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Abstract
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Institute of Fusion Science. The contributed papers in the workshop are collected here.
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Abstract

The Lagrangian for collective (fluid-mechanical) matter-field coupling
must incorporate a non-canonical structure in order to describe a nonzero
“vorticity” of the momentum (violating the basic Hamilton-Jacobi rela-
tion P = VS for the momentum P and the action S). Here, the non-
canonical structure is represented by a singular Poisson bracket, which
allows existence of “Casimir invariants”. Adding Casimir invariants, one
may transform the Hamiltonian without changing the dynamics. This
transformation reveals an interesting “multiscale” property of the system,
because the Casimir invariants have different scalings in comparison with
the Hamiltonian.

1 Introduction

From the view-point of nonlinear field theory, “flow” is a delicate subject —
the nature of flow is often indicated by adjectives crowned with “non”, such
as non-linear, non-Hermitian, non-canonical, non-Abelian, non-commutative,
etc., and thus, fluid mechanics is a rich resource of basic concepts that may be
disseminated to other fields of sciences.

The origin of “vorticity” is the central problem which makes the theory
extremely non-trivial. The Lagrangian for fluid motion must incorporate a
“non-canonical” structure that is symbolized by the vorticity of the momen-
tum. Remembering the basic relation P = V.S (P is the momentum and S
is the action) of the Hamilton-Jacobi equations, it is interesting to ask how a
mechanical system, being described by the criticality of some action, can attain
a vorticity (V x P #0). A potential flow P = VS suffices for the mechanics of
a “particle”, because the notion of a bundle of orbits is not there; the vorticity
(helicity) is a geometric index measuring the twists of multiple orbits. It is
worthwhile noting that any theory that constructs fields from the action cannot
have a vorticity of the phase; a well-known example is the Ginzburg-Landau
wave function of a super-fluid.

The attempt to formulate a fluid-mechanical Lagrangian has a long his-
tory [1, 2, 3, 4]. Some different Lagrangians have been proposed, while some of
them are “incomplete” to describe general motion of fluids, and the relations
among these formulations are not well understood. It is rather straightforward



to extend the classical-mechanical Lagrangian for particle motion to that for
continuum by invoking the notion of diffeomorphism that describes the dis-
placements of matter in the “Lagrangian view”. However, difficult exploration
has been continuing aiming at developing an “Eulerian view”. While classical
mechanics is based on the Lagrangian view, standard field theories stand be-
hind the Eulerian view. The above-mentioned problem, the origin of vorticity
is, indeed, posed in the quest for the latter.

The Lagrangian view attributes the origin of vorticity to the “initial condi-
tion”, and its diachronic analysis of vortex dynamics is unaware of the “topolog-
ical defects” associated with the vorticity. The Eulerian view finds singularities
in formulating Poisson brackets with synchronic variables. So-called “Casimir
invariants” [5, 6], defining the kernel of the Poisson bracket operator, produces
a variety of interesting structures. We will formulate a variational principle to
analyze multi-scale collective matter-field coupling in plasmas [7, §].

2 Fluid Mechanics in Lagrangian View

The Lagrangian for the collective matter-field couplings may be naturally de-
rived by generalizing the Lagrangian of a particle (mass m and charge e) in the
presence of an EM field (we consider the non-relativistic limit for simplicity):

L=Lp+ Lgn, (1)

Lp=P-v—H, (2)
1

LEM :/,CEMdCL‘:/—ZFW,FMVdCL’, (3)

where H = p?/(2m) + e¢ is the Hamiltonian, P = p + (e/c)A is the canonical
momentum, and p is the mechanical momentum. The vector and the scalar
potentials define the four potential A* = (¢, A) whose curl is the Faraday (field
strength) tensor F,, = 9,4, — 0, A,. The velocity v is related to the particle
orbit g(t) (along which Lp is to be evaluated) by

v=gq. (4)

The relation (4) is the essential input that “causes” the motion of the particle.
Indeed, if we calculate the variation of [ L dt for general dv, we find P = 0,
but, for §q, with fixed end points g(typ) and gq(t1), the well-known Lagrange’s
equation of motion follows.

Generalizing the single particle orbit g(¢) to a diffeomorphism Q(xg,t) in
R3 (zo being the initial position of each streamline), we construct the fluid
Lagrangian

Lpz/ﬁpda::/(P-V—Hp)pda: (5)
by replacing the single-particle velocity ¢ in (4) by the flow velocity
. d
V(z,t) = Qlay = EQ(wo(m,t),t). (6)

Here, xo(x,t) is the initial position of the streamline being connected to the
time-space position (x,t). To relate (x,t) to (xo,0), one needs the inverse



map zo(x,t) = Q7 !(x,t) of the diffeomorphism Q(zxo,t), which traces-back
the streamlines.

The fluid Hamiltonian Hp consists of the kinetic and potential energies plus
an “internal (thermal) energy” e(p):

Hp = H +<(p). (7)

The fluid density p is defined by

pla,t) = polo(a, 1) - s ®

When we formally take po(xo) = d(go — o), we recover (1) with pdzdt giving
the integral along the orbit g(t).
In what follows we denote

Dif = 0f+V- V], (9)
Dif Wf+V- (V). (10)

The mass conservation law
Dip=0 (11)

is a direct consequence of (8). By the criticality of the action [(Lp + Lgar)dt,
fixing the space-time boundaries, we obtain, from the variation ép, p = mV (=
mQ@), and from 0Q, the equation of motion

1
thV:—Vh+e<E+EV><B>, (12)

where E = —V¢—0;A/c, B=V x A, and h is the enthalpy density defined by
h =0(pe)/0p =€+ P/p (P is the pressure; pVh = VP). Maxwell’s equations
with the currents (ep,epV’) follow from 6A4,.

3 Fluid Mechanics in Eulerian View

In this section, we formulate an Eulerian representation of the fluid Lagrangian.
In the Eulerian case where no a priori relation between the fluid velocity V' and
the streamlines is assumed, and the unrestricted variation 6V yields P = 0. To
reproduce properly the evolution equations, we must appropriately “constrain”
V.
The measure pdzdt, defined by (8), is the generalization of the integral along
a single orbit to collective orbits. It was argued, then, that imposing a physically
motivated “restriction” on p that leads to the conservation law (11), must be
a step in the right direction. Serrin, in a pioneering paper [1], proposed the
Lagrangian density
Lr=p(P-V —Hg)+ SD{p, (13)

in which the variation of the Lagrange multiplier S does exactly that.

The Serrin Lagrangian, however, is inadequate because the momentum P =
VS (obtained by the variation V') describes only an “irrotational” flow repre-
senting a relatively small area of general fluid mechanics. We will see later that
this restriction is due to a “canonical structure” premised by (13).



To derive flows with vorticity, Lin [2] imposed another constraint by in-
cluding a term pa(0;8 + V - V) to the integrand of (13). The resulting flow
P = VS + aVp, corresponding to the so-called Clebsch parameterization of a
vector field, does acquire a finite “vorticity” (V x P = Va x Vf). Unfortu-
nately, the Clebsch representation (with a single valued S, and ) is not a
global representation for arbitrary flows with non-zero helicity. The Serrin-Lin
Lagrangian still falls short of reproducing the fluid dynamics of arbitrary flows.

We propose a generalized and rearranged Serrin-Lin-type Lagrangian density

Lr= [P-V—HF—(DtS-I-)\thO'j)] p. (14)

The variational principle 6 [(Lr+Lpwm) dzdt = 0 yields a complete set of deter-
mining equations. By V', we obtain P = VS+\ Vo; that is now “complete” to
represent any three-dimensional vectors if we take (at least) three independent
scalars ;. The fluid (plasma) equation follows from

DyP = Dy(VS + XNVo;) = —V(ed + h) + E [V x B+ (V-V)A],

which is equivalent to (12).

The role of S is best understood by referring to the original Serrin form
(M = 0o; = 0). Though Serrin’s S is a Lagrange multiplier that imposes mass
conservation (11), we proffer a different interpretation. By moving (by inte-
grating by parts) D} from p to S, one may think of p as a Lagrange multiplier
demanding that L£r must be a complete derivative (evaluated through each
streamline of V') of some scalar field S —this is nothing but Hamilton’s princi-
ple demanding the criticality of the action integral with S as the “action”.

We have to specify what we have called “non-canonical”. A canonical Hamil-
tonian mechanics is endowed with a regular (non-degenerate) Poisson bracket,
ie., if {F,C} = 0 for all F, C must be a constant. Otherwise, i.e., if there
exists such a non-constant C'; which we call a “Casimir invariant”, the system
is non-canonical.

The fluid-mechanics equations do have a Casimir invariant, that is the so-
called “helicity” defined by C' = [(V x P) - Pdz [5, 6]. Obviously, if P = VS,
then the helicity density is zero, implying that C' = 0. A Clebsch-form vector
field has a finite helicity density; if P = V.S +aV, we have C = [V - (SVa x
VB)dz. This C is fixed, when we give boundary conditions on the Clebsch
parameters S,a, . Then, the kernel of the Poisson bracket is removed, and
hence, we obtain a “canonical” system. Jackiw [4] showed that the (S, p) and
(Sa, B) compose canonical pairs describing the fluid motion. As mentioned
above, however, Clebsch-form falls short to represent general P, and, indeed,
the general fluid mechanics is “non-canonical” in a sense that the helicity is a
Casimir invariant; See Sec. 4.

