
In conventional works based on the La-

grangian/Hamiltonian gyrokinetic formulations [1-2],

turbulent transport and conservation laws are in-

vestigated mainly for collisionless plasmas because

the formulation and Noether’s theorem are originally

applicable to conservative systems without colli-

sions. In order to investigate collisional (classical

and neoclassical) and turbulent transport processes

simultaneously based on the gyrokinetic model, it is

important to clarify how collisions modify conser-

vation laws for particles, momentum, and energy.

In this work, we consider the Boltzmann-Poisson-

Ampère system of equations, which provide the

basis of approximate description by the collisional

electromagnetic gyrokinetic system of equations for

strongly magnetized plasmas, in order to show how

conservation laws are modified by collisions and, if

any, external sources.
Time evolution of the distribution function

fa(x,v, t) for particle species a is described by the
Boltzmann kinetic equation,
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fa(x,v, t)

= Ka(x,v, t), (1)

where Ka(x,v, t) denotes the rate of change in the dis-

tribution function fa due to Coulomb collisions and

it may also include other parts representing exter-

nal particle, momentum, and/or energy sources. The

electromagnetic fields E(x, t) and B(x, t) are written

as E = −∇ϕ− c−1∂A/∂t and B = ∇×A, where the

electrostatic potential ϕ and the vector potential A

are determined by Poisson’s equation,

∇2ϕ(x, t) = −4π
∑
a

ea

∫
fa(x,v, t)d

3v, (2)

and Ampère’s law,

∇2A(x, t) = −4π

c
jT , (3)

respectively. Here, the Coulomb (or transverse) gauge

condition ∇ · A = 0 is used and the current density

j ≡
∑

a eanaua ≡
∑

a ea
∫
fa(x,v, t)vd

3v is written

as j = jL + jT , where the subscripts L and T rep-

resent the longitudinal and transverse parts, respec-

tively. Equations (1)–(3) are the governing equations

for the Boltzmann-Poisson-Ampère system.

Suppose that fa, ϕ, and A which satisfy Eqs. (1)–

(3) are given. Then, for the electromagnetic fields

E = −∇ϕ − c−1∂A/∂t = EL + ET and B = ∇ ×A

given from ϕ and A, we consider a distribution func-

tion fV
a to satisfy the Vlasov equation that is given

from Eq. (1) with the right-hand side replaced by 0.

We also assume fV
a to coincide instantaneously with

fa at a given time t0 so that f
V
a (x,v, t0) = fa(x,v, t0).

Therefore, equations obtained from Eqs. (2) and (3)

with fa replaced by fV
a also hold at t0. In other words,

fV
a , ϕ, and A satisfy the Vlasov-Poisson-Ampère sys-

tem of equations at t0. Note that the Vlasov-Poisson-

Ampère system of equations can be derived from the

variational principle using the action integral defined

by Eq. (1) in Ref.[3] where Noether’s theorem is used

to obtain conservation laws of energy and momen-

tum. Then, expressing the action integral a infinites-

imal time interval in terms of fa instead of fV
a , we

can show effects of collisions and external sources on

conservation laws for the Boltzmann-Poisson-Ampère

system.

Defining the kinetic energy density and flux

by Ep =
∑

a

∫
d3vfa(x,v, t)

1
2ma|v|2 and Qp =∑
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d3vfa(x,v, t)
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2ma|v|2v, respectively, the energy

balance equation is derived as
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Next, the momentum balance equation is obtained as

∂

∂t
(Pp+Pf )+∇·(Πp+Πf ) =

∑
a

∫
d3v Kamav, (5)

where the particle parts Pp and Πp of the mo-

mentum density and the pressure tensor are de-

fined by Pp =
∑

a

∫
d3vfa(x,v, t)mav and Πp =∑

a

∫
d3vfa(x,v, t)mavv, respectively, and the field

parts Pf and Πf are given by Pf = (EL ×B)/(4πc),

and Πf = (1/8π)(|EL|2 + 2EL · ET + |B|2)I −
(1/4π)(ELEL + ELET + ETEL +BB), respectively.

If Ka is given by the Coulomb collision term only,

the right-hand sides of Eqs. (4) and (5) vanish so

that the energy and momentum balance equations for

the Boltzmann-Poisson-Ampère system take the same

forms as those for Vlasov-Poisson-Ampère system [3].
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Energy spectrum of ITG turbulence is studied by using the 
nonlinear fluid simulation. Barnes et al.[1] studied scaling 
of turbulent energy spectrum based on the gyrokinetic 
simulation. They use an energy-like quantity W~ f2 , which 
is originally a kinetic entropy[2]. In our fluid case, we 
consider an energy as W~uEx

2+uEy
2, which is perpendicular 

ExB flow energy. By using this, a result of Perseval's 
identity is i kx,ky kx,ky  (R/ i), and 
eq.(11) of Barnes et al is, 
 

( i/R)2q-2/3(R/LT)4/3(k i)-5/3.  (a) 
  
 This is a case of no zonal flow (ZF). Next we consider a 
case with ZF. As a result of elongation of eddy in the 
poloidal direction, it is assumed that ly

o ~ Ly ~ r02 /(qn0) ~ 
R(r0/qR)(2 /n0) ~ R, i.e, taking typical scale of outer region 
to be fixed to lx

o, we assume that ly
o is a device size; ly

o lx
o. 

Then eqs. (3) and (4) of Barnes are changed as follows, 
 
    vth/l   ~ nl

-1 ~ (vth /R)( i/lx)( i/R) l              
 
and 
 
    nl

-1 ~ *
o ~ ( ivth)/ (lx

o LT)                   
 
From these, eqs. (6) and (7) of Barnes are changed to 
 
    i /lx

o ~ LT/qR                             
 
and 
 
    l

o ~ (R/LT) (R/ i)                          
 
 
In considering characteristic perpendicular scale length to be 
lx, energy transfer rate is 
 
   W/ nl ~ ( i /lx)3

l
3 ( i/R) (vth /R) ~ const.          

 
so that  
 
   l ~ l

o ~ ( i /lx
o) (lx/ i) ~ (1/q)(R/ i)( lx/ i) 

 
As a result, we have 
 
    i

2 ~ (R/ i)2(1/q2)(kx i)-1         (b) 
 
 
Energy spectrum without ZF and with ZF are shown in 
Fig.1. In the inertial range (k i~0.5-1.0), the scaling of top 

and bottom figures seem to follow eq.(a) and eq.(b) 
respectively. 
      

 
 

 
 
  

Fig. 1. Energy spectrum of result without ZF (top) and 
with ZF (bottom) as a function of k i. 
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