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The dynamics of dissipationless, incompressible hy-
drodynamic (HD), magnetohydrodynamic (MHD), and
Hall magnetohydrodynamic (HMHD) media, which are
formulated as dynamical systems on some appropriate
Lie groups equipped with Riemannian metrics, are con-
sidered from the Lagrangian mechanical viewpoint.

The key of the Lagrangian formalism on Lie groups
is the appropriate choice of the inner product and the
Lie bracket, which are respectively denoted by < * ‘ * >
and [*, *] hereafter. Once these two mathematical struc-
tures are defined, the variational formulation is formally
derived as follows.

First, the Lagrangian is defined using the inner
product by L = %(f’y(t)|f'y(t)>7(t) = %(V(t)|V(t)>67
where V() is the tangent vector of integral path, ~(¢).
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Fig. 1: Derivation of Lin constraints, i.e., the
relation among the velocity, the displacement,
and the perturbation part of the velocity asso-
ciated with the variation of a path.

Next, the variation of the path, v(¢; €), induces the
perturbation on the velocity, say V: i.e, approximating
the small segments by exponential map, the point D is
evaluated as

Vt+7ie) ~ exp[r(V () +eV(1)]or(te)
~ 6e£(t+'r) o e'rV(t) o 675§(t) ° ’Y(t,e)

(see Fig. 1). Applying Hausdorfl’s formula and com-
paring the O(eT) terms, we obtain the following relation
among V', & and V:

V=£+[¢V], (1)

which is known as Lin constraints.
Thus, the first variation of the action becomes
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where ad' is the dual operator of the Lie bracket with
respect to the inner product: <adia‘b> = <a| [b, c])
Using Hamilton’s principle (9S./9€)c—o = 0, and & = 0
at t =0, 1, we obtain the Euler-Poincare equation,

V =ad,V, (2)

as the Euler-Lagrange equation.

Note that, once we find such a variable £ that sat-
isfies £+ [€,V] =0 (i.e. V =0) along the solution path
to the Euler-Lagrange equation (2), we obtain the con-
servation law <V’£>t=0 = <V|£>t=1 as Noether’s first
theorem

For the HMHD case, the generalized velocity is
the pair of the ion velocity and current fields, =
(V,—adJ). The Riemannian metric and the Lie bracket
for the HMHD system are given by
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where B is the magnetic field induced by the current field
J (J =V x B, V-B=0). According to the procedure
described above, we obtain the Euler-Lagrange equations
for these structures as follows:

OV +QUxV+BxJ = —VP, (5)
OGA+BxV —aBxJ = -V, (6)

where Q, P, ¢ are the vorticity (2 = Vx V'), generalized
pressure, and the scalar potential of electro-magnetic
field, respectively. Taking the curl of (5) and (6) and
doing some manipulations, we find that the V -variable

ﬁcc<af_2;QB>cM<g> (7)

(where C¢, and C); are arbitrary constants) satisfies
0,8 + [ﬁ, V’} = 6, i.e., the variation in the direction of
Q yields the conservation law of Noether’s first theorem.
The associated constants of motion is

H = CC/[av-n+2v-B]d3:z+C—M/A-Bd3f,
(0%

which is the linear combination of the hybrid helicity,
Hy, and the magnetic heliccity, Hy: H = a™Y(CoHy +
(Cy — Ce)Hyp).

Similar mathematical structures are found for the
HD and MHD cases.")
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