§29. Design of Tritium Recovery System for Laser Fusion Reactor

Fukada, S., Edao, Y. (Kyushu Univ.), Norimatsu, T. (Osaka Univ.)

A tritium (T) recovery system for a Laser fusion reactor called KOYO-fast of 1GWt power is designed within the present collaboration framework between Osaka University and Kyushu University. A wetted wall of liquid Li_{0.17}Pb_{0.83} eutectic alloy is proposed in order to suppress radiation damage to the first wall and to recover heat generated by neutron moderation. The LiPb eutectic alloy works not only as a protector of the first wall but also as a T-breeding blanket through the n-Li reaction. Thus LiPb works as a multi-purpose blanket fluid for T breeding, coolant and energy conversion. The outside LiPb loop is operated under the conditions of temperature and LiPb flow rate as shown in Fig. 1. Generated T is removed by a T removal system composed of a LiPb-He counter-current extraction tower. Then heat transferred to coolant is converted to electricity by a steam generator and steam turbine.

In FY 2008, experiment based on the permeation method has been performed to determine the values of permeability (P_H or P_D), solubility (K_H or K_D) and diffusivity (D_H or D_D) of H_2 or D_2 in $Li_{0.17}Pb_{0.83}$. Fig. 2 shows data of permeability of H_2 through LiPb. The pressure dependence is found to be square root of upstream pressure regardless of temperature when the downstream pressure is very low. Then, the H permeation flux, j_H , is correlated as follows:

$$j_{H_2} = \frac{1.8 \times 10^{-9}}{l} \exp\left(\frac{30.1[kJ/mol]}{R_g T}\right) \left(p_{H_2,up}^{0.5} - p_{H_2,down}^{0.5}\right) [\text{mol/m}^2 \text{s}]$$

The values of solubility and diffusivity determined experimentally are presented in the papers cited below [1-3], and are correlated to the equations:

$$D_{LiPb-H} = 1.8 \times 10^{-8} \exp\left(-\frac{11.6[kJ/mol]}{R_g T}\right) \text{ [m²/s]}$$

$$K_{LiPb-H} = 2.1 \times 10^{-6} \exp\left(-\frac{18.7[kJ/mol]}{R_g T}\right) \text{ [1/Pa$}^{0.5}\text{]}$$

The H-D isotopic difference determined is K_D =1.4 K_H for solubility, D_D = D_H for diffusivity and P_D =1.4 P_H for permeability. Based on the solubility data, the conditions necessary for the T recovery system are determined as the outlet T concentration of 5x10⁻⁵ppm and the equilibrium T pressure of 2.6x10⁻⁷Pa.

The T removal system is composed of an extraction tower packed with steel Rashig Ring of 1inch, and LiPb and He flow in a counter-current way. The tower height and the tower diameter are 7m and 4m. The flow rates of He and LiPb in the tower are 47 m³/s and 3.5m³/s. These conditions can achieve 10⁵ of inlet/outlet T concentration ratio in LiPb.

Papers published in FY2008

(1) Y. Maeda, S. Fukada, Y. Edao, "Solubility, diffusivity and isotopic exchange rate of hydrogen isotopes in Li-Pb", Fusion Science and Technology, 54 (2008) 131-134.

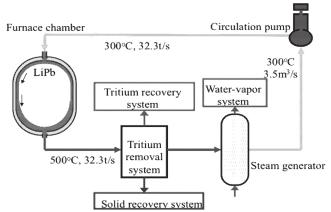


Fig. 1 LiPb circulation system for KOYO fast

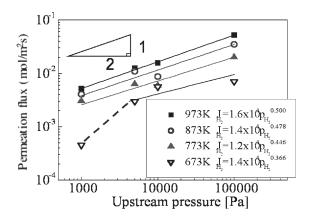


Fig. 2 Pressure dependence of hydrogen permeability through Li₁₇Pb₈₃

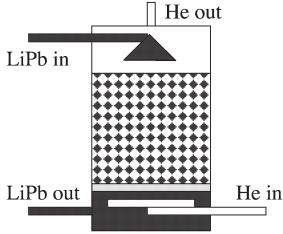


Fig. 3 LiPb-He counter-current extraction tower

(2) S. Fukada, Y. Edao, Y. Maeda, T. Norimatsu, "Tritium recovery system for Li-Pb of Inertial Fusion Reactor", Fusion Engineering and Design, 83 (2008) 747-751. (3) S. Fukada, Y. Edao, S. Yamaguchi, "Tritium recovery from Li-Pb eutectic alloy blanket", Proc. of 2nd Japan-China workshop on blanket and tritium technology, May 9-10 (2008) 117-120.