§33. Taylor's Relation of Turbulent Energy Dissipation

Goto, S. (Kyoto Univ.), Vassilicos, J.C. (Imperial College, London)

In one of the most outstanding papers on turbulence, G. I. Taylor ¹⁾ suggested that the energy dissipation rate ϵ (per unit time and mass) of a turbulent flow is determined by its root-mean-square velocity u' and the characteristic length scale ℓ as

$$\epsilon \sim \frac{u'^3}{\ell} \ .$$
 (1)

Here, we investigate whether the non-dimensional dissipation coefficient

$$C_{\epsilon} = \frac{\epsilon \ell}{u^{\prime 3}} \tag{2}$$

is universal or not, when we adopt the integral length of the longitudinal velocity correlation function as ℓ . In the previous experimental and numerical studies, both of the universality (in the high Reynolds number limit) and non-universality of C_{ϵ} have been claimed.

In the followings, we examine the Taylor relation (1) from a new perspective, i.e. in terms of the statistics of the velocity stagnation points. We consider the turbulence whose energy spectrum E(k) is proportional to k^{-p} in the wavenumber region $\ell^{-1} \lesssim k \leq \eta^{-1}$. (Here, η is the Kolmogorov length.) Then, it can be shown ²⁾ that the number density of the stagnation points of the velocity field coarse-grained at ℓ_c is

$$n_s = C_s \frac{1}{\ell^3} \left(\frac{\ell}{\ell_c}\right)^{D_s}, \quad D_s = \frac{3(3-p)}{2}.$$
 (3)

Here, C_s is a non-dimensional constant. On the other hand, according to the theorem by Rice ³⁾, if the velocity and its spatial derivative are normally distributed, the Taylor length λ of the velocity field is expressed as

$$\lambda = C_{\lambda} \left[n_s(\ell_c = \eta) \right]^{-1/3}. \tag{4}$$

Above relation implies that the Taylor length λ is proportional to the mean distance between the stagnation points. This is important in the current context because the energy dissipation rate ϵ in statistically isotropic turbulence is expressed in terms of λ as

$$\epsilon = 15\nu \, u'^2 / \lambda^2 \tag{5}$$

where ν is the kinematic viscosity of the fluid. Then, recalling $\eta = \nu^{3/4} \epsilon^{-1/4}$, we obtain, from (3)–(5),

$$\epsilon = \left[15u'^2C_{\lambda}^{-2}C_s^{2/3}\ell^{-2+2D_s/3}\nu^{1-D_s/2}\right]^{1/(1-D_s/6)}. (6)$$

It is interesting to observe that when E(k) is the Kolmogorov spectrum (i.e. p = 5/3 and $D_s = 2$), (6) reduces

to the Taylor relation (1) with the relationship between the coefficients

$$C_{\epsilon} = (15)^{3/2} C_{\lambda}^{-3} C_{s}$$
 (7)

Our main claim is that C_{ϵ} is not universal because it explicitly depends on C_s as seen in (7). Here, we note, from (3), that the coefficient C_s is related to the number of stagnation points at the largest scale ℓ ; $C_s = n_s(\ell_c = \ell)\ell^3$. Therefore, C_s must depend on the turbulent structure at the largest scale (i.e. boundary condition, external forcing, and so on). This means that C_{ϵ} as well as C_s are non-universal.

In order to verify the non-universality of C_{ϵ} , we have conducted a series of direct numerical simulations of isotropic turbulence of an incompressible fluid by changing the large-scale structures systematically. More precisely, the behaviour of the energy spectrum $E(k) \sim k^q$ in the low wavenumber range $(k \ll \ell^{-1})$ is controlled, since it can be shown analytically ⁴⁾ that C_s (and therefore C_{ϵ}) is a function of q as

$$C_{\epsilon} \sim C_{s} \sim \left[\frac{3(q+1)}{6q+10}\right]^{\frac{3}{2}} \frac{\frac{1}{q} + \frac{3}{5}}{\frac{1}{q+1} + \frac{3}{2}}$$
 (8)

in the high Reynolds number limit. In Fig. 1, the dissipation coefficient C_{ϵ} in the statistically stationary regime is plotted as the function of the Reynolds number R_{λ} based on the Taylor length. It is clearly observed that the coefficient depends on the large-scale structure, i.e. the shape of the energy spectrum in the low wavenumber region. The non-universality is likely to survive even for larger R_{λ} , since the dependence is consistent with our prediction (8).

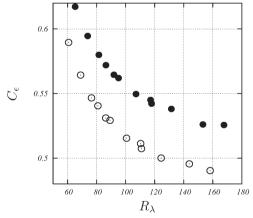


Fig. 1 Energy dissipation coefficient C_{ϵ} of isotropic turbulence as the function of the Reynolds number. Results of direct numerical simulations for different shapes of the energy spectrum $E(k) \sim k^q$ in the low wavenumber range. Solid circles, q = 2; open circles q = 4.

- Taylor, G. I.: Proc. Roy. Soc. London A 151 (1935)
 421.
- 2) Rice, S. O.: Bell Syst. Tech. J. 23 (1944) 282.
- 3) Dávila, J. and Vassilicos, J. C.: Phys. Rev. Lett. **91** (2003) 144501.
- 4) Goto, S. and Vassilicos, J.C.: 6 (2008) in preparation.