
In most of situations, tokamak equilibria are ana-
lyzed as two-dimensional (2D) systems with the axisym-
metry. The nature of this symmetry gives many advan-
tages for its analysis. However, as realistic tokamaks
have discreteness of the toroidal field coils, this discrete-
ness yields the toroidal field ripples (TF ripples) and,
strictly speaking, realistic tokamaks could not be ax-
isymmetric configurations. In previous work, we pointed
out the significance of three-dimensional (3D) effects,
which are effects of plasma equilibrium currents along
rippled field lines. On the other hand, in recent toka-
mak experiments, it is noted that stochastic filed lines
reduce strong heat load driven by the edge localize mode
(ELM) on the divertor plate. Stochastic field lines are
produced by the external helical perturbation and it is
called the Dynamic Ergodic Divertor (DED). From the
viewpoint of high-β stellarator equilibrium, 3D effects on
the stochastic field are very important because finite-β
perturbed field produces further stochasticity in the pe-
ripheral region. However, in present analysis of DED,
2D MHD equilibrium superimposed vacuum helical per-
turbed field was still used. In order to consider effects
of DED to ELM, considerations of finite-β MHD equi-
librium and the impact of 3D effects are critical and ur-
gent issue. In this study, the fully 3D MHD equilibrium
of non-axisymmetric tokamak is solved numerically and
the impact of the plasma rotation to the 3D MHD equi-
librium is discussed. For this study, we use a 3D MHD
equilibrium code HINT, which is widely used to ana-
lyze the 3D equilibrium in stellarator researches. Since
the HINT uses the real coordinate system, it can treat
magnetic island and stochastic field in the computational
domain. Thus, as first step, we study the 3D MHD equi-
librium including the toroidal rotation. Special attention
is the change of the magnetic island due to the toroidal
plasma rotation.

At first, we discuss the improvement of the HINT
code to include the toroidal rotation. vacuum field in the
ITER. The HINT code is a 3D MHD equilibrium calcu-
lation code, which is based on the relaxation method.
Since the HINT code uses the real coordinate system,
which is the cylindrical coordinate, the code can cap-
ture the magnetic island and stochastic magnetic field
lines in the calculation. The HINT code had been de-
veloped for stellarator and heliotron researches and the
original version of the code adopted a non orthogonal co-
ordinate system, so-called the rotating helical coordinate
system. The HINT code had been updated successfully
to the HINT2 code and that code applied to the toka-
mak calculation with 3D perturbation fields, which are
the toroidal field ripple, 3D error field and resonant mag-

netic perturbation (RMP) fields. However, up to now,
the 3D MHD equilibrium is calculated as the magnet
static equilibrium. Recently, effects of the plasma rota-
tion to the RMP field, which are shielding and amplifi-
cation of RMPS, are hot topics in ELM suppression and
mitigation experiments. To understand those effects, in-
cluding the plasma rotation to the 3D MHD equilibrium
calculation is urgent issue. In this section, the implemen-
tation how to include the plasma rotation is shown. In
this study, only the toroidal rotation is studied for sim-
plicity. The toroidal rotation is prescribed by the func-
tion of the toroidal flux and the toroidal flow velocity is
defined by the Mach number,

M =
vϕ
vth

where vϕ is the toroidal flow velocity and vth is the ion
thermal velocity. The HINT code consists of two parts.
First part, step-A, is the relaxation process of the plasma
pressure with fixed the magnetic field. Second part, step-
B, is the relaxation process of the magnetic field with
fixed the plasma pressure. The step-A calculates the
pressure distribution satisfying the condition B ·∇p = 0.
Instead of calculating that condition, the step-A calcu-
lates an averaged plasma pressure along a magnetic field
lines, because the condition means no variation of the
plasma pressure along the magnetic field lines. Details
is shown in Ref. For a case of existing the toroidal flow
velocity, the pressure distribution shifts to the outward
of the torus by the inertial force. In such a case, the
pressure distribution is prescribed by
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(
M2

(
R2

R2
0

− 1

))

On the other hand, the step-B calculates the time evo-
lution of nonlinear dissipative MHD equations. In these
equations, the magnetic field and plasma flow velocity
are given by v = v0 + v1 and B = B0 + B1. Here, B0

is the vacuum magnetic field and B1 is the equilibrium
response field. The v0 is a given toroidal flow velocity
and v1 is the MHD velocity. Thus, dissipative MHD
equations are

∂v1

∂t
= −v0 · ∇v0 −∇p+ j1 × (B0 +B1) + ν∆v1

∂B1

∂t
= ∇× [(v0 + v1)× (B0 +B1)− η (j1 − jnet)]

j1 = ∇×B1

The spatial derivation is approximated by 4th order cen-
tral finite difference scheme and time marching is calcu-
lated by the 4th order Runge-Kutta-Gill scheme. Calcu-
lating those two steps iteratively, a steady-state solution
is obtained.

Nonlinear dynamics of the LHD plasma includ-
ing resonant magnetic perturbation (RMP) is examined
numerically1). The HINT2 code2) and the MIPS code3)

are utilized for the equilibrium and the stability calcula-
tions, respectively. We employ the magnetic configura-
tion with Rax = 3.6m and γc = 1.13. The equilibrium
without any RMPs is unstable for the interchange mode
resonant at the´ι = 1 surface.

Here we impose the horizontally uniform magnetic
perturbation. This magnetic perturbation is resonant at
the´ι = 1 surface and generates an m = 1/n = 1 mag-

netic island in the equilibrium magnetic surfaces. The
equilibrium pressure profile is locally flat at the O-point
of the magnetic island while the profile is still steep at
the X-point. Because of this deformation of the pressure
profile, the pressure driven mode localized around the

X-point dominantly grows. In the nonlinear phase, the
pressure collapse starts at the X-point and spreads to the
core region, as shown in Fig.1. The magnetic surfaces are
also destroyed from the X-point.

Since the mode is destabilized at the X-point, the
spatial phase of the collapse should be fixed to that of
the island geometry. The confirmation of this property
is shown in Fig.2. We employ the initial perturbations X̃
which has the φ-dependence as X̃ = Rnd(φ) cos(φ−φ0),
where Rnd(φ) means a random function of φ and φ0 is
an initial toroidal phase. The pressure contours at the
cross sections and the constant pressure surface show the
same phase for the different initial phases of φ0 = 0 and
φ0 = π/2. These results indicate that the collapse phase
is independent of the initial phase. The fixed phase of
the collapse corresponding to this result is observed in
the LHD experiments 4).
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Fig.1 Nonlinear evolution of the total pressure (left) and the magnetic field (right).

Fig.2 Pressure surface of β = 3.0% and pressure contour at the cross section in the half torus at
t = 900τA in the case with the RMP for the initial angles of φ0 = 0 (left) and φ0 = π/2 (right).
The cross sections are enlarged into twice.
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