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While a sphere plays a paradigmatic role for the-
oretical considerations, it is notoriously difficult to per-
form numerical computations in a sphere. The difficulty
becomes apparent in the spherical polar coordinate sys-
tem {r,9, ¢}, with r radius, ¥ colatitude, and ¢ lon-
gitude. The numerical challenge resides near the coor-
dinate singularities of the poles § = 0,7 and the ori-
gin 7 = 0, where grid points are highly concentrated.
The dense grid points around a coordinate singularities
drastically reduce the time step due to the Courant—
Friedrichs-Lewy (CFL) condition when an explicit time
integration scheme is adopted. Even when an implicit
scheme is used, the unbalanced distribution of the grid
spacings damages the computational efficiency because
there is no physical reason, in general, to place a very
fine grid mesh near a coordinate singularity.

For numerical simulations in a sphere, we have
recently proposed an overset grid system, Yin-Yang-
Zhong grid?), which is an extension of the Yin-Yang grid.

The Yin—Yang-Zhong grid has three components;
Yin, Yang, and Zhong (see Figure 1). The new compo-
nent grid (Zhong), which is a set of cuboid blocks based
on the Cartesian grid, is placed to cover the central part
of the Yin—Yang grid. The three component grids cover
the ball region with partial overlaps on their borders.
The boundaries are sewed together by mutual interpo-
lations, following the general overset grid methodology.
Since the Yin—Yang—Zhong grid is a straightforward ex-
tension of the Yin—Yang grid, it is relatively easy to mod-
ify an existing Yin—Yang code into a Yin—Yang—Zhong
code.

Fig. 1: A spherical overset grid system, Yin—Yang—
Zhong.

When a magnetohydrodynamics (MHD) fluid with
a magnetic field is placed in a vessel (without ini-
tial flow), the MHD system shifts spontaneously to-
ward other states if the initial state is unstable. Af-
ter a transition time, the system calms itself down
to a quasi-equilibrium state. This process is called

MHD relaxation?. Various plasma experiments show
surprisingly good agreements with a relaxation the-
ory proposed by Woltjer®) and Taylor. Although
plasma instabilities—and consequently flows—play es-
sential roles in the relaxation process in the Woltjer-
Taylor theory, the flow velocity is assumed to be absent
in the relaxed state in the theory.

We have performed an MHD simulation inside a
sphere using the Yin—Yang—Zhong grid to investigate the
MHD relaxation that has a flow in the relaxed state.
Figure 2 shows streamlines in the relaxed state obtained
by the simulation. The quasi-stationary, relaxed state
has both the magnetic field and flow field with the same
levels of energy. This is a solution beyond the Woltjer-
Taylor theory. We are currently analyzing the dynamical
process of the relaxation and interactions between the
fields in the relaxed state.

Fig. 2: Stream lines in an MHD relaxation in a sphere.

We have also performed an MHD simulation of ther-
mal convection in a thin spherical shell layer with the
Yin—Yang—Zhong grid. The layer is between two concen-
tric spheres of radii r = 0.9 and r = 1.0, whose tem-
peratures are kept hot and cold, respectively. A central
gravity toward the center is assumed. The purpose of
this simulation is to investigate the pattern formation of
the MHD convection and the MHD dynamo effect by the
flow. The MHD convection exhibits a roll-like pattern in
the spherical shell. The Zhong grid component is criti-
cally important in this simulation because the dynamo-
generated magnetic field diffuses into the inner sphere of
r < 0.9, in which we solve the diffusion equation for the
magnetic field on the Zhong grid.
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