§22. Destructions of Layered Structure of Graphite by First-principle Calculations

Yamashiro, M. (Nihon Univ.), Tanaka, M.

The sputtering and erosion of atoms from surfaces by particle bombardment is significant process in a wide range of materials physics and applications, such as microfabrications of semiconductor processes¹⁾ or plasma-wall interaction in a magnetic confinement fusion device²⁾. Especially chemical erosion/sputtering processes³⁾ are important to determine etching characteristics, such as species of desorbed clusters.

Previously, the first-principle calculations of hydrogen adsorption in graphite was performed^{4, 6)} determining the energetically most stable configuration of the system consisted of graphite and hydrogen atoms with the conjugate gradient (CG) method. They employed SIESTA code developed by Spanish atomic physicists⁵⁾.

We have continued our work⁷⁾ which extend the previous calculation so as to include the spin polarization e ect of atoms. We employ the graphite consisting of five graphene sheets with 108 hydrogen atoms as the initial state. Hydrogen atoms placed at the 1st, 2nd, and 3rd inter-layer space and there are 36 hydrogen atoms for each inter-layer. All of the other conditions are

Fig. 1: The initial configuration of graphite with 108 hydrogen atoms.

same with those of Ref.4). Figure 1 shows the hydrogenated graphite after energetically stabilization calculation (however, it is not most stable state). It can be easily seen that 2 dimensional structure is collapsed into 3 dimensional, i.e., the bond structure between carbon atoms has been changed from sp2 like to sp3 like.

Figures 2 and 3 show the first and third layer of the graphite shown in Fig.1. First of all, the equivalent existence of hydrogen atoms on both sides of a graphene sheet is important⁸⁾ for modifications of the sheet, because the 3rd layer in Fig.3 is clearly well modified rather

Fig. 2: The 1st layer of the graphite shown in Fig.1.

Fig. 3: The 3rd layer of the graphite shown in Fig.1.

than the 1st layer in Fig.2. Moreover, we can not find clear evidence that each CH_2 site tends to break and leave from a graphene sheet. In Fig.3, one bond between carbon atoms is broken, but all CH_2 sites still connecting each other. Then, we speculate that main desorbed products are consisted of not only CH_x type but many of $\mathrm{C}_y\mathrm{H}_x$ $(y,x\neq 0 \text{ or } 1)$ type. Indeed, by classical molecular dynamics simulations⁹⁾, it has been obtained that most frequently observed etching product species has the form $\mathrm{C}_2\mathrm{H}_x$ and next one is CH_x . Then, we can also speculate that adjacent two CH_2 sites is one of the most in uential seed of chemically etched byproducts.

- 1) S. Hamaguchi, IBM J. Res. Dev. 43, 199 (1999).
- 2) R. A. Causey, J. Nucl. Mater. 300, 91 (2002).
- P. S. Krstic, C. O. Reinhold and S. J. Stuart, New J. Phys. 9, 209 (2007).
- T. Koga and M. Tanaka, J. Korean Phys. Soc. 49, S52 (2006).
- 5) A. Gracia et al., The Siesta (Spanish initiative for electronic simulations with thousands of atoms) code, http://www.uam.es/departamentos/ciencias/fismateriac/siesta/
- 6) Y. Zempo and M. Tanaka, Newsletter of National Institute for Fusion Science (February, 2004).
- M. Yamashiro and M. Tanaka, Annual Report of National Institute for Fusion Science April2007-March2008
- 8) D. W. Boukhvalov, M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 77, 035427 (208).
- 9) M. Yamashiro and S. Hamaguchi, Proceedings of the 22nd IAEA Fusion Energy Conference, TH-P4-7.