§31. Numerical Renormalization Group in NS and MHD Turbulence by Using Parallel Massive Direct Numerical Simulation

Gotoh, T. (Nagoya Institute of Technology)

It is common in direct numerical simulations (DNSs) of NS, MHD, and passive scalar turbulence that $K_{max}\overline{\eta} > 1$ is a necessary condition for the spatial accuracy, where $\overline{\eta}$ is the average Kolmogorov length and K_{max} is the maximum wavenumber retained in the Fourier spectral method. However, in many cases of turbulence simulation at high Reynolds numbers, there is an actual cut off wavenumber k_c such that $k_c \overline{\eta} < K_{max} \overline{\eta} < 1$ because of limitation of the computational resources. In this case, effects of degrees of freedom (subgrid scale, SGS) in the band $k_c < k < K_{max}$ on grid scale (GS) are to be examined. We have examined those effects from the view points of dynamics, statistics, and renormalization by taking as $k_c = k_{max}/\beta, \beta = 1, 2, 4$ and comparing with the data which was computed by the full resolution DNS.

For this purpose, we have introduced a sharp cut off filter \mathcal{F} at k_c and decomposed the velocity field as $\boldsymbol{u}(\boldsymbol{k},t) = \boldsymbol{u}^<(\boldsymbol{k},t) + \boldsymbol{u}^>(\boldsymbol{k},t)$. The equation of motion of the GS velocity $\boldsymbol{u}^<(\boldsymbol{k},t)$ is given by $\left(\partial_t + \nu k^2\right) \boldsymbol{u}^<(\boldsymbol{k}) = \boldsymbol{N}^<(\boldsymbol{k}) + \boldsymbol{R}^<(\boldsymbol{k})$, $\boldsymbol{N}^<(\boldsymbol{k}) = \mathcal{F}\boldsymbol{M}(\boldsymbol{k}) \sum_{p,q}^{\Delta} \boldsymbol{u}^<(p) \boldsymbol{u}^<(q)$, where $\boldsymbol{N}^<$ is the nonlinear term consisting of GS components alone, and $\boldsymbol{R}^<$ represents contributions from the SGS components. We have done two series of DNSs, the first one is runs $\mathrm{L1}(N=256,K_{max}\overline{\eta}=1.0)$, $\mathrm{L2}(N=512,K_{max}\overline{\eta}=2.0)$, and $\mathrm{L3}(N=1024,K_{max}\overline{\eta}=3.8)$ at $R_\lambda=180$, and the second is run $\mathrm{H1}(N=1024,K_{max}\overline{\eta}=1.06)$ at $R_\lambda=420$ [1].

Figure 1 shows the compensated energy spectrum $k^{5/3}E(k)$ and $k^2E(k)$ in steady turbulence. Curves for $k^{5/3}E(k)$ collapse well and the one for $R_{\lambda}=420$ has a horizontal part with finite width, showing the existence of the inertial range. For this turbulence, we have analysed the effects of the SGS components. Figure 2 shows $E_N(k|k_c) = 4\pi k^2 \langle |\mathbf{N}^{<}(\mathbf{k})|^2 \rangle$ and the square root of $E_R(k|k_c) = 4\pi k^2 \langle |\mathbf{R}^{<}(\mathbf{k})|^2 \rangle$. Except wavenumbers near k_c , there is no change in $E_N(k|k_c)$. This is because $E_R(k|k_c)$ is very small except $k = k_c$ and k_c lies in the dissipation range. $E_R(k|k_c)$ rises as $E_R(k|k_c) \propto (k/k_c)^{3.2}$ when $k \to k_c$ and the curve becomes cusp when $k \approx k_c$. If we write as $E_R(k|k_c) = 2\nu_e(k|k_c)k^2E_N(k|k)$, the term $\nu_e(k|k_c)$ is the eddy viscosity. As seen in Fig. 3, the eddy viscosity becomes large near $k = k_c$ and decays quickly when k becomes smaller. The contributions from SGS components may be written in the form of Langevin type equation as $R^{<}(k) =$

 $-\nu_e(k|k_c)k^2u^{<}(k) + \tilde{R}(k)$. It is important to note that the random force $\tilde{R}(k)$ is not white noise in time and its probability density function is not Gaussian at all, which is confirmed by using the above DNS data set [2, 3]. It is interesting and important to examine the possibility of nonlinear regression model.

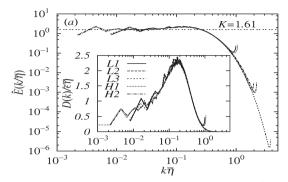


FIG. 1: Compensated kinetic energy spectrum $\hat{E}(x)$ at $R_{\lambda}=420$. The dotted horizontal line is K=1.61. The inset figure shows the normalised dissipation spectra.

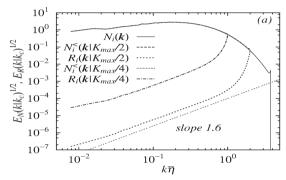


FIG. 2: Square root of the spectra for the nonlinear and residual terms $N^{<}(k)$ and $R^{<}(k)$.

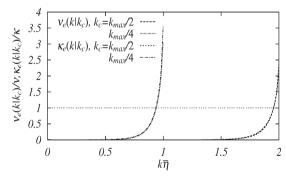


FIG. 3: The normalised eddy viscosity and eddy diffusivity extracted from the residual terms $\mathbf{R}(\mathbf{k})$ and $\mathbf{R}_{\theta}(\mathbf{k})$ obtained from run L3. $k_c = k_{max}/2$ and $k_c = k_{max}/4$.

- T. Watanabe and T. Gotoh, J. Fluid Mech. 590, 117 (2007).
- [2] T. Okumura, T. Watanabe, T. Gotoh, and R. Rubinstein, Proceedings of the 20th CFD symposium (in Japanese). A7-3, (2006).
- [3] H. Touli, M. Y. Hussaini, T. Gotoh, R. Rubinstein, and S. L. Woodruff, New J. Phys. 9 215 (2007).