4 Casimir Invariants, Beltrami Fields, Lyapunov
Function

In this section, we study the non-canonical Hamiltonian structure of the col-
lective matter-field coupling. We start with an abstract formulation. Let H (u)



denote a Hamiltonian of a state vector u, and

d
U= A0, H (u), (15)

where A is an antisymmetric operator such as (Af, g) + (f, Ag) = 0. ! Defin-
ing the Lie-Poisson bracket by {G(u), F(u)} = (A0,G(u), 0, F(u)), Liouville’s
equation is

—F(u) = {H(u), F(u)}. (16)
Simple examples are:

1. For u = (¢1,"** ,qu,P1, " ,Pv), (15) reads as Hamilton’s canonical equa-
tion with

_ 1 2 (0 I
H(U)—%ij‘FU(Q), A= ( I 0 >
J
2. For u = u(z,t), (15) reads as Schrédinger’s equation with
h2

In what follows, we consider a nonlinear .4 that may have a kernel (defining a
topological defect). A functional F'(u) commuting with H (u) (i.e., {H (u), F(u)} =
0) is a constant of motion. When A has a kernel, there may exist a constant
of motion originating from the Lie-Poisson bracket (independent to a specific
choice of the Hamiltonian), i.e., C(u) such as

{G(w),C(w)} =0 (VG(u)), (17)

which we call a “Casimir invariant”. Suppose that the system has Casimir in-
variants C, (u) (v = 1,- -+ ,v). Each Casimir invariant derives a (parameterized)
transformation of the Hamiltonian:

Gulw) = H(w) + 3 1,5 u), (18)

which does not change the dynamics (16).

While the critical point (equilibrium point) of the Hamiltonian is often triv-
ial, that of the transformed Hamiltonian (18) exhibits interesting structures.
Let us analyze the variational principle

6Gu(u) = 6 | H(w)+ 3 m,Ci(u) | =0, (19)
j=1
which yields a set of critical points parameterized by pq,--- , i,,. We call the so-

lutions to (19) as “Beltrami equilibria” [7]. Since each C;(u) may have different

We use the standard notations of the inner product ( , ) and the norm || || of the L?
Hilbert space.



scale (order of spacial derivatives), the combination (18) includes multi-scale
structures (see Sec. 5).

The stability of a Beltrami equilibrium ug is shown by analyzing the Hessian
of Gp(u) [5, 9]. Writing u(t) = uo + 4(t), let us derive a conservation law for
the perturbation @(t). In the neighbourhood of ug, we observe
4G LGt 2
% = LoGut, (20)
where L is the linear operator defined by evaluating £ at u = ug. We note that
the contribution from the perturbation £'@é vanishes because of the Beltrami
equilibrium condition (0,Gu(uo) = 0). The operator G, @ is the linearization of
the 0G(u), i.e., the Hessian of G, (u).

The energy corresponding to the “linearized Hamiltonian” G,, is

Gu(i) = (G ), 1)

which is a constant of motion governed by (20). This functional G, (i) works as a
Lyapunov function. A sufficient condition for the stability is the “coercivity”: [9]

Gu(@) > clall®*  (3Be>0), (22)
which is equivalent to the “convexity” of the transformed Hamiltonian:

Go(uo +08) > Gulug) (V6 # 0).

5 Beltrami Fields; multiscale flow-field couplings

As mentioned in Sec. 3, the “helicity” of fluid vorticity is a Casimir invariant.
In a “plasma” consisting of ion (proton) and electron fluids, both helicities
associated with the corresponding flows have distinct length scales, which yield
multi-scale Beltrami equilibria [10].

Here, we assume incompressible condition for simplicity. By subscript £ = e,
we identify electrons, and, by £ = i, ions. The (canonical) momentum equations,
in an appropriate normalized unit, read as

atPZ_‘/ZX (VXPZ):_VQK M:evi)v (23)

where P, = m¢V; F A (my is the mass) and @, is the energy density of the fluid
(sum of the electric, thermal and kinetic energies).

The scale hierarchies in plasmas are highlighted by “singular perturbations” [10].
Here, we show how the electron/ion mass ratio yields a singular perturbation; In
the electron momentum P,, we may neglect the small mechanical momentum.
Then, V. is no longer a dynamical variable, so we must determine it by another
relation. We may write (normalizing the charge density=1) V, = V; — J with
the current density J. Neglecting the displacement current, J = V x B. In
this singular limit, we have to take the curl of the electron equation of (23).
Then, the Hamiltonian reduces into H = (||P; — A|[*/m; + || B||*) /2 and the
evolution equation reads as

%(g>:<(vx§i)xo —VX[B0><(VXO)]><21;II;TI>' (24)



Two helicities (Casimir invariants) are C, = (A, B) and C; = (P;,V x P;).
The “Beltrami equilibria” are given by §(H + u1C. + pu2C;) = 0, whose
Euler-Lagrange equations can be cast into the form of

(curl = Ay)(curl = A_)u =0 (u= B,V;), (25)

where Ay are constants related to p; [7]. Since two operators (curl — Ay)
commute, the general solution of (25) is given by a linear combination of two
“Beltrami eigenfunctions” [11], i.e., u = ¢; G4 + c—G_, where

(curl — Ai)Gi =0, (26)

and cg are constants (to be determined by the ratios of H, C. and C;). Both
eigenvalues A1 represent the two distinct scales included in the Beltrami equilib-
ria. This model gives the minimum (simplest) representation of the multi-scale
flow-field coupling.
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High-($ axisymmetric equilibria with flow in reduced single-fluid and
two-fluid models*

Atsushi Ito,! Jests J. Ramos,?> and Noriyoshi Nakajima'

! National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
2Plasma Science and Fusion Center, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139-4307

Reduced single-fluid and two-fluid equations for axisymmetric toroidal equilibria of high-3 plasmas
with flow are derived by using asymptotic expansions in terms of the inverse aspect ratio. Two
different orderings for the flow velocity, comparable to the poloidal Alfvén velocity and comparable
to the poloidal sound velocity, are considered. For a poloidal-Alfvénic flow, the two-fluid equilibrium
equations with hot ion effects are shown to have a singularity that is shifted by the gyroviscous
cancellation from the Alfvén singularity found in single-fluid magnetohydrodynamics (MHD) when
the poloidal flow velocity equals the poloidal Alfvén velocity. For a poloidal-sonic flow, a reduced
single-fluid model is used to derive a set of equilibrium equations that includes higher-order terms.
The singularity at a poloidal flow velocity equal to the poloidal sound velocity is recovered in the
higher order equations.

I. INTRODUCTION

In improved confinement modes of magnetically confined plasmas where high- is achieved, equilibrium
flows play important roles like the suppression of instability and turbulent transport. At the sharp
boundary of well-confined region, the scale lengths characteristic of microscopic effects not included in
single-fluid magnetohydrodynamics (MHD) cannot be neglected. Small scale effects on flowing equilibria
due to the Hall current have been studied with two-fluid or Hall MHD models [1-4]. However, these
models are consistent with kinetic theory only for cold ions. In order to include the hot ion effects that
are relevant to fusion plasmas, an extension of the model is necessary. A consistent treatment of hot
ions in a two-fluid framework must include the ion gyroviscosity and other finite Larmor radius (FLR)
effects. In the fluid formalism of collisionless magnetized plasmas, these effects are incorporated by means
of asymptotic expansions in terms of the small parameter 6 ~ p,/a, where p; is the ion Larmor radius
and «a is the macroscopic scale length. With a slow dynamics ordering, v ~ v, where v and vy, are
the flow and thermal velocities respectively, the ion FLR terms [5, 6] are much simplified in the reduced
models for large-aspect-ratio, high-/3 tokamaks [7, 8] after relating 6 to the inverse aspect ratio expansion
parameter € = a/Ry < 1, where a and Ry are the characteristic scale lengths of the minor and major
radii respectively.[9, 10].

In this paper, we derive reduced sets of equations for axisymmetric equilibria with flow. We shall
study flow velocities in the orders of the poloidal Alfvén and the poloidal sound velocities. These are the
characteristic velocities that bring singularities in the equilibrium equations. The poloidal-Alfvénic flow
is of interest because the equations for axisymmetric equilibria in single-fluid MHD have a singularity
when the poloidal flow velocity is equal to the poloidal Alfvén velocity, the so-called Alfvén singularity
[3, 11]. This can be described by the reduced model with the relation 6 ~ € [9, 10]. The poloidal-sonic
flow is of interest because the equilibria show a discontinuity at the point where the poloidal flow velocity
crosses the poloidal sound velocity[12, 13]. This can be described by the reduced model with the relation
6 ~ e. While the poloidal-Alfvénic flow analysis follows the standard orderings of reduced MHD for
high-§ tokamaks, the poloidal-sonic flow analysis does not and higher-order terms must be taken into
account. Since the formulation of higher-order equations is involved, here we restrict our analysis of the
poloidal-sonic flow to the single-fluid case, planning to extend our present results with the inclusion of
two-fluid, hot ion effects in future work.

This paper is organized as follows. In Sec. II, we introduce the basic steady state equations for two-fluid
MHD with hot ion effects, and the orderings for the reduced models. In Sec. III, we derive the equations
for equilibria with flow velocity comparable to the poloidal Alfvén velocity in a model with two-fluid
and hot ion effects, and discuss the modification of the Alfvén singularity by these effects. In Sec. IV,
we derive the asymptotic equations for equilibria with flow velocity comparable to the poloidal sound
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velocity in a single fluid model, to be extended to a two-fluid model with ion FLR in future work. A
summary is given in Sec. V.

