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Understanding of the mechanism that triggers the
transition to high-confinement plasmas ) is important
for realizing fusion plasmas. In some tokamak opera-
tions, H-mode transitions are triggered by a sawtooth
crash. However, such events have not been observed in
H-mode transitions in helical plasmas. We have analyzed
data obtained with the Hybrid Probe (HP) 2 in Compact
Helical System (CHS) ®), and we present a direct observa-
tion of turbulent Reynolds stress (RS) preceding an L-H
transition. Compression of RS could be a source of shear
flows and is a candidate mechanism for the formation of
a radial electric field, leading to H-mode plasmas®).

We reconstituted the time evolution of two-
dimensional maps of the RS shown in Ref.® (Fig.1).
Positive RS indicates radially outward transport of ve-
locity in the electron diamagnetic drift direction. The
maps are reconstituted from shot-by-shot scan data from
the HP. Timings of the H, drop are used as the refer-
ence to synchronize different shot data in the same time
series in two-dimensional maps. The RS starts to in-
crease at 78 ms, indicated by red square (1) in Fig. 1(a)
of Ref. "), has a maximum at 86 ms (2), and vanishes at
94ms (3). We have discovered an increase in the RS
preceding the H, drop (the L-H transition). At the be-
ginning of the increase, the RS is localized near the outer-
most surface of the plasma at Z =0m. However, around
the period when the RS has a maximum (84 ms), a large
RS is distributed along the plasma surface, and the ra-
dial gradient of the RS is strong. The RS can transfer
poloidal momentum in the radial direction and/or radial
momentum in the poloidal direction. The RS gradient is
a source/sink for momentum. Therefore, the finite radial
gradient observed here can drive poloidal shear flow.

The momentum balance equation determines the
correspondence of negative electrostatic potential to pos-
itive RS in the coordinate used. We compare the wave-
forms of H,, the floating potential, and the RS in detail
in Fig. 1 (Quoted from Ref. %) to investigate the relation-
ship between the potential and the RS. The waveforms
were sampled simultaneously in a discharge. A positive
spike in the RS, preceding the end of the H,, drop, is cor-
related with a negative jump in the floating potential.

Here, we discuss about the RS profile after the L-H
transition. In Ref.®, the RS maintains poloidal flows
after the transition. However, in CHS, the radial gra-

dient of the RS is poor after the transition. This ob-
servation suggests that the RS does not play significant
roles on sustaining plasma rotation ) after the transition.
Further studies are necessary to clarify the existence of
the radial electric field and edge structure of H-mode
plasmas in CHS. In previous work, significant toroidal
and/or poloidal asymmetry in electrostatic fluctuations
were observed around the L-H transition in CHS ™). The
asymmetry may affect evaluation of flux surface aver-
aged RS. We evaluated the RS at one toroidal location
in this experiment. Simultaneous measurement of the
RS at a number of toroidal/poloidal locations is neces-
sary to evaluate the existence of zonal flows by which
plasma confinement may be improved.
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Fig. 1: Time evolutions of (a) emissivity of Hy, (b)
floating potential, and (c) turbulent Reynolds stress. (d)
Observation locations. In (a)—(c), vertical red lines mark
the end of the H,, drop.
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