
Importance of turbulent structures driven by non-
linear processes of turbulence has been recognized in the
study on transport in magnetically confined plasmas 1).
Basic experimental plasmas, such as in linear devices,
play important roles for study on nonlinear processes of
the turbulence, since detailed measurements of fluctu-
ations are possible. The streamer and the zonal flows
have been observed, and the detail nonlinear processes
have been studied 2), 3). The formation of the steep wave
front is one of important aspects of the nonlinear waves
4), so that we focus on the formation mechanism of the
steep wave front of the solitary drift wave in cylindrical
plasmas.

A three-dimensional simulation of resistive drift
waves in a cylindrical plasma is performed using the
Numerical Linear Device (NLD) code 5). We focus on
high density ne ∼ 1 × 1019[m−3] with low temperature
Te ∼ 5[eV] plasmas in an argon discharge. The set of
the model equations of the simulation is based on an ex-
tension of Hasegawa-Wakatani equations to include the
effects of the neutral particle and the nonlinearity of the
electron parallel velocity. The details of the simulation
conditions are described in 6).

The solitary drift wave is obtained in the regime
where the collisional transport is important as well as
fluctuation induced transport. The density fluctuation
propagates without changing its shape as a solitary wave
in the positive azimuthal direction, which is the elec-
tron diamagnetic direction. Figure 1 shows a snapshot
of the azimuthal structure of the density fluctuation at
t = 6500 with the fundamental, second and third har-
monics modes. The steep wave front can be seen in the
azimuthal direction around −0.5π < θ < 0, and it faces
in the propagation direction. In the region of the steep
wave front, all the modes of the fundamental and its har-
monics have negative slope so that the steep wave front
is formed and is sustained by locking the phase relations
among these modes. The phase difference is sustained
for a long time compared to the drift wave oscillation,
and is almost constant around ∆Ψ ≈ π/2.

We showed that this phase difference is the station-
ary solution of the phase evolution equation, which can
be derived by focusing on the convective derivative of
the density. The solutions of the phase evolution equa-
tion are ∆Ψ ≈ ±π/2. The solution, ∆Ψ = π/2, is that
the fundamental mode precedes the second harmonics
and the steep wave front faces forward in the propaga-
tion direction, and the solution, ∆Ψ = −π/2, is related
to the steep wave front facing backward in the propaga-
tion direction. The stabilities of the stationary solutions

are determined by the sign of Ξ ≡ ∂r ln(|ϕ̃|/|Ñ |), where
ϕ̃ and Ñ are the potential and the density fluctuation
of the fundamental mode, respectively. When Ξ > 0,
the solution with ∆Ψ = π/2 is stable so that the steep
wave front faces forward in the wave propagation direc-
tion. When Ξ < 0, the solution with ∆Ψ = −π/2, which
corresponds to the steep wave front facing backward in
the propagation direction, is realized. We evaluated Ξ
by using the simulation result, and the positive Ξ is ob-
tained. It was confirmed that the simulation result, the
steep wave front facing forward in the propagation as in
Figs. 1, is consistent with the theoretical prediction.

In summary, the formation mechanism of the soli-
tary drift wave is investigated by using the three-
dimensional simulation of the resistive drift waves in
cylindrical plasmas. The solitary drift wave forms a steep
wave front in the azimuthal direction. The phase dif-
ferences between the fundamental and second harmonic
modes are locked so that the steep wave front is sus-
tained for a long time compared to the drift wave oscil-
lation. The simulation results can be explained by the
phase entrainment of the drift waves. The details of this
study are described in 6).
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Fig. 1: Snapshot of the azimuthal structure of the den-
sity fluctuation at t = 6500.
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    In employing the terminology ‘far 

non-equilibrium’, one naively assumes that the 

‘distance’ from thermal equilibrium may be definable.  

The distance from thermal equilibrium, if it is 

quantified, is one of the essential parameters that 

specify the turbulent plasmas.   

    The turbulence and transport can change much 

faster than global parameters, after an abrupt change of 

heating power [1].  A new theory, showing that the 

heating power directly influences the turbulence, has 

been proposed [2, 3].  In this theory, the new control 

parameter,    !Pheat / ! p a2/"
N

, i.e., the rate of change 

in velocity space, quantifies the thermodynamical force.  

Here,  P
heat  is the heating power density,   p  is the 

plasma pressure, 
 

a is the plasma radius (characteristic 

scale length of spatial gradient), and   !
N  is the 

turbulent thermal diffusivity.  The turbulent transport 

increases when the heating power is switched on, if 

   !Pheat / ! p > 0 .  The newly introduced controlled 

parameter, , does illustrate the additional distance of 

departure from thermal equilibrium.   

    The direct influence of the plasma heating on the 

nonlinearly-excited long-range fluctuations as [2] 
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where I is the normalized density of fluctuation energy 

of interests, and the control parameter 
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is the counter part of the parameter (9) in the fluid 

modelling, and I0 is the mean intensity in the absence 

of the heating effect.  Note that the normalizing time 

   !
N
– 1k "

–2
 depends on the correlation length of the 

fluctuation of the interest.  This dependence causes 

the additional timescale mixing through cross-scale 

nonlinear interactions. The control parameter and Γheat 

is proportional to the heating power (if other 

parameters are common).  Before the changes of 

pressure and its gradient happen, the turbulent intensity 

increases after the onset of heating if near γh > 0.   

    The relation (2) shows that the impact on 

fluctuation intensity becomes stronger as the heating 

power increases.  Experimental observation has also 

shown that the increment of fluctuation intensity and 

jump in the hysteresis increase more rapidly than the 

increment of heating power [1].  Equation (2) is in 

qualitative agreement with experimental observation.  

However, Eq.(2) shows a singularity at    !
h
" #

N
k $

2

, 

although the singularity does not appear in 

experimental observations.  

   This singularity is resolved by considering the 

nonlinear damping of the excited mode.  Following 

the Kadomtsev’s argument in [4], the evolution of the 

fluctuation intensity follows the equation 
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where    !damp =" Nk #
2

 is the damping rate of the 

fluctuation (in the absence of heating effect), the term 

ω2I
2 denotes the damping rate by self-nonlinear effect, 

and ε is the spontaneous excitation as was deduced in [3].  

The mean energy density and the spontaneous emission 

term is related as    ! = "dampI
0 , which gives the 

stationary solution Eq.(2) in the limit of small fluctuation 

amplitude.  Equation (3) gives the stationary solution as 

[5] 
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In the limit of small Γh, Eq.(2) is recovered.  In the limit 

of stronger heating, Γh >> 1, one has 
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h
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This result resolves the singularity in Eq.(2).  The 

transition from Eq.(2) to Eq.(5) takes place near Γh ~ 1. 

    The phenomena of hysteresis in gradient-flux 

relation are important in understanding experimental 

observations [1].  In addition, the hysteresis in transport 

relation will introduce rapid response in burning plasmas. 

More emphasis on study of the phase space dynamics is 

necessary for the understanding of turbulent plasmas. 
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