II. BASIC EQUATIONS

The equations for two-fluid collisionless equilibria to be considered in this work are

V- (nv) =0, (1)

V xE =0, (2)

mnv-Vv=jx B -V (p;+pe) — \V-1I7", (3)
E+vxB=(\/ne)(jxB-Vp), (4)

toj =V x B (5)

v Vpi+piV v+ (2/5) A (VV - q) =0, (6)

(v = Adj/ne) - Vpe + 99V - (v — Acj/ne) + (2/5) Ae (VV - @) = 0, (7)

where m; is the ion mass, n is the density, v is the ion flow velocity, E and B are the electric and magnetic
fields, j is the current density, p; and p. are the ion and electron pressures, I1Y" is the ion gyroviscous
tensor, q; and g, are the ion and electron heat fluxes respectively, and v = 5/3. The diagonal components
of the pressure tensors are assumed to be isotropic. The electron mass m, & 0 is neglected. The electron
gyroviscosity is also neglected since p, < p;. We have introduced the artificial indices A; and A. that
label the two-fluid, non-ideal terms in the ion and electron equations respectively: (A;, Ae) = (0,0) for
single-fluid (ideal) MHD, (0, 1) for two-fluid MHD with electron diamagnetic effects but zero ion Larmor
radius (Hall MHD) and (1,1) for two-fluids with finite ion Larmor radius. The divergence of the ion
flow velocity is obtained from the projection of Faraday’s law (2) along B and the substitution of the
generalized Ohm’s law (4),

BQ(V.V)+V-VBQ—V~[B><(VXB)]—B'V(V'B)_B'{V<22> va“LB{j'v(rALZ)H

+B-j[B-v<22>]+22V-[(j><B)><B]:0 (8)

Here we shall consider the corresponding toroidal axisymmetric equilibria, where, in cylindrical coordi-
nates (R, p, Z), the magnetic field B and the current density j can be written as

B=Vy(R,Z)x Vo +I(R,Z)V¢ (9)
foj = VI x Vo — A"V, (10)

where 9 is the poloidal magnetic flux and A* = R?V - [R~2V]. The projection of the momentum balance
equation (3) along V¢, B and B,, yields

Lo REVY - (minv - Vv + N,V - T19Y) + |V |2 A% + IV - VI + 1o R*Vap - V(p; + pe) = 0, (11)
B (mnv-Vv+ ANV -17) + {p; + pe, ¥} =0, (12)
(Vi x V) - (minv - Vv + NV - T) 4 {pi + pe, ¥} + (I/ngR*{L, ¢} = 0, (13)

where {a, b} = (Va x Vb) - V.
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The asymptotic expansion is defined in terms of the inverse aspect ratio ¢ = a/Ry < 1 where a and
Ry are the characteristic scale lengths of the minor and major radii respectively. The following high-3
tokamak orderings for compressible reduced MHD are applied,

B, ~¢eBy, pi~pe~e(Bi/ng), |V|~1/a. (14)
The variables are expanded as
Y =1+ + g+
I=Lh+hL+L+13+...,
Pi = Pi1 +Pi2 +pi3 + ...,
De = Pe1 + Pe2 + Pe3 + ..,

n=mng+n+...,
R=Ry+x,

where Iy = ByRy. We assume the slow dynamics ordering,

v~ Ovp,, (15)
minv? ~ ||| ~ 6%p; e, (16)
gi ~ UPie ~ OVthiPie- (17)
The leading order of Eq. (11) yields
By
Pi1 + Pe1 + Iy = const. (18)
HoRo

III. REDUCED TWO-FLUID EQUILIBRIA WITH POLOIDAL-ALFVENIC FLOW

Here, we consider the case of poloidal-Alfvénic flow v ~ Va, = B,/ (ugmin)*/?,
minv® ~ [T ~ ep ~ 2B/, (19)
and we assume
v~ j/ne ~ Vp/neBy. (20)

This requires second-order accuracy in the total energy. However, while second-order accuracy is needed
in the sum of the pressures plus the magnetic energy, it follows from Eqs. (11)-(13) that the pressures
and the magnetic energy by themselves are required only in the first-order. The ion gyroviscous force
and heat fluxes are needed only their leading orders [5, 6],

VI~ _e”;”o (RoV X Vpin) - Vv = V (X, + Xq) » (21)
qi ~ Qi ~ géB X {Piv (%)] ) (22)
ae~ao =B x [pv (X)), (23)

where q;; and g, are the ion and electron diamagnetic perpendicular heat fluxes respectively and their
divergences are

5 pzl Ry
2

Voq~ =g L opak, (24)

56R
Voq. o~ - p”{ ' per}. (25)
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The specific forms of x, and x, are found in Ref. [6] but are not needed in the present study.

Faraday’s law (2), we obtain
=-Vo,
and expand ® as
=P, +...
The generalized Ohm’s law (4) is rewritten as

)\e v
ne

The ion flow velocity v is defined from the leading order of Eq. (27) as

vV =VE + Aevai + v RV,

ve ~ —By'V®, x (R\Vy), vai~—

1
7 R )
Bono Vi1 x (RoVe)

and its divergence is obtained from Eq. (8) using Eq. (18) as

Vv — )\RO

{n s Pit}
The leading order of the equation for continuity (1) is
—(Ro/Bo){no, ®1} =0,
which yields
ng = no(P1).
Substituting Eqgs. (24), (30) and (32) to Eq. (6), we obtain the leading order pressure equation

Ry

ny(®1)ypin
B 1+ (A 7,\)7 {pi, ®1} =0,

2e Bo
which yields
Pi1 = Pi1(q’1)~

From Egs. (10) and (18), we get

1o Ro
B (p’Ll +pel):| X VSO - A*ZZJVSD

Hod =~ =V {
Then, substituting Eqgs. (25) and (35), the electron pressure equation (7) gives
Pe1 = pel(@l))
The leading order of the B-component of generalized Ohm’s law (4) is
—{¢17¢1}+ {pel7¢1}—0

Substituting Eq. (36) into Eq. (37), we obtain

AeDe
1= 2O gy, =0,
which yields

= ®1(¢y).
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Thus, we get

no =no(¥1), pir =pii(¥1), Per = pea(¥y), L =ILi(yYy). (40)

The convective derivative is written as
1 )‘epi'l 2 V), |2 R% )‘epd
v -Vv ~ Bfg <(I)I1 + 67),0) v T - Az%v% - Bio (I)Il en {UH ¢1}V<P, (41)

where

0? 9?2
Ao = (ag*az)

The projections of the gyroviscous force (21) along Vi), Vo and Vi) x Vo are

v my; ; )‘e i Vv 2
Vi (V) o i (@’1 | APy 1) [wl v ( al ) - Azwlvw] VYVt xg): (42)
eB§ eng 2

B-(V-IIY) ~ 1, (43)
v 17 ! e’y V 2
(Vi x Vo) - (V - IIY ):{ g; (¢1+ eqf;) | é’l‘ + X0 + Xg» wl}- (44)

The components of the sum of the convective derivative and the gyroviscous force are
V- (minv - Vv + N,V - 117Y)
4 A Vi, |2
~_ mmo (I’/ (/\ _ )\L) p11:| <(I)/1 + ep;1> {|V¢1|2A2¢1 _ le v <| 1/)1| ):l

B0 eng 2
- /\1V1/J1 ' V(X’U + Xq)’ (45)
B (mmv -Vv+ A\ V- va) ~ *mﬂloRo |:(I)Il + (/\e - ) pll :| {UH lpl}) (46)
(V¢ x Vo) - (minv - Vv + N,V - T19) (47)
m;no / Di ’ ePi1 |V7/’1|2
~ d Y P i(Xo : : 4
{7 [ 0 a0 2] (o4 2 ) 0k 0 (48)

In the first square brackets of Eqgs. (45) - (47), the contribution of ion diamagnetic drift disappears when
(Xiy Ae) = (1,1). This is due to the finite Larmor effect on the convective terms, known as the gyroviscous
cancellation [14]. Substituting Eqgs. (45) - (47) into Egs. (11) - (13), we obtain the first-order equations
for momentum balance as

B
IV, |? Agthy + 210 Rox Vb, - V(pin + per) + LV, - VI + g REVY, -V (pﬂ + De2 + p ]%0 12)
0

P AeD; Vb, |2
= poRgming | ) + (Ae — i) nl} (<I>’1+enol) [|w1|2A2¢1—w1~v(| 1 )}

2
0
— it R§Vby - V(x, +xg) =0, (49)

—m;ng [@’1 + (Ae — )\i)gilo] {v,¥1} =0, (50)

By ming [, (Ae — Ni)ply ;o Al |V1Z) |2
; . I P i P ¢ — XX = g« . (91
p2+p2+MORO 2+ B2 [ 1T eno 1+ eno (Xo + Xq) = g+(¥1). (51)
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Equation (12) yields

v = v (¥y). (52)

Substituting Eq. (51) to Eq. (49), we get the reduced Grad-Shafranov (GS) equation in the presence of
flow, two-fluid and ion FLR effects,

2 /
1=ty (Mg ) vy - 0L far, (0, g )|

"Vap 2 "Vap
2 2y
= —uoRS | 5 (i +per) + 94| — (5 ) (53)
R() 2
where
Ve + AV
My, = £ (54)
Ap
is the poloidal Alfvén Mach number and
Ve Ry® Vai Ropj,
— = i , =— Ny ————. 95
Vs om0 —p =y = Vi (55)
Equation (53) has a singularity where the first term of the left-hand side vanishes,
Vai
1— My, (MApAi d > , (56)
Vap
or
Vi, — (Ve + AVai) Ve + (Ae — Ai)Vai] = 0. (57)

For single fluid MHD, (A;, Ac) = (0,0), it is the Alfvén singularity that occurs when the poloidal flow
velocity is equal to the poloidal Alfvén velocity,

M3p=1. (58)

For two-fluid MHD without ion FLR, (A;, Ac) = (0, 1), the condition is the same as Eq. (58) even though
the two-fluid effects bring the ion diamagnetic drift into the definition of the poloidal flow. For the two-
fluid model with ion FLR, (\;, Ac) = (1,1), the singularity is shifted from the poloidal Alfvén velocity,

My, = % {Vdi JVap £ /4 + (Va /VAP)Q} . (59)

From Eq. (57), this shift is understood as the effect of the gyroviscous cancellation on flowing equilibria.

