§22. The Comparisons of Superconductivity between Low Activation MgB₂ Wires using Various Kinds of the Boron-11 Isotope Powders

Hishinuma, Y., Yamada, S., Muroga, T., Sagara, A., Kikuchi, A. (NIMS), Hata, S. (Kyushu Univ.), Shimada, Y. (IMR, Tohoku Univ.)

MgB₂ compound has higher critical temperature (T_c) value, which value was obtained to 39 K, and is also composed by the simply chemical composition and the relatively lower cost materials such as magnesium (Mg) and boron (B). In addition, it is well known that MgB₂ compound is one of the low activation superconducting materials alike various V-based superconductors (V₃Ga and V₂(Hf,Zr) Laves phase), because half-life time of the MgB₂ is estimated to be about 1 month and it is much shorter than that of Nb-based superconductors such as Nb-Ti and Nb₃Sn.

On the other hand, the natural boron material consists of two kinds of isotopes such as the ¹⁰B and ¹¹B. The natural abundance of these isotope is known as the 19.78 % of ¹⁰B and the 80.22 % of ¹¹B, respectively. The ¹⁰B isotope has larger neutron absorption reactive cross section compared with the ¹¹B isotope, and it is unstable against the neutron irradiation. Finally, the ¹⁰B isotope and is easy to transform to helium gas by the (n, α) nuclear reaction. We thought that the ¹⁰B isotope was unacceptable as the boron source material to make the low activation MgB₂. The ¹¹B isotope is more stable against the neutron irradiation without (n, α) nuclear reaction. So, the ¹¹B isotope promoted the low activation property and was the most preferable boron source material of the MgB₂ wire under the neutron irradiation environment application.

In this study, we fabricated various Powder in-tube (PIT) processed MgB₂ wires using crystallized and

Fig.1 The particle size distributions of various ¹¹B isotope powder as the boron source in this study

amorphous ¹¹B isotope powder as the boron source. And, the comparisons of critical current density (J_c) between different kinds of ¹¹B isotope powders as the boron source material was investigated.

The particle size distributions of various ¹¹B isotope powder as the boron source in this study is shown in Fig. 1. In the case of the crystallized ¹¹B isotope powder (Sample A and B), the particle size was distributed in the wide range between 20 μ m and 0.2 μ m. The average particle size of these powders were obtained to be 5.70 and 1.443 μ m, respectively. On the other hand, in the case of the amorphous ¹¹B isotope powder (Sample C), the particle size was distributed in the narrow range between 2.0 μ m and 0.2 μ m. The average particle size was obtained to be 0.863 μ m.

Comparisons of core J_c -B properties in Cu addition MgB₂/Ta/Cu multifilamentary wires using various ¹¹B isotope powder is shown in Fig. 2. J_c property was improved with smaller average particle size of the ¹¹B isotope powder. J_c improvement was caused by the increase of the MgB₂ volume fraction due to the smaller particle size of the ¹¹B isotope powder. MgB₂ phase was formed by the Mg-B solid diffusion reaction, and the diffusion distance of Mg to B was estimated to about 500 nm from the kinetic reaction rate constant¹). Therefore, the fine particle size was one of the effective to increase of MgB₂ volume fraction.

Furthermore, J_c value of the amorphous ¹¹B isotope powder sample was obtained to above 1,000A/mm² at 4.2 K under 3 T, and J_c -B performance was higher than that of the crystallized ¹¹B isotope powder. These suggested that the finer particle amorphous isotope powder was preferable ¹¹B source material to improve J_c property.

1) J. D. DeFouw et al., Acta Mater., 56, (2008), 5751.

Fig.2 The Comparisons of core J_c -B property in the MgB₂/Ta/Cu multifilamentary wires using various ¹¹B isotope powder