
  
  

Macroscopic dynamics of plasmas is well described 
by a system of fluid equations with Maxwell's equations. 
Since, in particular, non-dissipative fluid equations such as 
the ideal MHD equations and the non-viscous full two-fluid 
equations are hyperbolic partial differential equations, 
discontinuous solutions as shock waves may develop within 
finite time even if the initial conditions are smooth. Actually, 
in space and astrophysical plasmas, strong shock waves are 
ubiquitously produced and complicatedly interacted with 
each other. Thus, it is thought that the discontinuities play 
an essential role as a basic physical process for various 
space and astrophysical phenomena. 

Higher-order shock capturing schemes, which are able 
to exactly solve complicated interactions between the shock 
waves and the turbulence, have been intensively studied in 
the field of computational fluid dynamics (CFD). 
Particularly in space and astrophysical fluid problems, first-
order approximate Riemann solvers such as Roe’s solver 
and Harten-Lax-van Leer’s (HLL) type solvers are extended 
to higher-order ones using well-established finite volume 
interpolations: monotone upstream-centered scheme for 
conservation laws (MUSCL), piecewise parabolic method 
(PPM), and so on. However, higher-order numerical 
solutions may not be obtained in real physical simulations 
because multi-dimensional finite volume method cannot 
readily achieve more than third-order accuracy in general. 

The final objective of this study is to develop a highly 
accurate multi-dimensional numerical scheme for plasma 
fluid equations: especially the MHD equations and the full 
two-fluid equations. In particular, this paper is devoted to 
investigating basic performance of a non-oscillatory higher-
order finite difference method for the one-dimensional 
MHD equations as a first step. 

We adopt a specific approach, so-called weighted 
compact nonlinear scheme1) (WCNS), as a base scheme of 
the finite difference method. Particularly, the following 
WCNSs with different order of accuracy are considered: 
WCNS-MD5: 
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WCNS-MND5: 
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WCNS-MND4: 
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Here numerical flux 
 2/1if  is computed using the left/right 

variables at the midpoint, which are interpolated from those 
at adjacent nodes. In the present study, fifth-order nonlinear 
weighted interpolation function is used. For comparison we 
also perform numerical experiments by MUSCL and fifth-
order finite-volume weighted essentially non-oscillatory 
(FV-WENO) scheme2). 

Propagation of the circularly polarized Alfven wave 
was examined. Though the order of accuracy of WCNS-
MND4 is ideally less than that of the other fifth-order 
schemes, we found that WCNS-MND4 provides almost the 
same order of accuracy as WCNS-MND5 and fifth-order 
FV-WENO as seen in Fig.1. On the other hand, WCNS-
MD5 might give slightly higher resolution in some cases. 

Moreover MHD shock tube tests were performed. We 
confirmed from Fig.2 that WCNSs are able to sharply 
capture MHD discontinuities almost as same as WENO. It 
seems, however, that small numerical oscillations ahead and 
behind the discontinuities are apparent in WENO rather than 
in WCNSs though the situation might depend on various 
parameters in general. 

Through several numerical experiments, we 
concluded that WCNSs can be applied for the plasma fluid 
equations as a higher-order shock capturing scheme. 
However, a straightforward extension to multi-dimensions is 
problematic since the numerical schemes for the plasma 
fluid equations must preserve Gauss’s law, which is quite 
different from “neutral” hydrodynamics without electro-
magnetic fields. Therefore, a multi-dimensional divergence-
free finite difference shock capturing scheme is under 
investigation at present.. 
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Fig.1. Numerical errors between 
the numerical solutions and the 
exact solutions of the nonlinear 
Alfven wave (L1-norm) versus 
number of grids.

Fig.2. Brio-Wu’s MHD shock tube tests by (top-left) fifth-
order FV-WENO, (top-right) WCNS-MD5, (bottom-left) 
WCNS-MND5, (bottom-right) WCNS-MND4, respectively.
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