Tt is noted that the present model does not reproduce the resolution of the Alfvén singularity, Eq. (58),
by the Hall current as in non-reduced two-fluid models with (A;, Ae) = (0,1) [3]. This difference arises
because the convective term in the ion momentum balance equation (27) is neglected in the leading
order. This convective term involves the second order derivative of the ion stream function and leads to
an equilibrium system of two coupled generalized GS equations for the ion flow stream function and 1,
which does not have the Alfvén singularity [1, 3, 4, 15]. In order to describe the singular perturbation
due to the Hall current in reduced models, the local region in the vicinity of the Alfvén singularity should
be separately analysed by relaxing the ordering B, ~ €By and connected to the bulk region described by
Eq. (53). Equation (59) specifies the region where the singular perturbation analysis is necessary in the
FLR two-fluid model.

IV. REDUCED SINGLE-FLUID EQUILIBRIA WITH POLOIDAL-SONIC FLOW

This section will deal with single-fluid equilibria, (A;, Ae) = (0,0), with the flow velocity in the order
of the poloidal sound speed v ~ Cy, = (B,/Bo)(yp/nm;)'/?,

minv® ~ e%p ~ &% (B] /) -
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This requires a third-order accuracy for the total energy like the reduced MHD equations for finite aspect
ratio tokamaks [8]. However, like in the previous section, the pressures and the magnetic energy by
themselves are required only up to the second order. From Eqs. (6) and (7), the total pressure p = p; + pe
is given by the adiabatic pressure equation,

v-Vp+ypV-v =0. (60)

The fast magnetosonic wave is eliminated from the reduced equations for equilibria, while the shear
Alfvén and the slow magnetosonic waves are retained, by assuming

V-v~ev/a. (61)

From the requirements Eq. (61) and v - Vp ~ €%(B2/p,)(v/a) that is determined from Eq. (60) and
satisfied by Eq. (8), the flow velocity v can be written as [8]

v = (1+2/Ro) VU x (B/B) + v (B/B)

=v, +v,RVyp, (62)
vy= [Dvp+ (1+2) L] x vy (63)
P— 1B Ry) B ’
7IUH T Vl/JVU
The convective derivative terms are written as
v\ 1 z\? B ?
S 14+ 2_ (=, 2
V(2> 2V{< +RO> |VU]| <B VU) + i ¢, (65)
o[l (1e 2 TeTU o NI
VX(VXV)—{V[BU| <1+R0> 5 :|><vg0} [va—l-(l—i-Ro) BVU]V@
AN EAEDN il
+R2{BA w+<1+RO) =4 U+V(B) Vi)
z\ I ) x\ I
1+ =—)=1. A 14 ) =
() 5] v} 5o (0 5) 597
1 I z\ V- vU7?
The function U is expanded as
U=U,+Uzx+...

In the leading order, the flow velocity v is written in the standard representation for incompressible flow
v = Ro(VU1 x Vo + v Vo) (67)

The leading order of the p-component of Ohm’s law (4) yields

Ur =Ui(¢), (68)
and its next order is
Ro({Uz, 1} +{Us, ¥5}) =0, (69)
which yields
Uz = Uphy = Ua (¥1) (70)
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where the prime denotes the derivative with respect to ;. The lowest order of V - v is obtained from
the projection of Faraday’s law (2) along B as

V~V~{v|+2xU{,z/J1}. (71)
By

The second second term in the bracket of Eq. (71) represents the compressibility of the perpendicular
(E x B) flow v due to toroidicity, that may give rise to the geodesic acoustic mode (GAM) [16],

V.v, =B *ExB) VB~ (72)

The leading order of the pressure equation (60) is

RoUi{p1, ¥1} =0 (73)
which yields
p1 = p1(¢Y1), (74)
and the next order is
Ro({p2, Ur} + {p1,U2}) = —yp1(V - v). (75)

Substituting Eq. (71) into Eq. (75), one obtains the equation for the second order pressure,

P2 = Piy +p1 <BO;%LU{ + 2) = pas (V1) (76)
Analogously, the continuity equation (1) gives the equations for the zeroth- and first-order density,
no = no(¥1), (77)
, nov|| 2¢
ny = ngy + BoRoU. + R0 = M (1) (78)
The first order of Eq. (12) is
{minoBoRovy, Ui} + {p2, Y1} + {p1, ¥} =0 (79)
which yields the equation for v,
BoRominoUyv| + p2 — p1e = p3« (1), (80)

which is the Bernoulli law in the present system. Equations (76), (78) and (80) indicate the coupling of
|, p2 and ny due to the slow magnetosonic wave which is lost in the cold (p; — 0) or incompressible
(v — o00) limits, and yield

(22/Ro)yp1 — (P2s — P3+)

v == Mapva, (81)
” (81— M3,)(B}/ug) "
(2¢/Ro) M3 ypr M3, p2« — B1D3+
P2 = piy + — — — = > (82)
ﬂl - MAp /81 - MAp
(2$/R0)M3p D2+« — P3x

n1 = ngy + ny + (83)

ng — Pos
61_Mip (ﬂl_M%p)(Bg/MO) 0
where 3; = yp1/(B2/1o) and Ma, (V1) = v,/Vap = (pgming)/?RoU] is the poloidal Alfvén Mach
number. The singularity appears when (5, = Mip, i.e. when the poloidal flow velocity equals to the

poloidal sound velocity. The first and second orders of Eq. (11) are

|V¢1|2 Aothy + 2pgRoxVpy - Vpy + L1V, - VI 4 g RV, - Vpa + BoRo Vi, - VIy =0, (84)
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and

10
|V1/11|2 <A2¢2 B Rt;[}Rl) +2(Vipy - Vo) Agthy + pgz®Vipy - Vpr + Vipy - V (112/2)

+ Vtby - V (uoRp2 + BoRols) + 2pgRox (Viby - Vipr + Viby - Vo)
+ Vi, - V (1o R3ps + RoBols + 1 I5) — pigmingR3 (Veby - VU) AsUy

+ pgming B2V, - V (|VU1|2/2) —0. (85)

The first order of Eq. (13) yields

I = g, (¢1), (86)
and the second order yields

Bols I
T
tollo ol

2 2M3
X 1
po + (s — i) + mangu? V1L +(R0) AP g, =B (). (8)

2 61 Mf&p

Substituting Egs. (86) and (87) into Eqgs. (84) and (85), we obtain the expanded GS equation in the
presence of poloidal-sonic flow,

2\’
Aoty = —poRG (R PL+g ) (21) ) (88)
27 2\"
Aoty + | RS | 5P+ )+ (=) | 2
Ro 2
19y, [V, |° '
= R OR +MApA2w1 9 (Mip)
2 20902 vp1 \| 21 (M2 pos — Bypse )
— R E;+<I) ’+<I) STAp L) 2 TApTee AT ) 89
:LLO 0 RO pl RO /31 Mip RO /31 . Mip ( )

The equation for ¥, (88) is same as for the static case while the equation for 1, (89) is modified by the
flow and has the singularity. In the cylindrical limit /Ry — 0, the singularity can be removed when

P2 = D3« = fo (V1) 1 (V1) o (1) = fu (1) po (¥1)

and

fe (W) = f U (¢1)] and  fo[Up =0] =0.

Then, the equations for v, p2, p; and 1, are rewritten as

B1MApUA
v = — 5 90
(f« —2x/Ro) M3, — f.f3
— o P , 91
Piy RS VN p1 (91)
(f* _2$/R0) ME& _f*/Bl
— Sl — p , 92
p1 = Po¥2 ﬁl_Mip Po (92)
2z, p 2\"
Nothy + | poRG <RP1/ Jrg*) + <21> ] (D)
0
1 37701 ‘V¢1|2 !
~ £ R + M3, A0, + 5 (M3,)
R E,+<x>2 2y )/+<m>2 205,701\ (93)
Hoitp * Ro D1 Ry * YD1 o 3, = fop .
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Comparing with the analysis of the transonic flow for low-08 tokamaks [13, 17], the singularity at the
poloidal flow velocity equal to poloidal sound velocity in the density and pressure and its dependence on
toroidicity have been reproduced as higher-order effects and the singularity in the higher order magnetic
structure has been found in the present study. However, in order to reproduce the radial discontinuity
of the density and the pressure found in the low-§ analysis [13], a local analysis in the vicinity of
the singularity where 3, — Mflp ~ EMip may be necessary. Finally, we note that the hyperbolic region
between the cusp velocity and the poloidal velocity of the slow magnetosonic wave pointed out in Ref. [18]
degenerates to the singularity in our present ordering, because the difference between its upper and lower
bounds becomes of higher order.

V. SUMMARY

We have derived the equations for high-3 axisymmetric equilibria with flow comparable to the poloidal
Alfvén velocity in the reduced two-fluid model with FLR and flow comparable to the poloidal sound
velocity in the single-fluid model, by using asymptotic expansions in terms of the inverse aspect ratio.
We have shown that the Alfvén singularity singularity is shifted by the gyroviscous cancellation. The
singularity at the poloidal flow velocity equal to the poloidal sound velocity in the density and pressure
and its dependence on toroidicity have been reproduced by our higher-order terms and the singularity
in the higher-order magnetic structure has been found. The reduced single-fluid equations for equilibria
with poloidal-sonic flow include higher-order quantities and hence can describe finite-aspect-ratio tokamak
equilibria. The resulting equations can be easily solved numerically to yield flowing equilibria without
singularity and their solutions can be used as initial states or for comparison with saturated states of
reduced model nonlinear simulations.
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A model of interaction between magnetic island and drift wave turbulence
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A modified Rutherford equation of magnetic island is introduced. The island equation includes
multi-scale interaction with drift wave turbulence and is coupled with turbulent wave energy equa-
tion. In this model, drift wave turbulence is prey and magnetic island corresponds to predator. The
magnetic island suppresses the growth of turbulence by flattening temperature gradient because of
the violation of magnetic surfaces. On the other hand, the turbulence affects perturbed neoclassical
bootstrap current in the Rutherford equation through anomalous transport. In these interactions
heat flux is fixed, and thus perpendicular thermal diffusion coefficient depends on the turbulence
energy and the island width. A stabilizing effect of the turbulence on magnetic island growth is
found and new critical island width of neo-classical tearing mode excitation is obtained.

