§3. Degradation of Core T_e Due to m/n = 2/1 Mode in High T_e Plasmas

Takahashi, H., Kobayashi, T., Sakakibara, S., Nagaoka, K., Osakabe, M., Takemura, Y., Nagasaki, K., Murakami, S. (Kyoto Univ.)

In the 18th experimental campaign of the LHD, degradation of core $T_{\rm e}$ due to the m/n=2/1 mode was found in the relatively low $n_{\rm e}$ plasmas ($<2x10^{19}$ m⁻³) produced using high power ECRH.

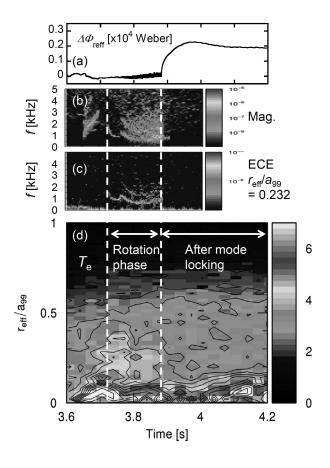


Figure 1. The typical time evolution of (a) the differential signal of the magnetic flux $\Delta\Phi_{\rm reff}$, (b) the spectrum of the magnetic probe signal, (c) the spectrum of the ECE signal, and (d) the radial profile of $T_{\rm e}$. The plasma was sustained using ~ 5 MW ECRH alone and the line-averaged $n_{\rm e}$ was $\sim 1\times 10^{19}$ m⁻³.

Figure 1 shows the typical time evolution of (a) the differential signal of the magnetic flux $\Delta \Phi_{\text{reff}}$ measured using the saddle flux loops, (b) the spectrum of the magnetic probe signal, (c) the spectrum of the ECE signal, and (d) the radial profile of T_e . The plasma was sustained using \sim 5 MW ECRH alone and the line-averaged n_e was $\sim 1 \times 10^{19}$ m⁻³. Here $\Delta \Phi_{\text{reff}}$ corresponds to the magnitude of the magnetic fluctuation of m/n = 2/1. The rotation of the m/n = 2/1 mode with several 100 Hz \sim 3 kHz was observed during $t = 3.72 \sim$ 3.88 s. Also the coherent fluctuation around 1 kHz existed in the ECE signal. The local flat structure in the $T_{\rm e}$ profile grew in the rotation phase of m/n = 2/1 mode. Although the local flat structure in the $T_{\rm e}$ profile steadily existed after the mode locking at t = 3.88 s, the central T_e gradually increased with spontaneous increase of the T_e gradient in the latter phase of the discharge.

Figure 2 shows the radial profile of the cross coherence between the magnetic probe signal and the ECE signal during $3.8 \sim 3.88$ s. The cross coherence was particularly large in $r_{\rm eff}/a_{\rm 99} < 0.5$ and the region corresponded to the position of the local flat structure in the $T_{\rm e}$ profile. Thus the magnetic fluctuation of m/n = 2/1 is considered to cause the local flattening in the $T_{\rm e}$ profile in the plasma core region, leading to the degradation of the central $T_{\rm e}$.

In order to obtain the higher $T_{\rm e}$ plasmas, the clarification of the detailed mechanism and the criterion of the increase of the magnetic fluctuation of m/n=2/1 are important and will be investigated in the near future.

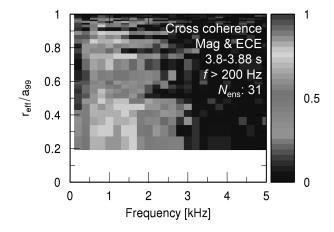


Figure 2. The radial profile of the cross coherence between the magnetic probe signal and the ECE signal during 3.8~3.88 s.