
In this study we construct extended models for 
magnetohydrodynamic (MHD) equilibrium and stability 
of toroidal plasmas to include plasma flow and small 
scale effects on the conventional MHD theory. Based on 
extended MHD models, we have studied kinetic effects 
on equilibria with flow, two-fluid and finite Larmor 
radius (FLR) effects on the Rayleigh-Taylor instability in 
finite beta plasmas and two-fluid tearing modes.
Equilibria of toroidal plasmas with flow and kinetic 

effects have been studied. A new model of toroidal 
equilibria with flow to include the effect of particle 
motion along the magnetic field is being developed based 
on the so-called kinetic MHD.
The parameter dependence of two-fluid and finite FLR

effects on the Rayleigh-Taylor (RT) instability in finite 
beta plasmas has been examined. Local and eigenmode 
analyses for the linear RT instability are done for Four 
MHD models, the MHD model, two-fluid MHD model, 
MHD model with FLR and two-fluid MHD model with 
FLR. The absence of complete stabilization of large 
wavenumber modes due to FLR effect occurs for low beta 
when the pressure gradient is small. The combination of 
two-fluid and FLR effects can also cause the absence of 
complete stabilization and the two-fluid MHD model 
with FLR is not always most stable among the other 
models, depending on beta. For the case of MHD with 
FLR, for large wavenumber modes, the growth rate of the 
eigenmode is larger than that of the local analysis at the 
center. The eigenfunction has two humps in the regions 
that are still unstable while the RT mode is completely 
stabilized at the center in the local analysis.
For low collisionality plasmas, the terms with parallel 

heat flux to the magnetic field included in the 
gyroviscosity derived from the fluid moment of the 
kinetic equation1,2) cannot be neglected. We examine the 
effects of parallel heat flux in the ion gyroviscosity on 
tearing instability based on extended MHD models. To 
study linear stability of tearing modes, the linearized 
extended MHD equations including parallel heat flux in 

gyroviscosity are simplified by taking only the first-order 
terms in the MHD ordering. We solve the resulting linear 
eigenmode equations for the tearing mode numerically.
We first examine the two-fluid tearing instability3) in
order to in a wide range of parameters as a benchmark. 
By changing both plasma beta value and ion skin depth, 
three regimes with different algebraic scaling law, 
weak-Hall, strong-Hall with high beta and strong-Hall 
with low beta regimes, have been reproduced. Figure 1 
shows the transitions (1) from weak-Hall to strong-Hall 
with high beta regimes (2) from strong-Hall with high 
beta to MHD regimes and (3) from weak-Hall to 
strong-Hall with high beta regimes and (4) weak 
dependence of low beta regime on the two-fluid effect for 
three different values of magnetic Reynolds number
S=104, 105 and 106 by changing the ion skin depth di and 
the beta value. Based on the results for the parameter 
dependence of two-fluid tearing instability, we will 
examine the effects of gyroviscosity with parallel heat 
flux.

Fig. 1. Parameter space of the two-fluid effect and the 
beta value for tearing instability. 
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In most of situations, tokamak equilibria are ana-
lyzed as two-dimensional (2D) systems with the axisym-
metry. The nature of this symmetry gives many advan-
tages for its analysis. However, as realistic tokamaks
have discreteness of the toroidal field coils, this discrete-
ness yields the toroidal field ripples (TF ripples) and,
strictly speaking, realistic tokamaks could not be ax-
isymmetric configurations. In previous work, we pointed
out the significance of three-dimensional (3D) effects,
which are effects of plasma equilibrium currents along
rippled field lines. On the other hand, in recent toka-
mak experiments, it is noted that stochastic filed lines
reduce strong heat load driven by the edge localize mode
(ELM) on the divertor plate. Stochastic field lines are
produced by the external helical perturbation and it is
called the Dynamic Ergodic Divertor (DED). From the
viewpoint of high-β stellarator equilibrium, 3D effects on
the stochastic field are very important because finite-β
perturbed field produces further stochasticity in the pe-
ripheral region. However, in present analysis of DED,
2D MHD equilibrium superimposed vacuum helical per-
turbed field was still used. In order to consider effects
of DED to ELM, considerations of finite-β MHD equi-
librium and the impact of 3D effects are critical and ur-
gent issue. In this study, the fully 3D MHD equilibrium
of non-axisymmetric tokamak is solved numerically and
the impact of the plasma rotation to the 3D MHD equi-
librium is discussed. For this study, we use a 3D MHD
equilibrium code HINT, which is widely used to ana-
lyze the 3D equilibrium in stellarator researches. Since
the HINT uses the real coordinate system, it can treat
magnetic island and stochastic field in the computational
domain. Thus, as first step, we study the 3D MHD equi-
librium including the toroidal rotation. Special attention
is the change of the magnetic island due to the toroidal
plasma rotation.