PACS numbers:

I. INTRODUCTION

Recently, multi-scale interaction between micro-
turbulence and macro-scale magnetohydrodynamic
(MHD) instability has been studied extensively [1-3].
The interaction would play crucial role in the analysis
of neoclassical tearing mode (NTM), which limits the
beta of tokamak plasmas[4, 5]. The NTM is driven by
perturbed neoclassical bootstrap current density inside
the separatrix of magnetic island, and it is unstable in
high beta tokamak plasma, even if the current density
profile is linearly stable against tearing mode. Thus,
NTM is a nonlinear instability and it starts to grow when
the width of island caused by an external perturbation
exceeds a threshold.

The excitation mechanism of NTM is an open prob-
lem that is divided into two parts: the threshold and
the trigger. The threshold which is called critical island
width is evaluated as follows. When magnetic island ap-
pears the pressure gradient is reduced inside the island
because of strong heat conductivity along magnetic field.
This flattening of pressure gradient reduces neoclassical
bootstrap current inside the magnetic island and destabi-
lizes the magnetic island. When the island width is very
small the flattening is not completed because it is not
able to overcome perpendicular transport. Hence, com-
petition between parallel and perpendicular heat trans-
port determines critical island width [6]. The critical
island width is also affected by the polarization current
[7, 8]. On the other hand, the trigger problem is the
process of producing the seed magnetic island caused by
external phenomena. Once the width of seed island ex-
ceeds the critical island width, then the island grows as
NTM. The external phenomena can be MHD modes of
different helicities such as sawteeth and edge localized

*Electronic address: ishizawa@nifs.ac.jp
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modes and induce the seed island through toroidal mode
coupling [9, 10]. The external phenomena can also be
micro-turbulence because the turbulence is able to pro-
duce seed island through nonlinear mode coupling [11].

The anomalous perpendicular transport due to drift
wave turbulence should play crucial role in evaluating
critical island width. In addition, magnetic island affects
the turbulence simultaneously. We need a model which
describes these mutual interaction between them. In this
paper, we propose a simple model of interaction between
drift wave turbulence and magnetic island. The point
of our model is that we fix heat flux instead of thermal
diffusivity coefficient when we evaluate temperature gra-
dient. Then we introduce effects of drift wave turbulence
on thermal diffusivity and introduce effect of magnetic is-
land which reduces the growth of turbulence by flattening
temperature gradient inside the island.

We present our model of interaction between magnetic
island and the turbulence in Sec. 2. In Sec. 3 we evalu-
ate critical island width by using the model. Finally we
summarize results in Sec. 4.

II. MODEL OF INTERACTION BETWEEN
MAGNETIC ISLAND AND DRIFT WAVE
TURBULENCE

We present magnetic island equation which couples
with drift wave turbulence energy equation. The modi-
fied Rutherford equation of magnetic island evolution is

[4]
Lyrs
Bo’w

TR dw '
ROT _ . A
re dt s +

0JBs, (1)

where w, rs, Bg, Tr, and L, are island width, minor ra-
dius of resonant surface, uniform toroidal magnetic field,
resistive diffusion time, and magnetic shear length, re-
spectively. In this equation A’ is the stability parameter
of tearing mode and is negative so that it is stable against



tearing mode. We remark that the island width is related
to perturbed magnetic field as 6B = kyBow?/Ls. Here
we assume that density profile is uniform ng, then the
perturbed bootstrap current is

1/2 dT

52, (2)
Bg dr

where €, T,, and By are aspect ratio, electron tempera-

ture, and poloidal magnetic field, respectively. When we
calculate temperature gradient

dl. _ Q.
= 3)

0Jps =

we fix heat flux )., and thus perpendicular heat diffusiv-
ity x . is variable. The heat diffusivity coeflicient consists
of diffusion due to perturbed magnetic field in the pres-
ence of magnetic island x ;siand, anomalous transport by
drift wave turbulence X w5, and neoclassical transport
X Lneo aS,

XL = XLturb + X Lisland + Xneos (4)
= XJ_turb(E) = Xo&'(UJ), (5)

where X i4rp i assumed to be proportional to turbu-
lence energy ¢, x| is parallel thermal diffusivity, and kg
is poloidal wave number. Then Eq. (3) is rewritten as,
T, —Q.
dr X()E(U)) + X|| (w2k0/Ls)2 + Xneo '

X Lturb

X Lisland

(7)

By using Egs. (7) and (2) the island equation (1) is

written as,
dw < fe o~ 1 1
- = AI + _Ae e ( ~ - ~ ~ ~
di OO+ tew (@) + 07/ + e
Y (1- 20 ) 3,
0 £(0) + Xneo Wt + Wi (e(D) + Xneo)

where ¥ (¢(@)) = (). Normalizations are W = w/rs,
tA: t/TR; XH = 2(||/X0; Xneo —AXneo/XO: 1 = kGTSA/LS;
Ls = Ls/LT07 BG = -BAO/BO: Qe = QeLTO/TeX07 ﬂe =
ﬂeel/zﬁs/BG; Wq = ()Zﬂki)il/éi

In order to close interaction loop between magnetic
island and the turbulence we need equation of turbulence
wave energy[12]

de

X (10)

= (e, we — fe?,

where

1 1
- . (11
LTc*r') >0 ( )

where (f)so is zero if f is negative. In this equation we
include feedback from magnetic island to the turbulence.

v(e,w) = YLro (LT(E )
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The strong parallel thermal diffusion flattens pressure
gradient inside the separatrix of the island. This reduces
growth rate v by increasing length scale of temperature
gradient

~

_ . _-ld. _ 1 Qe
Lr(s,w) T, dr

NN L EE—])
Lyo W +wd(5(w)+xneo)

When we calculate the temperature gradient we fix heat
flux again. By substituting this equation to Eq. (11) we
have equation of turbulence energy including the effect
of magnetic island as,

1 de
TR0 df

) - )

_ Qe 1
uAj4 + uA)zli (E(w) + Xneo) LTcr

where Lo, = Lyer /L1o and B = /v. Hence, we have
obtained a closed set of equations of magnetic island and
the turbulence Eqgs. (9) and (13).

III. CRITICAL ISLAND WIDTH OF NTM

We have established a model which is able to eval-
uate critical island width of NTM. We consider a situa-
tion that the turbulence saturates because drift frequency
time, which is characteristic time scale of drift wave tur-
bulence, is much faster than the resistive diffusion time
TRy >> 1, where 79 & wi. Thus, we neglect left hand

side of Eq. (13) and have the equation of turbulence
energy as,
-1 1 N R -
e(w) = ——+ = (—F(w) + 1/ F(w)? + 4Qe/ﬂ) , (14)
BLC’I" 2

where F(0) = @* /W4 + Xneo —
e(w) into Eq.
model.

BLL Substituting this
(9) we have the island equation of our

We show curves of island growth di/dt calculated by
our model and by the standard model
L be 7“72 (15)
i W W2 + w2

in Fig. 1. Here we set parameters_ A= -1, B, = 0.2,
Xneo—O]- Qe —2 X||kL = 107ﬂ_06 a‘ndLTCT‘:
0.5. The critical 1sland width wepiticar /7s 1S given by
di/dt = 0. The critical island width of our model is
larger than the standard model. Thus, the turbulence has
a stabilizing effect on the excitation of NTM. Notice that
we cannot apply our model to evaluate saturated island
width because a large magnetic island strongly reduces
turbulence energy and makes it negative in our model.
For the above parameter set the turbulence energy ¢ is
positive when w/r; < 0.00548. Figure 2 shows curves of
parallel diffusion coefficient x| as a function of critical

island width. Our model implies Weriticar/Ts X x” -1/3 ,
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FIG. 1: Curves of island growth di/di as a function of island
width w/rs. Solid curve indicates our model and dashed curve
indicates standard model.
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FIG. 2: Curves of parallel diffusion coefficient x, as a function
of critical island width. Solid curve indicates our model and
dashed curve indicates standard model.

while the standard model implies Weritical /Ts X Xﬁlﬂ-

Figure 3 shows curves of plasma beta . as a function of
critical island width. Our model implies wepiticar /Ts

Be_ Y 3, while the standard model implies Weriticar/Ts X
B!, and thus our model suggests weak dependence of

Weritical ON Be compared to the standard model.

IV. SUMMARY AND DISCUSSION

We have obtained a predator-prey model of interaction
between magnetic island and drift wave turbulence. The
turbulence affects perturbed bootstrap current in the is-
land equation of NTM through anomalous perpendicular
transport. When we evaluate bootstrap current we fix

0.8 — T T T
06 - Critical island width
= :ritical-islqand width by standard model
A 04 F %,
% 02 |
3, 02+
3
5 -04
3
1 —06 B \\\
-0.8
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-5.5 -5 -4.5 -4 -3.5 -3 -2.5
Log10(Weritical/T's)

FIG. 3: Curves of plasma beta 8. as a function of critical
island width. Solid curve indicates our model and dashed
curve indicates standard model.

heat flux and make heat diffusivity depend on the turbu-
lence and the island width. In order to close interaction
loop between the magnetic island and the turbulence we
introduce turbulence wave energy equation including ef-
fect of magnetic island. The magnetic island makes tem-
perature gradient flatten inside it and reduces growth
rate of the turbulence.

