§16. Plasmon and Spin Interference Effects on Electron Collisions in Hot Quantum Plasmas

Jung, Y.-D. (Hanyang Univ.), Kato, D.

The effects of plasmon and spin interference in electron-electron collisions are investigated in hot quantum plasmas. As we see in Fig. 1, the cross section shows the minimum position near the scattering angle $\theta_{L} = \pi / 4$. In Fig. 2, it is shown that the plasmon effect suppresses the electronelectron collision cross $0 < \beta (\equiv \hbar \omega_0 / k_B T) < 0.8$ and, however, enhance the cross section for $0.8 < \beta < 1$, where ω_0 is the plasma frequency and T is the plasma temperature. In addition, it is shown that the spin interference effect strongly suppresses the collision cross section and is more significant near the scattering angle $\theta_{\scriptscriptstyle L} = \pi / 4$. (see Fig. 3)

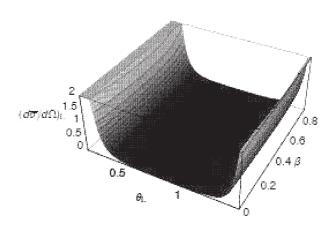


FIG. 1 The surface plot of the differential electron-electron collision cross section $\left(d\overline{\sigma}/d\Omega\right)_{\rm L}$ in units of $\pi a_{\rm o}^2$ as a function of the scattering angle $\theta_{\rm L}$ and parameter β when $\overline{E}=10$ and $\overline{L}=100$.

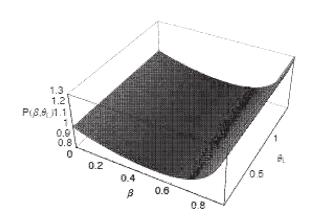


FIG. 2 The surface plot of the function of the plasmon effect $P(\beta, \theta_{\rm L})$ as a function of the parameter β and scattering angle $\theta_{\rm L}$ when \overline{E} =10 and \overline{L} =100.

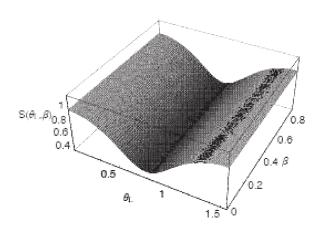


FIG. 3 The surface plot of the function of the spin effect $S(\theta_{\rm L},\beta)$ as a function of the scattering angle $\theta_{\rm L}$ and parameter β when $\overline{E}=5$ and $\overline{L}=100$.