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In one of the most outstanding papers on turbulence,
G. 1. Taylor 1 suggested that the energy dissipation rate
€ (per unit time and mass) of a turbulent flow is deter-
mined by its root-mean-square velocity u’ and the char-
acteristic length scale / as
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Here, we investigate whether the non-dimensional dissi-

pation coefficient
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is universal or not, when we adopt the integral length
of the longitudinal velocity correlation function as /. In
the previous experimental and numerical studies, both
of the universality (in the high Reynolds number limit)
and non-universality of C, have been claimed.

In the followings, we examine the Taylor relation (1)
from a new perspective, i.e. in terms of the statistics of
the velocity stagnation points. We consider the turbu-
lence whose energy spectrum E(k) is proportional to k=P
in the wavenumber region /=1 < k < n~!. (Here, 7 is the
Kolmogorov length.) Then, it can be shown ?) that the
number density of the stagnation points of the velocity
field coarse-grained at /. is
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Here, Cy is a non-dimensional constant. On the other
hand, according to the theorem by Rice 3, if the velocity
and its spatial derivative are normally distributed, the
Taylor length A of the velocity field is expressed as
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Above relation implies that the Taylor length A is pro-
portional to the mean distance between the stagnation
points. This is important in the current context because
the energy dissipation rate € in statistically isotropic tur-
bulence is expressed in terms of \ as
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where v is the kinematic viscosity of the fluid. Then,
recalling n = v3/4 €=1/4, we obtain, from (3)—(5),
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It is interesting to observe that when E(k) is the Kol-
mogorov spectrum (i.e. p = 5/3 and Dy = 2), (6) reduces
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to the Taylor relation (1) with the relationship between
the coeflicients

C. =152y, (7)

Our main claim is that C. is not universal because
it explicitly depends on Cy as seen in (7). Here, we
note, from (3), that the coefficient Cs is related to
the number of stagnation points at the largest scale /;
Cs = ng(le = 0)¢3. Therefore, C; must depend on the
turbulent structure at the largest scale (i.e. boundary
condition, external forcing, and so on). This means that
C. as well as C are non-universal.

In order to verify the non-universality of C,, we have
conducted a series of direct numerical simulations of
isotropic turbulence of an incompressible fluid by chang-
ing the large-scale structures systematically. More pre-
cisely, the behaviour of the energy spectrum E(k) ~ k9
in the low wavenumber range (k < £~!) is controlled,
since it can be shown analytically ¥ that C (and there-
fore C¢) is a function of ¢ as
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in the high Reynolds number limit. In Fig. 1, the dissipa-
tion coefficient C¢ in the statistically stationary regime is
plotted as the function of the Reynolds number R) based
on the Taylor length. It is clearly observed that the coef-
ficient depends on the large-scale structure, i.e. the shape
of the energy spectrum in the low wavenumber region.
The non-universality is likely to survive even for larger
R), since the dependence is consistent with our predic-
tion (8).
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Fig. 1 Energy dissipation coefficient C, of isotropic tur-
bulence as the function of the Reynolds number. Results
of direct numerical simulations for different shapes of the
energy spectrum E(k) ~ k7 in the low wavenumber range.
Solid circles, ¢ = 2; open circles ¢ = 4.
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