Our model predicts larger critical island width than
the one by standard model. This implies that the drift
wave turbulence has stabilizing effect on magnetic island
excitation of NTM. In addition we found new g, scaling
of the critical island width of NTM wepiticar /Ts X Be_ /3,
In order to compare our model with experimental obser-
vation we would include the polarization current effect in
our future work.
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Abstract

Improvement of linear stability due to the nonlinear saturation of interchange modes in
the increase of the beta value is studied for the inward-shifted LHD plasma. For this study,
a multi-scale numerical scheme is utilized. In this scheme, the beta value is increased by
adding small pressure increment to the background pressure. We focus on the dependence
of the Mercier stability on the profiles of the pressure increment. It is obtained that the
pressure profile approaches to the marginally stable profile when fixed profiles are employed

for the pressure increment.

1. Introduction

In the LHD experiments, good confinement of the plasma has been observed in the mag-
netic configuration with the vacuum magnetic axis located R,, = 3.6m[1]. However, linear
ideal interchange modes or Mercier modes were predicted to be unstable in this configuration.
In order to investigate the stabilizing mechanism of the modes, we developed a nonlinear
MHD code, NORM, based on the reduced MHD equations[2, 3]. In such investigation, it
is crucial to follow the continuous change of the pressure profile in the increase of the beta
value. For this purpose, we have also developed a multi-scale simulation scheme[4] by uti-
lizing the NORM code and the VMEC code[5]. This scheme treats both the equilibrium
change in the long time scale and the nonlinear dynamics of the instability in the short time
scale simultaneously.

In the multi-scale scheme, the beta value is increased by adding a small increment of
pressure to the background pressure obtained as the results of the nonlinear dynamics. In
this case, there is a freedom in the determination of the profile of the pressure increment. One
choice for the profile is to use the shape similar to the background pressure profile obtained
by the nonlinear evolution. In the original study[4], we applied this pressure increment to
the study in the inward shifted configuration of LHD. We found a self-organization of the
pressure profile which indicated a stable path to high beta regime.

On the other hand, the profiles of the heat deposition and the particle supply in experi-
ments are usually fixed in the increase of beta. In order to take this situation into account,
we consider to use a fixed profile for the increment of the pressure in the present study.
We employ two types of increment profile and compare the results with that of the similar
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increment profile. Particularly, we focus on how the Mercier stability is improved by the
self-organization of the pressure profile due to the nonlinear saturation of the interchange
mode.

2. Multi-scale scheme with fixed pressure increment

The multi-scale scheme used in the present analysis is explained in Ref.[4] precisely. Here
we start from a brief review of the multi-scale scheme, and then, explain the choice of the
pressure increment profile and the conditions in the calculation.

The scheme consists of iterative calculations of nonlinear dynamics of the perturbations
by the NORM code and three-dimensional equilibrium by the VMEC code. In this case, we
divide the whole calculation time into short time intervals. At ¢ = t*, the beginning of an
interval, we calculate new equilibrium quantities at the higher beta value with the VMEC
code as the values of t = t'*1, the beginning of the next interval. In order to keep a smooth
continuity of the perturbation, we also divide the interval between t* and t**! into some
sub-intervals and employ a linear interpolation of the equilibrium quantities by using the
equilibrium quantities of ¢ = ¢* and #'*!. Then, the nonlinear dynamics is calculated for each
sub-interval with the interpolated equilibrium quantities with the NORM code.

When we calculate the equilibrium with the VMEC code, we incorporate the pressure
deformation due to the nonlinear dynamics into the pressure profile. At t = t¢, the total
pressure is obtained as

Ptiot: <P>Z+ Z Pmna (1)
m#Qorn#0

where the tilde means a perturbed quantity and m and n are the poloidal and the toroidal
mode numbers. Here (P)* denotes the average pressure which is given by

(P)' = Pl + Py, (2)

The average pressure includes the effect of the nonlinear dynamics through Pi,. We calculate
1 , .
P, by using (P)* as » | .
P, =(P) + AP, (3)
Here AP™*! denotes the increment of the pressure, which gives the increase of beta. In the
original study[4], we employed a similar increment profile given by

_ pitl _ pi
AP = <P)’7B , g ) (4)
51
In the present study, we also consider two kinds of fixed profile for the increment given by
AP = Pi(1— g?)(1 - ) (5)
and
APHI — P](l _ P2)2, (6)

where p denotes the square-root of normalized toroidal magnetic flux. The factor P; is
adjusted so as to give a given beta increment. Hereafter, we call the increments given by (4)-

(6) ‘similar increment’, ‘parabolic increment’ and ‘parabola-squared increment’, respectively.
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resonant surface.

We apply the scheme to the LHD plasma for the three types of pressure increment under
following numerical conditions. We choose the configuration with the vacuum magnetic axis
located at R,, = 3.6m. We assume the resistivity of S = 10° where S is the magnetic
Reynolds number. We examine the evolution for 0.221% < (/) < 0.498%. One time interval
is 250074, where 74 is Alfvén time. We increase the beta value by A(5) = 0.0138% every
time interval. In the equilibrium calculation with the VMEC code, we use the free boundary
condition and the no net-current condition. The time interval is divided into 10 sub-intervals
for the linear interpolation.

To give the initial state, we start from the equilibrium for P, = Py(1 — p?)(1 — p®) at
(B) = 0.221%. As is shown in Fig.1, the core region of p < 0.44 of this equilibrium is
Mercier unstable. The absolute value of D;[6] decreases in the p direction. We follow the
nonlinear evolution of the interchange mode for this equilibrium and obtain a saturation at
t = 1000074. We employ the saturated state as the initial state of the multi-scale calculation
and set ¢ = 1000074 as the initial time. Then, the beta value reaches () = 0.498% at
t = 6000074.

3. Self-organization of pressure profile

We follow the evolution of the plasma for the three types of increment profile and compare
the resultant pressure profile. Figure 2 shows the time evolution of the total kinetic energy
for the three pressure increments. It is common that the kinetic energy varies smoothly
compared with the time scale of sub-interval. This feature indicates the multi-scale approach
works well also in the fixed increment cases. The evolution of the parabolic increment case
is close to that of the similar increment case, while the evolution in the parabola-squared

increment case is a little more active.
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Fig.3 Time evolution of average pressure in the case of the parabolic increment.

Figure 3 shows the time evolution of the average pressure in the case of the parabolic
increment. As in the case of the similar increment case[4], weak excitation and mild sat-
uration of the interchange modes occur. The saturation generates locally flat structure at
the resonant surfaces in the average pressure profile. Since the Mercier quantity Dy is a de-
creasing function of p as shown in Fig.1, the flat region is generated from inward to outward
of the plasma as the beta increases. Similar tendency is observed in the parabola-squared

increment case.

Fig.4 Bird’s-eye view of total pressure at t=6000074 for similar increment (left), parabolic

increment (center) and parabola-squared increment (right).

Figure 4 shows the bird’s-eye view of the total pressure at the final time of ¢ = 600007 4.
The deformation of the total pressure is almost # independent for all increment cases. This
implies that almost all of the resonant interchange modes are saturated in a low level without
any significant excitation. In other words, in each increment profile, the total plasma pressure
evolves so that fluctuations are suppressed in the increase of beta.

Remarkable difference between the three increment profiles is seen in the average pressure
profile at the final state. Figure 5 shows the profile of the average pressure at ¢ = 6000074. In
the similar increment case, a global flat structure is generated in the core region of p < 0.4.
In the parabolic increment case, the gradient of the pressure is recovered in the core region.
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In the parabola-squared increment case, the gradient becomes larger. These differences are
attributed to the gradient of the increment profile. In any case of the increment, the pressure
profile is flattened in the core region once at low beta because (m,n)=(5,2) and (7,3) modes
are saturated in the region. In the similar increment case, the average pressure is increased
so that the shape should be maintained. Therefore, the local flat structure generated at low
beta is kept even at high beta.

On the other hand, in the fixed increment cases, the gradient of the increment profile
is always added to the total pressure. Therefore, the local flat structure of the average
pressure tends to be smoothed out. Furthermore, the resonant mode can be excited again
at the flattened region when the local pressure gradient enhanced by the increment exceeds
a critical value. Since the driving force of the mode should be quite weak, it saturates
immediately to generate a narrower flat region in the average pressure profile. Thus, the
local pressure gradient approaches to the critical value through this process. The critical
value can be measured in terms of D; as explained in the next section.

In the parabolic increment case, the increment profile is the same as the equilibrium profile
used in the initial state generation. Therefore, this process is limited in the core region. On
the other hand, the more steep gradient is added in the parabola-squared increment case.
The region of the process extends to the outer region including the surfaces resonant with
the (5,3) and the (3,2) modes.

<P> <t> LO———— AP:similar
- ! ! ! 0.8 —— AP:parabolic
1.0 - i —— AP:parabola- |
410.7 squared
—— AP:similar . unstable
—— AP:parabolic A ________ | a
—— AP:parabola- 0.6 0.0
0.5- squared ]
S 0.5 3/5 2/3
| i 3/7 1/2 stable]
IR o.4
0- | | | | - 3 -1.0c '2/'5 R R R B
0 02 04 06 08 19 0 02 04 06 08 1
P P
Fig.5 Average pressure profiles at t = 600007 4. Fig.6 Profiles of Dy at t = 6000074.

4. Mercier stability improvement

The global feature of the D; profile is common in all cases of the increment. Figure
1 (red line) shows the D; profile for the equilibrium with the pressure profile of P,, =
Py(1 — p*)(1 — p®) at (B) = 0.444%. In this case, the wide region of p < 0.60 is Mercier
unstable. On the other hand, D; has negative values around the resonant surfaces as shown
in Fig.6, which shows the D; profiles at t = 6000074 ((8) = 0.498%) for the three cases of the
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pressure increment. This comparison shows that the nonlinear saturation of the interchange
mode stabilizes itself through the local pressure flattening.

