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Recently, it has been discovered that the
turbulence and transport change much faster than
global parameters, after an abrupt change of heating
power [1]. A new theory of plasma turbulence has
been proposed, showing that the heating power directly
influences the turbulence [2]. New mechanism, that
an external source couples with plasma fluctuations in
phase space so as to affect turbulence, was pointed out.
In this theory, the new control parameter,
[8Pheal/ ad 17](12/)(N , L.e., the rate of change in velocity
space, quantifies the thermodynamical force. Here,
P, is the heating power density, p is the plasma
pressure, a is the plasma radius (characteristic scale
length of spatial gradient), and Xy is the turbulent
thermal diffusivity. The turbulent transport increases
when the heating power is switched on, if
P,/ 0p>0,

The essence of the new mechanism that affects
turbulence and turbulent transport in plasmas is
illustrated.  The distribution function is separated into
the mean and perturbation as f= fo+ f. The
source in the phase space S naturally contains the
component, which is coherent to the fluctuation of
interest,
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This new term represents the change rate of
distribution function by heating, and it directly couples
with and affects the fluctuations. This term jumps at
the on/off of heating, so that the on/off of heating can
immediately influence the fluctuation dynamics,
without waiting the slower change of the mean  f, .

In order to examine this new effect, we employ
fluid-like equations in describing the turbulence in
magnetically-confined inhomogeneous plasmas [3].
The external heating source, Phea[(xl) , is expanded as
Pheal(x’t) = Pheat(x’t) + l‘;apheal/a p+-o. The amplitUde
of the long-range fluctuations, which are linearly-stable,
is given as
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where F =0P,./0 p and (cplcpl)o is the intensity in
the absence of the effect of the heating.

The response of long-range fluctuations after the
onset of heating power is analyzed [3]. Consider the
case that the strong heating is turned on at =7, and
the tem Y, is given as y h(t) =Yi0 H(t— to) , where
H(t - to) is a Heviside function. The statistical

average of fluctuation intensity is given as
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When the heating is turned-off at 7=17,, Y, is given as
Y h(t) =Y,0H (’0 - l) , and the evolution is given as
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The characteristic time T for the access to the new
state is T ! =X0ki —Yno at the onset of heating, while
it is given as TI=X0ki after switching-off the
heating. The latter is shorter than the former. = The
difference of the relaxation times at on/off of the
heating is predicted to be observed.  Figure 1
illustrates the evolution of turbulent transport in the
heating power modulation experiment. There are two
distinct time scales, i.e., that of the immediate response
at the on/off of heating and that of the gradual
evolution of global parameters. Hysteresis of flux-
gradient relation appears owing to the direct and
immediate influence of heating on the pressure-
gradient driven turbulence.
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Fig.1: Immediate response of fluctuations at on/off of
heating induces hysteresis in the gradient-flux relation.
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