improved confinement modes of magnetically confined
plasmas where high-beta is achieved, equilibrium flows
play important roles like the suppression of instability and
transport. At the
well-confined region, the scale lengths characteristic of

turbulent sharp boundary of a

microscopic  effects not included in single-fluid
magnetohydrodynamics (MHD) cannot be neglected.
Small scale effects on flowing equilibria due to the Hall
current have been studied with two-fluid or Hall MHD
models. However, these models are consistent with
kinetic theory only for cold ions [1]. In order to include
the hot ion effects that are relevant to fusion plasmas, an
extension of the model is necessary. A consistent
treatment of hot ions in a two-fluid framework must
include the ion gyroviscosity and other finite Larmor
(FLR) effects. In the

collisionless magnetized plasmas, these effects are

radius fluid formalism of
incorporated by means of asymptotic expansions in terms
of the small parameter 6 ~ pi/a, where p; is the ion
Larmor radius and a is the macroscopic scale length.
With a slow dynamics ordering, v ~ 6v; where v
and vy are the flow and thermal velocities respectively,
the ion FLR terms [2,3] are much simplified in the
high-beta
tokamaks [4,5] after relating § to the inverse aspect

reduced models for large-aspect-ratio,
ratio expansion parameter & = a/Ry < 1, where ¢ and
Ry are the characteristic scale lengths of the minor and
major radii respectively [4,5].

We have derived the high-beta
axisymmetric equilibria with flow comparable to the

equations  for

poloidal Alfvén velocity in the reduced two-fluid model
with FLR and flow comparable to the poloidal sound
velocity in the single-fluid model, by using asymptotic
expansions in terms of the inverse aspect ratio [6]. These
velocities are the characteristic velocities that bring
singularities in the

equilibrium equations. The

poloidal-Alfvenic flow 1is of interest because the

equations for axisymmetric equilibria in single-fluid

MHD have a singularity when the poloidal flow velocity
is equal to the poloidal Alfven velocity, the so-called
Alfven singularity. This can be described by the reduced
model with the relation 62> ~ €. The poloidal-sonic flow
is of interest because the equilibria show a discontinuity
at the point where the poloidal flow velocity crosses the
poloidal sound velocity. This can be described by the
reduced model with the relation & ~ €. While the
poloidal-Alfvenic flow analysis follows the standard
orderings of reduced MHD for high-beta tokamaks, the
poloidal-sonic flow analysis does not and higher-order
terms must be taken into account. Since the formulation
of higher-order equations is involved, here we restrict our
analysis of the poloidal-sonic flow to the single-fluid case,
planning to extend our present results with the inclusion
of two-fluid, hot ion effects in future work. The orderings
in this study provide the simplest models that include ion
FLR effects on toroidal equilibria with flow. As such,
they should be just considered as convenient working
hypotheses that allow our analytic study of such effects.

We have shown that the Alfvén singularity is shifted by
the gyroviscous cancellation. The singularity at the
poloidal flow velocity equal to the poloidal sound
velocity in the density and pressure and its dependence on
toroidicity have been reproduced by our higher-order
terms and the singularity in the higher-order magnetic
structure has been found. The reduced single-fluid
equations for equilibria with poloidal-sonic flow include
and hence can describe

higher-order  quantities

finite-aspect-ratio tokamak equilibria. The resulting
equations can be easily solved numerically to yield
flowing equilibria without singularity and their solutions
can be used as initial states or for comparison with

saturated states of reduced model nonlinear simulations.
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