The difference in the structure of the pressure profile is reflected to the precise structure
of D; profile. In the similar increment case, the improved values of D; are -1.05, -0.49 and
-0.21 at resonant surfaces with ¢ = 2/5, 3/7 and 1/2. There is a tendency that the absolute
value is a decreasing function of p,, where p, is the position of the resonant surfaces. This
tendency is related to the Mercier stability at the initial equilibrium. The profile of D; at
(B) = 0.221% implies that the driving force of the interchange mode is also the decreasing
function of p. Therefore, the local deformation at inner resonant surface is larger than that
at outer surface. Since such structure is almost maintained during the beta increase, the
resonant surface is more stabilized beyond the marginal stability.

On the contrary, the absolute value of D; is limited in the level of -0.32 in the parabolic
increment case. In this case, even once the pressure profile is locally flattened, the enhance-
ment of the gradient of the pressure degrades the Mercier stability. Therefore, the value of
Dy approaches to a marginal value in the increase of beta. This tendency is the same as in
the case of the parabola-squared increment. In this case, the local improvement is observed
also around the surfaces of + = 3/5 and 2/3. Including these surfaces, the absolute value of
Dy is limited in the level of -0.29. The enhancement of the pressure gradient brought by the
parabola-squared increment is larger than that by the parabolic increment case. Neverthe-
less, the maximum value of Dy is in the similar level of D; ~ —0.3. This result indicates that
this value of D; corresponds to the marginal pressure gradient independent of the increment
profile, if a fixed increment profile is employed. It can be concluded that the local pressure
gradient is determined in the increase of beta so that D; at the resonant surface should
achieve to the marginal value.

5. Conclusions

The local improvement of the Mercier stability in the nonlinear evolution of the inter-
change mode is studied in the inward-shifted LHD plasma. The beta increase effect is incor-
porated by employing the multi-scale numerical scheme. The plasma is Mercier unstable in
a wide region if there is no deformation of the pressure profile. However, the nonlinear sat-
uration of the interchange mode locally improves the Mercier stability around the resonant
surface through the generation of the local flat structure in the pressure profile.

The absolute value of D; in the stabilized region depends on the pressure increment
profile. If we use the similar increment profile, the absolute value of negative D; becomes
much larger in the vicinity of the axis than that in the outer region. This is attributed
to that the locally flat structure in the pressure profile is maintained in the beta increase.
On the other hand, if we use a parabolic increment profile, the reduction of the pressure
gradient is compensated by the increment pressure. Therefore, the absolute values of Dj
at all resonant surfaces are in a small level. In the case of the parabola-squared increment
profile, the improvement of the Mercier stability extends to the outer rational surfaces. Even
in this case, the absolute values of D; are also limited in a small level including the outer
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rational surfaces. The level is almost the same as that in the parabolic increment case. These
results indicates that the enhancement and the reduction of the pressure gradient is balanced
so as to give a critical pressure gradient. The former is due to adding the increment pressure
and the latter is due to the nonlinear saturation of the mode. In other words, in the case of
the fixed profile of the pressure increment, the plasma is self-organized so that the pressure
profile approaches to the marginally stable profile at the resonant surfaces with respect to
the Mercier stability.

As a future plan, we consider to include an effect of the equilibrium diffusion. In this
case, we can expect that the positive D; values in the regions between the resonant surfaces
also approach to marginal value.
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Magnetic Island Evolution by an External Perturbation in Rotating Plasmas

Y.Ishii and A.Smolyakov*
Japan Atomic Energy Agency
(Dated: May 28, 2008)

The Alfven resonance effects on the magnetic island evolution driven by the externally applied
perturbation are investigated for the rotating plasmas. The simulation results show the importance
of the Alfven resonance for a perturbed current profile and to estimate a critical value of the exter-
nal perturbation, beyond which the magnetic island grows rapidly. The nonlinear evolution of the
externally driven magnetic island is also investigated. It is shown that the transition phase accom-
panying the secondary reconnection at the initial X-point in the driven magnetic island evolution
occurs in the low resistivity and viscosity plasma.

I. INTRODUCTION

In order to achieve the high performance tokamak plasma, there are several issues related to the magnetohydrody-
namics (MHD) activities to be resolved. The neoclassical tearing mode (NTM), which severely affects the performance
of the fusion reactor[1], is one of these issues. Hence, the suppression and control of the magnetic island is the urgent
subject in a tokamak fusion research. One of the mechanisms of magnetic island formation is the unstable tearing
modes driven by the gradient of the equilibrium current and/or by the pressure gradient. Another important mecha-
nism of the magnetic reconnection is the drive by externally applied perturbations such as the residual error fields in
the magnetic coils or due to MHD activities. The latter process is considered to be a possible candidate to form the
seed island for NTM, where the MHD event such as the sawtooth oscillation acts as the external perturbation for the
target mode through the toroidal mode coupling.

In tokamak plasmas, the plasma rotation is excited by the external momentum input like as the neutral beam
injection (NBI), the self organization of the plasma flow by the plasma turbulence and so on. The plasma rotation
affects the stability and the evolution process of MHD modes. Spontaneous and externally driven magnetic islands
are also affected by the plasma rotation. In this study, we focus on the effects of the plasma rotation on the externally
driven magnetic island. An externally driven magnetic island can be suppressed by a plasma rotation for external
perturbation amplitude lower than some threshold value, which has been extensively studied by earlier [2]. When an
external perturbation becomes larger than a critical value and the plasma rotation becomes low around the magnetic
neutral surface, where k - B = 0, a driven magnetic island begins to grow rapidly. For rotation damping around the
magnetic neutral surface, a perturbed current and the perturbed magnetic filed profiles are important. In the rotating
plasma, the perturbed current is formed around the Alfven resonance surface [3-5]. The radial position of the Alfven
resonance deviates from that of the magnetic neutral surface. Some theoretical works [6, 7] show the steady state
solution with and without the magnetic island including the Alfven resonance effect. However, a dynamical process
by which the Alfven resonance current causes a driven magnetic island has not been studied. Hence, it is important
to study the process by which the perturbed current sheet formed at the Alfven resonance surface drives the magnetic
island evolution. The former theoretical studies are based on the asymptotic matching method; which divides the
plasma region in two regions, one is the inner non-ideal region and the other one is the outer ideal region. Hence,
these theoretical works can be applied only for a small magnetic island compared with the inner layer width. Another
important assumption is the steady state, % = 0. About the importance of the non-steady state on the rapid onset
condition of the externally driven magnetic island is already reported [8]. In this study, we will investigate the Alfven
resonance effects on the driven magnetic island formation in the rotating plasma.

In addition, the long term behavior of a driven magnetic island is important for the magnetically confined plasma
performance. Some important features of this long term evolution of an externally driven magnetic island are already
reported [8]. One of these is the appearance of the transition phase, which becomes more clear and long as the
resistivity becomes low[8]. In this study, we will investigate the viscosity effects on the long term evolution of
the externally driven magnetic island. As shown in the previous work[8], a critical external magnetic perturbation
depends very weakly on the viscosity in the low one regime, v < 107%. On the other hand, in the high viscosity
regime, v > 1079, a critical external magnetic perturbation depends on the viscosity. Hence, in this study, we use the
parameter of v = 10~7 as a typical low viscosity and the parameter of » = 10~* as a typical high viscosity.

*Electronic address: ishii.yasutomo@jaea.go.jp
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II. BASIC EQUATIONS

In order to investigate the time evolution of the magnetic island caused by the externally applied magnetic flux
perturbation in a rotating plasma, the resistive reduced magnetohydrodynamics (MHD) equations are used in the
cylindrical geometry (r,60,¢ = z/Ry),

o 1 Bo 0
&‘I’—;[‘I’ﬁ]“‘R—O%(b*‘UJ—E (1)

o 1 1 BodJ

EU—;[U7¢]+;[‘1’7J]+R—O%ﬂLVVL(U—Uo) (2)

J=V3i¥, U=V?¢.
B =Bge, +e, x V¥,V =e, x V¢

Here, ¥ is the azimuthal (poloidal) magnetic flux function, ¢ is the flow potential, J is the plasma current, U is the
vorticity, By is the axial (toroidal) magnetic field at the magnetic axis, 27 Ry is the periodicity in the axial direction,
where Ry /a corresponds to the aspect ratio of a tokamak, which is set to 10 in the following simulations. The safety
factor q(r) in equilibrium is given by ¢P%(r) = rBy/Ro(d¥F%(r)/dr). n and v are the plasma resistivity and the
viscosity, respectively. Uy is the vorticity corresponding to the plasma poloidal rotation and the last term in eq.(2) is
added such that the plasma rotation is maintained in steady state. Also the operator V| expresses the differentiation
in the (r,6) coordinate. Parameters in these equations are normalized by the plasma minor radius a, the poloidal
Alfven time 7,, = \/pa/Bs(a), where the plasma mass density p has been set to 1. Then the resistivity 1 and the
viscosity v are normalized such that n = 7,,/7, and v = 7,,/7,, respectively, where 7, is the plasma skin time and
T, is the viscous diffusion time. In order to solve eqgs.(1) and (2), the finite differential method is used in the radial
discritization and the Fourier decomposition in the poloidal and toroidal directions. In this study, up to the 1600
radial grids and 20 harmonics are used. The time step is advanced by the predictor corrector time integration scheme
with typical time step of At =5 x 1075,

In the following, we consider the plasma with the q=2 resonant surface, which is stable against the tearing mode,
A" < 0, and we study the MHD modes with single helicity of m/n = 2/1 for simplicity, where (m,n) is the poloidal
and toroidal mode numbers. Also, we consider the rigid rotation of plasma in the following, which corresponds to the
stream function of @g/o(r) = (Voa/2a)r? and the vorticity of Uojo = 2Vya/a, where Vy, is the poloidal flow velocity
at the wall. In the following, we set Vy, = %, which correspond to the normalized plasma rotation frequency of
1072. The external magnetic perturbation ¥°** is added at the plasma surface as the linearly increasing poloidal flux

function, ¥,y (r = a) = ¥4 (t) = dq;im - (t — to). In this study, to is set to 10 in order to confirm numerically the
state is stationary without the external perturbation. Here, d‘ll’;u

is the increasing rate of the external perturbation.

