§2. Cool-down Test of the New Apparatus for Fuel Layering Experiments

Iwamoto, A., Sakagami, H., Norimatsu, T., Nakai, M., Shiraga, H., Azechi, H. (ILE, Osaka Univ.)

i) Introduction

FIREX targets have been developed under two layering strategies: foam shell and cone guide laser heating methods. ^{1,2)} To date, basic studies have been conducted by the collaboration research between ILE and NIFS. The next stage requires the characterization of a layered solid fuel. The present system is at the disadvantage of optical observations. Therefore, a new apparatus is designed. In this report, its cool-down performance is described.

ii) Design of the new apparatus

The configuration of the new apparatus is shown in Fig. 1. The Gifford-McMahon (GM) cryocooler, RDK-415D (Sumitomo Heavy Industries, Ltd.) is used to cool the cryogenic system. The refrigeration capacity is 1.5 W at 4.2 K. Its disadvantage is generating low frequency vibrations. To compensate it, the cryocooler and the vacuum chamber with a target can are supported by individual structures with vibration control units. Flexible copper braids are also applied as thermal conductive links to mechanically insulate from each other. These should provide a low vibration environment.

Four viewing windows with a wide aperture are installed for an interferometer and a microscope. The shortest distance between the target centre and room temperature is designed to be 80 mm to apply the digital microscope VHX-100 (Keyence Corporation) with the long-distance zoom lens VH-Z50L (Keyence Corporation). For the characterization of a layered solid fuel from multiple angular views, a target rotation mechanism on the z-axis is equipped.

A quick target exchange mechanism has been

developed to deal with different types of FIREX targets. A target holder is detachable from a main vacuum chamber. A metal gasket with not fixing bolts but a load of ~ thousand newtons on ensures GHe leak tightness for target cooling.

iii) Experiment

Cool-down performance was tested without a target. The target can is designed to be able to cool a target below 10.00 K. 10 hours were required to reach 10.00 K. The heat leak to the target can must be more than 1.5 W accoding to the specification of the cryocooler. Major heat leaks have been estimated to be via cryogenic supporting structures. The cool-down performance indecates that the new apparatus can provide a cryogenic environment for fuel layering demonstrations.

- 1) Iwamoto, A., et al., J. Phys.: Conf. Ser. **244** (2010) 032039.
- 2) Iwamoto, A., et al., Nucl. Fusion 53 (2013) 083009.

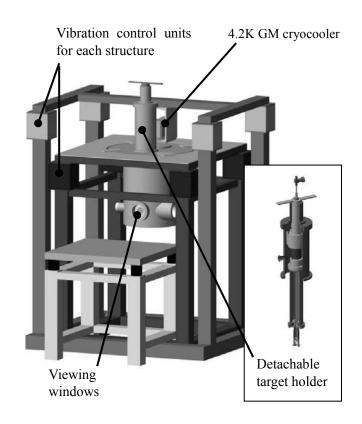


Fig. 1 Schematic of the new apparatus.