§17. Electron Absorption Cross-sections to Spherical Probe in Weak Magnetic Field

Tomita, Y., Kawamura, G., Ishihara, O. (Yokohama National Univ.), Tskhakaya, D. (Univ. Innsbruck)

For the weak magnetic field, i.e. small μ_e , the closest radius r_{min} , which is corresponding to the probe radius, is approximated exponential dependence to the strength of magnetic field or μ_e ,

$$\begin{split} \overline{r}_{\min}(\alpha_e, \mu_e, \zeta_{sc}) &= 1 + [\overline{r}_{\min0}(\alpha_e, \zeta_{sc}) - 1] \exp[-\eta_e(\alpha_e, \zeta_{sc})\mu_e] \\ . \end{split} \tag{1}$$

where the distances, velocity and time are normalized by the impact parameter b_{in} , the initial speed $v_{j,in}$ and $b_{in}/v_{j,in}$, respectively. In the case of the strong magnetic field, the closest radius r_{\min} approaches the impact parameter b_{in} due to the straight motion along the magnetic line of force. Here $\zeta_{sc} (\equiv \delta_{sc}/\bar{\lambda}_D)$ is the parameter of the effect of the plasma shielding and η_e is the parameter, which depends on α_e and ζ_{sc} . The quantity $\bar{r}_{\min 0}$ is the closest radius in the absence of magnetic field, which is obtained from the OML theory:

$$\overline{r}_{\min 0}^2 - \alpha_e \overline{r}_{\min 0} \exp(-\zeta_{sc} \overline{r}_{\min 0}) - 1 = 0.$$
 (2)

In this study the parameter η_e is determined by the relation of $\mu_e = 1.0$:

$$\begin{split} &\eta_e(\alpha_e,\zeta_{sc}) = \ln\{[\overline{r}_{\min0}(\alpha_e,\zeta_{sc}) - 1]/[\overline{r}_{\min}(\alpha_e,\mu_e = 1,\zeta_{sc}) - 1]\}\\ &. \end{split} \tag{3}$$

In the case of $\alpha_e = 1.0$, which corresponds to the negative applied voltages, and $\zeta_{sc} = 0$, the η_e becomes 0.602. The η_e s for the cases of the weak shielding, $\zeta_{sc} = 0.3$, and strong one, $\zeta_{sc} = 1.0$, the parameter η_e s decrease to 0.421 and 0.222, respectively. On the other hand, in the case of positeve V_p ($\alpha_e = -1.0 < 0$), the η_e s for the case of $\zeta_{sc} = 0$, 0.3 and 1.0 become 0.751, 0.553 and 0.339, respectively. The parameter η_e is approximated by the polynomial of degree three as a function of α_e :

$$\begin{split} &\eta_e(\alpha_e,\zeta_{sc})\\ &=c_0(\zeta_{sc})+c_1(\zeta_{sc})\,\alpha_e+c_2(\zeta_{sc})\,\alpha_e^2+c_3(\zeta_{sc})\,\alpha_e^3 \end{split} \tag{4}$$

These formulae determine the realistic relation:

$$R_p = b_{in} + (R_{\min,0} - b_{in}) \exp(-\eta_e \mu_e),$$
 (5)

where η_e is expressed by Eq. (4) and

$$\alpha_e = -eR_p V_p / b_{in} \varepsilon_{in,e} , \quad \mu_e = b_{in} \left| eB_0 \right| / \sqrt{2m_e \varepsilon_{in,e}} , \quad (6)$$

and R_{p0} is the closest radius in the absence of the magnetic field, which satisfies the following relation:

$$R_{p0}^{2} - \alpha_{e} b_{in} R_{p0} \exp(-\zeta_{sc} R_{p0} / b_{in})] - b_{in}^{2} = 0.$$
 (7)

As an example, the absorption cross-sections are shown in Fig. 1 as a function of the strength of the uniform magnetic field B_0 for the case $R_p = 1$ cm, $\varepsilon_{in,e} = 10$ eV, (a) $V_p = -10$ eV and (b) $V_p = 10$ V. In the case of negative applied voltage, (a) $V_p < 0$, the cross-sections at $B_0 = 100$ G increase from 1.57 cm² ($\zeta_{sc} = 0$), 2.06 cm² (0.3), and $2.62 \text{ cm}^2 (1.0) \text{ to } 2.01 \text{ cm}^2 (+28.1 \%), 2.29 \text{ cm}^2 (+11.8 \%),$ and 2.69 cm² (+2.69 %), respectively. On the other hand for the positive applied voltage, (b) $V_p > 0$ the crosssections decrease from 4.71 cm² ($\zeta_{xc} = 0$), 4.36 cm² (0.3), and 3.77 cm² (1.0) to 3.98 cm² (- 15.5 %), 3.93 cm² (-9.9 %), and 3.19 cm 2 (- 15.5 %), respectively. The relatively strong magnetic field enables an electron approach to the probe, which indicates the absorption cross-section increases or decreases for the case of negative and positive applied voltages, respectively. The plasma shielding has the same tendency. These effects make the absorption cross-section approach geometrical cross-section of the probe $(=\pi R_n^2)$.

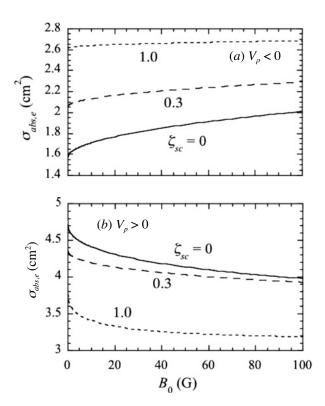


Fig. 1. Absorption cross-sections as a function of the strength of the uniform magnetic field B_0 for the case $R_p = 1$ cm, $\varepsilon_{in,e} = 10$ eV, $V_p = (a) - 10$ eV and (b) 10 V.