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Image reconstruction by solving an underdetermined
linear equation can be improved by using prior information
on objects. In a plasma imaging experiment, one has some
prior knowledge on the objective plasma structure; for
example, one predicts the position and broadening of the
strong emissivity region. Particularly, in 3D tomography
using 4 IRVB’s (InfraRed imaging Video Bolo-meters) [1],
the projection data are acquired in the form of 2D image in
each pinhole camera frame. Also, in today’s nuclear
fusion experiments, theoretical calculation by computer is
well developed and gives plasma profiles that can be
referred to.

In the linear regularization of Tikhonov-Phillips, a
reference image can be adopted easily in its formulation.
In a full algebra expression Hf=g with the projection matrix
H, the image vector f and the data vector g, it is possible to
use a reference image fir. Provided that the sum of
squared residuals ||Hf-g||* is equal to a constant, we require
that the object image f should maximally approach the
reference fr.r. Then, we take a Lagrange function

A(f) = od(f, fre)+ | Hf -2l (1)

to be minimized for a solution f. Here, d(f, fip) is a
quantity that represents a distance between f and fi.. The
Lagrange multiplier o (>0) is a parameter for adjusting the
balance between d(f, fi.) and ||[Hf-g||".

For d(f, f.r), one may take the Kullback-Leibler
distance to get a positive value assurance of the image by
nonlinear optimization. ~ When one takes the squared
Euclid distance |[f~f.d|>, it is possible to stay in the linear
framework of Tikhonov. Actually, we have a slightly
modified solution of the finite series expansion:
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Here, {u,}, {v,} and {oc,,} are two orthonormal systems and
the singular values, respectively, that are obtained by the
singular value decomposition of the matrix H. The
coefficients w,,(0) =1/(1+0c;, ) are the weights for tapering
noisy terms in an ill-conditioned solution. M is the number
of the observed projection values.

Eq. (2) means that, to get a reconstruction, we
previously subtract the projection of f.r from the data g.
Then, we calculate the Tikhonov solution from the
remaining parts of the data. Finally, we add the reference
image f.r to accomplish the reconstruction. Only a slight
modification of computing code is enough for this
calculation. The GCV of the original form is available for
a-optimization. Differential operators for profile smooth-
ing can also be adopted if necessary.

The Tikhonov method so modified has been applied
to the 3D tomography. The reference image fi.r is
synthesized with a parametric function model of the 3D
helical object. The function has 8 parameters to be
estimated and can give a rough approximation to the
emissivity profile that changes temporarily during the
radiation collapse. The parameter estimation is achieved
by least squares fitting the model, in its projection, to the
observed image of a single IRVB. Fig. 1 shows two
typical references, fr before and after a radiation collapse.
Compared to the EMC3-EIRENE phantoms [1], their
profiles are reduced in spatial resolution in order to avoid an
excessive fidelity to the theoretical prediction. Results of
the reconstruction are shown in Fig. 2. The effect is
apparent. Noisy artifacts diminish and the profiles of edge
and core radiations become clearer. The criterion of
minimum GCV worked well. At the right edge of the
¢=17.5° section, the bulk artifact that appears due to a lack
of crossing sightlines still remains. More improvement of
the image reconstruction method is desired.

$o=
(oo

Fig. 1 3D reference image f;r that is synthesized
adaptively for the edge radiation before collapse
(upper row) and for the core one after collapse (lower
row). Profile is shown in section at poloidal angles
¢=0.5°,9.5°, 17.5°; Shot No.121787; 6.0, 6.4 [s].
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Fig. 2 3D images reconstructed w/o the Euclid
distance minimization. ¢=0.5°, 9.5°, 17.5°; Shot No.
121787, 6.0, 6.4 [s]
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