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In conventional works based on the La-
grangian/Hamiltonian gyrokinetic formulations [1-2],
turbulent transport and conservation laws are in-
vestigated mainly for collisionless plasmas because
the formulation and Noether’s theorem are originally
applicable to conservative systems without -colli-
In order to investigate collisional (classical
and neoclassical) and turbulent transport processes
simultaneously based on the gyrokinetic model, it is
important to clarify how collisions modify conser-
vation laws for particles, momentum, and energy.
In this work, we consider the Boltzmann-Poisson-
Ampere system of equations, which provide the
basis of approximate description by the collisional
electromagnetic gyrokinetic system of equations for
strongly magnetized plasmas, in order to show how
conservation laws are modified by collisions and, if

any, external sources.

Time evolution of the distribution function
fa(x,v,t) for particle species a is described by the
Boltzmann kinetic equation,

sions.
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where Ky (%, v, t) denotes the rate of change in the dis-
tribution function f, due to Coulomb collisions and
it may also include other parts representing exter-
nal particle, momentum, and/or energy sources. The
electromagnetic fields E(x,t) and B(x,t) are written
as E=—V¢—c10A/0t and B = V x A, where the
electrostatic potential ¢ and the vector potential A
are determined by Poisson’s equation,

V3p(x,t) = —47rZea/fa(x,V,t)d3v, (2)

and Ampere’s law,

VIAGt) = — i, g
respectively. Here, the Coulomb (or transverse) gauge
condition V - A = 0 is used and the current density
i = Y, eanauy = X, eq [ falx, v, t)vd3v is written
as j = jr + jr, where the subscripts L and T rep-
resent the longitudinal and transverse parts, respec-
tively. Equations (1)—(3) are the governing equations
for the Boltzmann-Poisson-Ampére system.

Suppose that f,, ¢, and A which satisfy Eqgs. (1)—
(3) are given. Then, for the electromagnetic fields
E=-V¢—-c'0A/)0t =E, +Erand B=V x A
given from ¢ and A, we consider a distribution func-
tion fY to satisfy the Vlasov equation that is given
from Eq. (1) with the right-hand side replaced by 0.
We also assume f) to coincide instantaneously with
fa at a given time tg so that £V (x,v,t0) = fu(x, Vv, o).
Therefore, equations obtained from Egs. (2) and (3)
with f, replaced by fY also hold at to. In other words,
1Y, ¢, and A satisfy the Vlasov-Poisson-Ampere sys-
tem of equations at tg. Note that the Vlasov-Poisson-
Ampere system of equations can be derived from the
variational principle using the action integral defined
by Eq. (1) in Ref.[3] where Noether’s theorem is used
to obtain conservation laws of energy and momen-
tum. Then, expressing the action integral a infinites-
imal time interval in terms of f, instead of fY, we
can show effects of collisions and external sources on
conservation laws for the Boltzmann-Poisson-Ampere
system.

Defining the kinetic energy density and flux
by & = Zafd3vfa(x,v,t)%ma|v|2 and Q, =
Su [ BV fa(x, v, t)%ma|v\2v, respectively, the energy
balance equation is derived as
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Next, the momentum balance equation is obtained as

)
i PptPp)+ V(T +1Ly) = 3 / d*v Kamav, (5)

where the particle parts P, and IL, of the mo-
mentum density and the pressure tensor are de-
fined by P, = X, [d3*Vfu(x,v,t)mev and II, =
S, [ BV fa(x,v,t)mavv, respectively, and the field
parts Py and Iy are given by Py = (Er x B)/(4mc),
and Hf = (1/87T)(’EL‘2 + 2E; - Er + ’BP)I —
(1/47T)(ELEL + E;Er + ETE;, + BB), respectively.
If K, is given by the Coulomb collision term only,
the right-hand sides of Eqs. (4) and (5) vanish so
that the energy and momentum balance equations for
the Boltzmann-Poisson-Ampere system take the same
forms as those for Vlasov-Poisson-Ampere system [3].
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