§3. Optimization of Magnetic Configuration for the High Fusion Triple Product Operation

Miyazawa, J., Sakamoto, R., Goto, M., Morisaki, T., Motojima, G., Yamada, H.

High fusion triple product of $n_{\rm e0} \tau_{\rm E} T_{\rm e0} \sim 0.5 \times 10^{20} \ {\rm m}^{-3}$ s keV, where $n_{\rm c0}$, $\tau_{\rm E}$ and $T_{\rm c0}$ are the central electron density, the energy confinement time, and the central electron temperature, respectively, has been achieved after finding of the high-density internal diffusion barrier (IDB) plasmas in LHD. There is an optimum magnetic configuration for $n_{\rm e0} \tau_{\rm E} T_{\rm e0} = p_{\rm e0} \tau_{\rm E}$, where $p_{\rm e0} = n_{\rm e0} T_{\rm e0}$ is the central electron pressure, because of the opposite magnetic configuration dependence of $p_{\rm e0}$ and $\tau_{\rm E}$.

Contrastive to the strong magnetic configuration dependence of the global energy confinement property in LHD, $p_{\rm e0}$ in pellet-fuelled plasmas including IDB plasmas increases with the central density in a similar manner at various magnetic configurations of $R_{\rm ax}=3.60-3.80$ m as is shown in Fig. 1, where $R_{\rm ax}$ is the major radius of the magnetic axis in the vacuum condition. Nevertheless, the upper envelope of Fig. 1 suggests gyro-Bohm like density dependence of the pressure, *i.e.*, $p_{\rm e0} \propto n_{\rm e0}^{0.6}$, as is also observed for $\tau_{\rm E}$.

 $R_{\rm ax}$ dependence of pellet-fuelled plasmas is summarized in Fig. 2, where the magnetic field strength and the heating power are fixed while the pellet injection scheme is optimized at each configuration. $n_{\rm c0}$ and $p_{\rm c0}$ increase as $R_{\rm ax}$ is shifted outward, while $\tau_{\rm E}$ monotonically decreases with increasing $R_{\rm ax}$. In the case of Fig. 2, the optimum $R_{\rm ax}$ for high $n_{\rm c0}$ $\tau_{\rm E}T_{\rm c0}$ is 3.75-3.80 m.

To achieve high $n_{\rm e0}\,\tau_{\rm E}T_{\rm e0}$, it is effective to reduce the heating power after the IDB formation, which we call "annealing operation" on the analogy of metallurgy. $^{1)}\,n_{\rm e0}\,\tau_{\rm E}$ in various configurations is plotted as a function of $T_{\rm e0}$ in Fig. 3. The annealing operation has been carried out at $R_{\rm ax}$

Fig. 1. $n_{\rm e0}$ dependence of $p_{\rm e0}$ normalized by the gyro-Bohm type parameter dependence in pellet-fuelled plasmas. The upper envelope suggests no or weak configuration dependence of $p_{\rm e0}$, while the gyro-Bohm property is maintained.

= 3.70, 3.75, and 3.80 m. High $n_{\rm e0}\tau_{\rm E}T_{\rm e0}$ of $\sim 0.5 \times 10^{20}$ m⁻³ s keV has been achieved in these configurations around $R_{\rm ax}$ ~ 3.75 m, which are the optimum for high $n_{\rm e0}\tau_{\rm E}T_{\rm e0}$ as expected from the opposite tendency of $p_{\rm e0}$ and $\tau_{\rm E}$.

 Miyazawa, J., et al.: Ann. Rep. NIFS Apr. 2007 – Mar. 2008 (2008) 8

Fig. 2. Magnetic configuration dependence of $n_{e0} \tau_{\rm E} T_{e0}$. The magnetic field strength of 2.54 T and the NB heating power of 10-13 MW are fixed. Open squares denote the subset of high $n_{e0} \tau_{\rm E} T_{e0}$.

Fig. 3. $T_{\rm e0}$ dependence of $n_{\rm e0}\,\tau_{\rm E}$ in various magnetic configurations. Important milestones to the fusion reactor of the break even condition, the Lawson condition, and the ignition condition are also depicted.