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Low-activation ferritic steel is a candidate for 
structure material in nuclear fusion devices. Hence, 
D-retention in the steel such as JLF1 [1] is important 
for designing the devices. We have studied D-retention 
in JLF1 under low-energy D-plasma exposure.

Mechanically polished JLF1 is exposed to 
deuterium-plasma generated by AC glow discharge of 
1.5 KV in 53 Pa D2 at room temperature, using the 
same method in [2]. Deuterium-plasma consists of 
60 % D3

+ and 40 % D2
+ (D+ can be negligible) [3]. 

Nuclear reaction, D(3������, analysis (NRA) with 1.0 
and 0.7 MeV 3He+ was employed to obtain the D- 
retention. Here, the incident angle and detection angle 
of �-particles are 0º and 20º from the sample surface 
normal, respectively (NRA angle is 160º measured 
from the incident beam direction). The composition 
was analyzed by means of 1 MeV 3He RBS and the 
ratio of W over Fe (W/Fe) was obtained to be 0.6 %, in 
good agreement with that in literature [3]. For analysis 
of D-retention from NRA spectra, a small contribution 
of W is discarded, i.e., JLF1 is treated as Fe, as in the 
case of SUS.

Figure 1 shows the D-retention in JLF1 vs 
exposure time of deuterium-plasma. One sees that 
D-retention saturates at 30 min (fluence of D ~ 1018

cm-2). Saturation behavior of D-retention in SUS316L
was found to be similar to that in JLF1. D-retention at 
saturation is summarized in Table 1. The probing depth 
of 1.0 and 0.7 MeV 3He was estimated to be 1.0 and 0.6 
�m. According to preliminary results of the D’s depth 
profile in JLF1, D’s are presumably distributed near the 
surface within the depth resolution of ~40 nm. Hence, 
the difference of D-retention probed by between 1.0 
and 0.7 MeV 3He, i.e., 14x1015 cm-2, are located in the 
depth of 0.6 to 1.0 �m and the D density relative to Fe 
density (NFe=8.48x1022 cm-3 or 7.86 g cm-3) yields to 
0.4 %, if D’s are assumed to be uniformly distributed in 
the interior region. For both JLF1 and SUS316, oxygen 
was also analyzed by NRA, 16O(d, �� 14N, with 1.2 
MeV d+ ions and it appears that O’s distributed in the 
region of ~60 nm from the surface and NO/NFe is 
obtained to be ~5 %. Contribution of this amount of 
oxygen is not significant to D-retention (~10 %), since 
D-retention in Fe oxide probed by 1 MeV 3He (probing 

depth of 1.3 �m) is 41 and 72x1015 cm-2 for �-Fe2O3,
i.e., hematite (hexagonal corundum structure) and 
mixture of �-Fe2O3 , i.e., maghemite (cubic spinel 
structure) and �-Fe2O3 [2]. For unpolished JLF1 (back 
surface of JLF1), slightly larger amount of D-retention 
was obtained, 37x1015 cm-2 (1 MeV 3He) and 21x1015

cm-2 (0.7 MeV 3He). Considerable reduction of 
D-retention in JLF1, roughly half in a week was 
observed even though the sample was kept in vacuum
of 10-6 Torr. Measurements of D distribution in JLF1 
and SUS, dynamic D-retention and thermal desorption 
of D are under way. 

Fig. 1 D-retention in JLF1 vs exposure time to D- 
plasma (1.5 kV AC glow-discharge in 0.5 Torr D2
obtained by 1 MeV 3He(�) and 0.7 MeV 3He (�).

Table 1 Summary of D-retention at saturation in JLF1
and SUS (an estimated error of 15 %) probed by 1.0 
and 0.7 MeV 3He.   

Sample        D-retention (1015 cm-2) 
                 1.0 MeV  0.7 MeV     

JLF1           30 16  
SUS316L 36        24   
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