§26. Evaluation of the XcalableMP Parallel
Language on the Plasma Simulator
System

Nakao, M. (RIKEN AICS)

i) Objective MPI (Message Passing Interface) has
been widely used to develop parallel applications on dis-
tributed memory system such as the Plasma Simulator
system, Fujitsu PRIMEHPC FX100. However, the pro-
gramming cost of MPI is high. To tackle this prob-
lem, the XcalableMP (XMP) parallel language has been
proposed! 2). XMP is a directive-based language exten-
sions of C and Fortran, which enables programmers to
develop parallel applications with high performance eas-
ily. I have developed an omni compiler®, which is an
XMP compiler as a reference implementation. The ob-
jectives of this study are to port the omni compiler®) to
FX100 and to evaluate its performance.

ii) Porting I create a setting file for FX100 in the
omni compiler so that a user can build the omni compiler
easily. When building the omni compiler, a user only
indicates the machine’s name. In the setting file, Fujitsu
compiler’s optimal options are set to build a runtime of
the omni compiler to achieve high performance.

The following explains how to install the omni com-
piler onto FX100.

1. Get the latest omni compiler from the official site®

2. Expand the omni compiler

$ tar xfj omni-compiler.tar.bz2

3. Indicate the machine’s name

$./configure --target=FX100-linux-
gnu

4. Build and install the omni compiler

$ make; make install

iii) Performance Evaluation To evaluate a perfor-
mance of the omni compiler on FX100, I implemented
the Himeno benchmark®. The Himeno Benchmark eval-
uates a performance of incompressible fluid analysis code
using the Jacobi iteration method. The reason which I
select this benchmark is a good example of a stencil ap-
plication benchmark which is widely used in a computa-
tional science field.

Fig. 1 shows a part of code written in XMP For-
tran. The nodes, template, distribute, and align di-
rectives distribute the array p onto each process. The
shadow directive sets the width of the overlapped re-
gion. The loop directive parallelizes the following loop

382

statement. Moreover, the OpenMP parallel directive
parallelizes the parallelized loop statement. The reflect
directive synchronizes data of the overlapped region onto
the neighboring process.

real p(imax,jmax,kmax)

1$xmp nodes n(8,8)

1$xmp template t(imax,jmax,kmax)
1$xmp distribute t(*,block,block) onto n
1$xmp align (*,j,k) with t(*,j,k) :z p
1$xmp shadow p(0,2:1,2:1)

1$xmp loop (J,K) on t(*,J,K)
1$omp parallel do private(SO, ...)
DOK = 2, kmax-1
DO J =2, jmax-1
DO I =2, imax-1
SO = a(l,J,K, 1) *p(I+1,J,K)+..

1$xmp reflect (p)

Fig. 1: Part of code in XcalableMP

This parallelization is so straightforward that a pro-
grammer only adds XMP directives into the sequential
Himeno Benchmark. The source lines of codes (SLOC)
of XMP Himeno Benchmark is 137 where nineteen XMP
directives are used. Hence, the SLOC of the sequential
Himeno Benchmark is 118. Besides, the SLOC of the
MPI Himeno Benchmark is 380. These results shows
that XMP has a good productivity.

To evaluate performance of the Himeno benchmark,
I used 32 threads and one process per compute node of
FX100 and strong-scaling. Fig. 2 shows the result, which
indicates the omni compiler has a good performance.

10*

108

102

10

Performance(GFlops)

1 2 4 8 16 32 64
Number of Nodes

Fig. 2: Performance result

1) http://xcalablemp.org

2) Masahiro Nakao, et al. :Productivity and Perfor-
mance of the HPC Challenge Benchmarks with the
XcalableMP PGAS language, 7th International Con-
ference on PGAS Programming Models, 2013.

3) http://omni-compiler.org

4) http://accc.riken.jp/supercom/himenobmt/

