
Magnetic reconnection is widely considered to play
an important role in energetically active phenomena in
high temperature plasmas. In spite of intensive re-
search, many basic questions about the details of mech-
anisms of reconnection still remain poorly understood.
To clarify the relationship between particle kinetic ef-
fects and anomalous resistivity due to plasma instabili-
ties in the reconnection phenomena, we develop a three-
dimensional particle simulation code for an open system,
called “PASMO” [1-3]. For performing the simulation
code on a distributed memory and multi-processor com-
puter system, PASMO code at first adopted the particle
distribution algorithm, in which the space was not dis-
tributed but information of particles was. However, since
all field data were diffusely duplicated on each parallel
process, the memory was fruitlessly used and the exe-
cution performance was saturated when the number of
parallel processes increased. To make efficient use of a
scalar-type supercomputer “Plasma Simulator”, the do-
main decomposition should be adopted in PASMO code.
The algorithm decomposes the domain. For example, the
field variable is defined by three coordinates (x, y and
z), and we distribute it along z-direction. The proces-
sor performs “Field solver” in the mapped domain, and
carries out “Particle pusher” for particles which exist in
the domain. In this case, the performance is expected to
grow as the number of processes is increased.

In this paper, we investigate the performance of
PASMO which adopts the domain decomposition algo-
rithm with the periodic boundary condition along three
dimensions. For the distributed parallel algorithm, we
use Massive Parallel Interface (MPI).

In order to check the performance of PASMO, we
test-run under two parallel calculation conditions.

In the first case, we perform the simulations, in
which the simulation box has 16× 16× 1024 grid points
and the number of particle per cell is 100. The numbers
of domain decompositions (Nmpi) along z-direction are
set to be 2, 4, 8, 16, 32, 64 and 128. Figure 1 shows the
dependency of calculation time per step on Nmpi. The
time is efficiently decreased until Nmpi = 32, but when
Nmpi > 32 the time is increased. It is considered that
increase of the cost of data transfer causes the growth of
the simulation time when Nmpi increases.

In the second case, when Nmpi is increased such as
2, 4, 8, 16, 32, 64 and 128, the grid number of z direction
is also increased as 32, 64, 128, 256, 512, 1024 and 2048.
The number of particles per cell is 100. We compare the
simulation times per step in Fig. 2. The time grows at
mostly in proportion to Nmpi. This reason is considered
that the calculation cost of Poisson solver is increased
as the simulation domain is expanded. The solver is not
distributed under the domain decomposition algorithm.

In order to perform larger-scale simulation using a
more massive parallel computer system, we need to im-
prove the PASMO, moreover. For example, we now solve
the Poisson solver globally. In stead of the global Poisson
solver, it may be a good way to use the Exact Charge
Conservation method, in which the charge is locally con-
served [4].

Fig. 1. The dependency of the simulation time per step on
the number of parallel process Nmpi in the first case.

Fig. 2. The dependency of the simulation time per step on
the number of parallel process Nmpi in the second case.

Reference
1) Horiuchi, R. et al: Phys. Plasmas 6 (1999) 4565.
2) Ohtani, H. et al: LNCL 4759 (2008) 329.
3) Ohtani, H. and R. Horiuchi: PFR 4 (2009) 024.
4) Esirkepov, T. Zh.: CPC 135 (2001) 144.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 20 40 60 80 100 120 140

T
im

e/
T

im
e(

N
m

pi
=

2)

Number of MPI Processes (Nmpi)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 20 40 60 80 100 120 140

T
im

e/
T

im
e(

N
m

pi
=

2)

Number of MPI Processes (Nmpi)

376

§4.	 Optimization of Particle Simulation Code
for Magnetic Reconnection in Open System

Ohtani, H., Usami, S., Horiuchi, R.

