
   
  
  

 
  
  
  To clarifying the characteristics of pressure driven MHD 
instabilities for high beta LHD plasmas is one of critical 
issues. From the previous simulation study [1], it is found 
that resistive ballooning modes are linearly unstable in the 
peripheral region using the MIPS code [2] where the fixed 
boundary condition is imposed at the plasma-vacuum 
boundary. Since the MHD instabilities are destabilized in 
the peripheral region, the fixed boundary condition may 
influence the MHD stability for such high beta LHD 
plasmas, so that the free-boundary condition may be suitable 
for such situation. For imposing the free-boundary condition, 
the pseudo-vacuum model is often used where the vacuum 
region is replaced with the cold and low density plasma.  
 In the MIPS code, the fourth-order explicit Runge-Kutta 
method is used for the time integration. The explicit time 
integration method has the problem of the CFL condition 
where the interval of the time step is limited by the fastest 
physics phenomenon. For extending the MIPS code to treat 
the free-boundary problem using the pseudo-vacuum plasma 
model, the initial density profile should be small in the 
pseudo-vacuum region. In the pseudo-vacuum region, the 
Alfven velocity increases, so that the problem of the CFL 
condition becomes increasingly serious. In order to solve 
this problem, we are developing new MHD code using 
implicit time integration method. In the implicit time 
integration method, the interval of the time step is not 
limited by the CFL condition, so that the simulation can be 
done using the large interval of the time step. In this study, 
the linear MHD code with the implicit time integration 
method has been developed based on the MIPS code. In the 
implicit MHD code, the fourth-order finite difference 
method is used for the spatial derivatives and the second-
order Crank-Nicolson method is used for the time 
integration. A large sparse matrix problem in the Crank-
Nicolson method is solved using the GRMES method in 
PETSc library [3]. In order to improve the convergence of 
the GMRES metod, the physics-based preconditioning 
(P.B.P.C.) method [4] is introduced. The physics-based 
preconditioning method can improve the convergence of the 
GMRES method by transforming the hyperbolic problem 
into the parabolic problem using the Schur decomposition.  
  For evaluation of the efficiency of the implicit code, some 
test simulations have been carried out. For simplicity, the 
density profile is assumed to be  
         ρ(r,φ,z)=(ρ0-ρv)(P(r,φ,z)/P0)+ρv  
where ρ0 is the plasma density at the center, ρv is the 
plasma density at the plasma boundary, P is the pressure and 
P0 is the pressure at the center. Figure 1 shows the 
dependence of the cpu time T on the ratio of the plasma 
density ρ0/ρv. For the explicit code, the cpu time scales as 
T∝(ρ0/ρv)1/2 since CFL condition is limited by the Alfven 
time which is proportional to ρ-1/2. For the implicit code 

with P.B.P.C., although the cpu time is larger than that for 
the explicit code when the plasma density at the edge is 
large, the implicit code with P.B.P.C. is faster than the 
explicit code when the plasma density at the edge is 
extremely small. Thus, the implicit time integration method 
with P.B.P.C. is effective for the free-boundary simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Dependence of the cpu time on the ratio of the 
plasma density ρ0/ρv. 
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