At first, we discuss the improvement of the HINT
code to include the toroidal rotation. vacuum field in the
ITER. The HINT code is a 3D MHD equilibrium calcu-
lation code, which is based on the relaxation method.
Since the HINT code uses the real coordinate system,
which is the cylindrical coordinate, the code can cap-
ture the magnetic island and stochastic magnetic field
lines in the calculation. The HINT code had been de-
veloped for stellarator and heliotron researches and the
original version of the code adopted a non orthogonal co-
ordinate system, so-called the rotating helical coordinate
system. The HINT code had been updated successfully
to the HINT2 code and that code applied to the toka-
mak calculation with 3D perturbation fields, which are
the toroidal field ripple, 3D error field and resonant mag-

netic perturbation (RMP) fields. However, up to now,
the 3D MHD equilibrium is calculated as the magnet
static equilibrium. Recently, effects of the plasma rota-
tion to the RMP field, which are shielding and amplifi-
cation of RMPS, are hot topics in ELM suppression and
mitigation experiments. To understand those effects, in-
cluding the plasma rotation to the 3D MHD equilibrium
calculation is urgent issue. In this section, the implemen-
tation how to include the plasma rotation is shown. In
this study, only the toroidal rotation is studied for sim-
plicity. The toroidal rotation is prescribed by the func-
tion of the toroidal flux and the toroidal flow velocity is
defined by the Mach number,

M =
vϕ
vth

where vϕ is the toroidal flow velocity and vth is the ion
thermal velocity. The HINT code consists of two parts.
First part, step-A, is the relaxation process of the plasma
pressure with fixed the magnetic field. Second part, step-
B, is the relaxation process of the magnetic field with
fixed the plasma pressure. The step-A calculates the
pressure distribution satisfying the condition B ·∇p = 0.
Instead of calculating that condition, the step-A calcu-
lates an averaged plasma pressure along a magnetic field
lines, because the condition means no variation of the
plasma pressure along the magnetic field lines. Details
is shown in Ref. For a case of existing the toroidal flow
velocity, the pressure distribution shifts to the outward
of the torus by the inertial force. In such a case, the
pressure distribution is prescribed by

p(s,R) = p̄(s) exp
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On the other hand, the step-B calculates the time evo-
lution of nonlinear dissipative MHD equations. In these
equations, the magnetic field and plasma flow velocity
are given by v = v0 + v1 and B = B0 + B1. Here, B0

is the vacuum magnetic field and B1 is the equilibrium
response field. The v0 is a given toroidal flow velocity
and v1 is the MHD velocity. Thus, dissipative MHD
equations are

∂v1

∂t
= −v0 · ∇v0 −∇p+ j1 × (B0 +B1) + ν∆v1

∂B1

∂t
= ∇× [(v0 + v1)× (B0 +B1)− η (j1 − jnet)]

j1 = ∇×B1

The spatial derivation is approximated by 4th order cen-
tral finite difference scheme and time marching is calcu-
lated by the 4th order Runge-Kutta-Gill scheme. Calcu-
lating those two steps iteratively, a steady-state solution
is obtained.
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