III. CURRENT SHEET FORMED BY THE ALFVEN RESONANCE

The magnetic island is usually formed by a current sheet at the resonant surface (magnetic neutral surface), where
k - B = 0. When background rotation does not exist, a current sheet caused by externally applied perturbation is
formed at the magnetic neutral surface. When background rotation exists, however, such a current sheet is formed
at the both sides of the magnetic neutral surface. This difference of radial positions between a current sheet and a
magnetic neutral surface is originated from the Alfven resonance condition. The Alfven resonance condition for the
reduced MHD model is obtained from the linear ideal reduced MHD eqs..

%¢ = Boe, - Vé —vgo - V1LY (3)

o . ;
&v‘j + vgo - VV2 ¢ = Bpe.. - VV2 1 (4)

By assuming the form f = fexp{i(k - x —wt)} for ¢ and ¢, the Alfven resonance condition is obtained for w = 0.

(mQgos0)* = (k)| Bo)? (5)
Hence, in the case of the finite rotation, vgg # 0, the Alfven resonance condition is satisfied at the both sides of

the magnetic neutral surface, k) By = 0. Figure 1 shows radial profile of the perturbed current drawn along the line
through the maximum of the perturbed current around the magnetic neutral surface, where the safety factor ¢ = 2,
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obtained numerically for = 107% and v = 10~7. As shown in fig.1, when the rotation frequency is enough large,
there appear two positive peaks of a perturbed current at the both sides of the magnetic neutral surface and the
perturbed current becomes negative at the magnetic neutral surface. As the rotation frequency decreases, the radial
position of the current peaks approaches to the magnetic neutral surface. When the rotation frequency becomes low
enough, two positive peaks of the perturbed current are merged to become one. Figure 2 shows the 2D contour of
the perturbed current in the radial and the poloidal directions for Qgg/9 = 2.0 x 107%7, n =107 and v = 107" As
shown in fig.2, two pairs of the maximum and minimum of the perturbed current are formed in the poloidal direction,
because the safety factor at the magnetic neutral surface is ¢ = 2. The perturbed current forms the current sheet,
which cross the magnetic neutral surface with the angle less than 90 degree. This is because of the finite background
rotation. In the vicinity of the magnetic neutral surface, the perturbed current is very small. Figure 3 shows the
time evolution of the radial position of the Alfven resonance, which is estimated from eq.(5), and the maximum and
minimum of the perturbed current. As shown in the fig.3, the radial position of the Alfven resonance moves to the
magnetic neutral surface. This is because that the background flow is damped by the appearance of the magnetic
island, which operates torque on the plasma. As shown in fig.1, the peaks of the perturbed current approaches to
the magnetic neutral surface as the rotation frequency becomes small. In the rotating plasma, the magnetic island
driven by the externally applied perturbation grows slowly while the rotation frequency is enough larger. When the
rotation frequency becomes lower than a critical value, the driven magnetic island grows rapidly [2]. Hence, just
before the rapid onset of the magnetic island, the radial position of the Alfven resonance is almost the same position
of the magnetic neutral surface. At this time, two maximum and minimum peaks of the perturbed current become
one peaks. This is the first result showing how the current sheet by the Alfven resonance triggers the rapid onset of
the magnetic island.

In the former theoretical works, effects of the Alfven resonance are not taken into account and the perturbed current
is assumed to be localized at the magnetic neutral surface. Hence, the plasma region is divided into the external ideal
region and the inner non-ideal one. The distance between the radial position of the Alfven resonance current sheet
and the magnetic neutral surface depends on the magnetic shear and the rotation frequency. In the low collisionality
plasma, as shown in this section, there is a possibility that the width of the inner non-ideal region is small compared
with this distance. In such a case, hence, the Alfven resonance current sheet exists in the external ideal region. This
suggests that in order to derive the analytical formula of the driven magnetic island evolution in the rotating plasma
during the flow-suppressed growth phase, new analytical theory including the effects of the Alfven resonance current
sheet is needed.

IV. NONLINEAR EVOLUTION OF THE DRIVEN MAGNETIC ISLAND

Figure 3 shows the time evolution of the magnetic island width for the different 5 in the range of n = 5 x 107° ~
10~7. For all cases, the viscosity is ¥ = 1077, the plasma rotation frequency Q = 1072 and the flux input rate
dvert /dt = 1075, respectively. In the high resistivity case of n > 5 x 107, we can clearly identify the three phases in
the time evolution of the magnetic island width; that is, the flow-suppressed growth phase (phase A), the rapid growth
phase (phase B) and the Rutherford-like growth phase (phase C). In the flow-suppressed growth phase, which is from
t = 0 to t ~ 1600 for the n = 107 case in Fig.3, the growth of the magnetic island is well suppressed by the plasma
rotation and the width of magnetic island remains at relatively low level. The evolution of the island shows the clear
dependence on the resistivity in the same way as the onset condition, as described in the previous section. After the
width of magnetic island exceeds some critical value, the evolution of magnetic island enters the rapid growth phase.
These general features of the driven magnetic island evolution in the rotating plasma are almost the same as that
described in the previous theoretical and simulation studies [27 ]. The quite interesting point is that the spontaneous
growth rate of this phase is almost independent on the resistivity. In this sense, this phase resembles the bifurcation
process, which connects two steady states[2? ? ]. In our case, the flow suppressed and fully reconnected states are
characterized as quasi-steady states. The transition between these two states occurs via fast growth phase. After
this phase, the magnetic island enters the slow growth (Rutherford-like) phase, which corresponds from ¢ ~ 2500 for
the n = 1075 case. The dependence of island width on the resistivity in this phase is also very weak and the island
evolves as in the case without the plasma rotation.

In the lower resistivity regime, n < 1075, however, the rapid growth phase (phase B) is clearly divided into two
phases: the rapid growth phase (phase B-1), which is essentially the same as the phase B in the high resistivity
case, and the transition phase (phase B-2). In the newly found transition phase B-2, the spontaneous growth rate of
magnetic island width is reduced with n and also the evolution of magnetic island shows the small oscillation. The
resistivity effect is also clear in the Rutherford-like phase, where the magnetic island width is reduced with decreasing
71, though the increasing rate seems not to depend on 7.
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V. SUMMARY

In this study, we showed the Alfven resonance effects on the magnetic island evolution by an externally applied
perturbation in rotating plasma. In the low viscosity regime, a perturbed current sheet is formed at the Alfven
resonance surfaces, which are different from the radial position of the magnetic neutral surface. In this case, a
perturbed current sheet exists outside the inner non-ideal layer defined for the no rotating plasma. According to this
perturbed current sheet profile, the total torque, which affects the plasma, extends wider than the radial position of
the Alfven resonance. These features are inconsistent to the former theoretical assumption, which enables to use the
asymptotic matching method to estimate the force balance and the critical value of the external perturbation, beyond
which the driven magnetic island grows rapidly. In this study, we also showed a long term evolution process of a driven
magnetic island. In low resistivity and viscosity regime, there appears a transition phase between a rapid growth
phase and a Rutherford-like one. In a transition phase, the secondary magnetic reconnection occurs around the initial
X-point by a magnetic island deformation in the poloidal direction. This secondary magnetic island formation will
affect a driven magnetic island evolution through the redistribution of the bootstrap current around the magnetic
island.
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FIG. 1: Radial profile of the perturbed current formed around the magnetic neutral surface by the externally applied pertur-
bation. The resistivity 7 is 107 and the viscosity v is 1077. As the rotation frequency becomes high, the distance between the
magnetic neutral surface and the perturbed current peak becomes large.
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FIG. 2: 2-dimensional profile of the perturbed current obtanined for the rotation frequency €y,0 = 2.0 %7, the resistivity
n = 107° and the viscosity » = 1077. There appear two sets of the positive and negative current sheets in the poloidal
direction.
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FIG. 3: Time evolution of the radial position of the Alfven resonance and the maximum and minimum of the perturbed current
for the rotation frequency Qo0 = 2.0727, the resistivity n = 107° and the viscosity » = 1077. In the initial phase, the
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Up to now, theoretically idealized MHD equilibria reflecting experimental conditions have been used in
order to examine the ideal MHD stability. This approach has been useful from the aspect of investing general
properties of the ideal MHD stability. Since the properties of a three dimensional MHD equilibirium with large
Shafranov shift significantly change by the pressure profile, the current profile, and the boundary condition,
however, ideal MHD stability analysis based on theoretically idealized MHD equilibria is considered not to be
enough to investigate the proper MHD atbility of experimentally obtained MHD equilibria. Indeed, it is shown
that ideal MHD stability based on the realistic reconstructed MHD equilibrium with fine structureesedi
from that based on the theoretically idealized MHD equilibrium. Especially, it is firstly reported thanhigh-
ballooning modes are destabilized in the magnetic well region with tokamak-like magnetic shear.

Keywords: highn ballooning modes, LHD
DOI: 10.158%pfr.1.001

1 Introduction

In three-dimensional configurations, the confinement re-
gion is surrounded by the stochastic magnetic field lines
related to magnetic islands or separatrix, leading to the
fact that the plasma-vacuum boundary is not so definite
compared with tokamaks that the various modulations of
the plasma-vacuum boundary will be induced around the
stochastic region by synergetiffects between a transport
around the stochastic region and a large Shafranov shift of
the whole plasma or a large Pfirsch-Schluter current, in es-
pecially highg operations.

To examine such modulationffects of the plasma
boundary on MHD instabilities, high-plasmas allowing
a large Shafranov shift or a large Pfirsch-Schluter current
are considered in the inward-shifted LHD configurations
with the vacuum magnetic axi®,x of 3.6 m, so that it has
been found that the free boundary motion of MHD equi-
librium or the whole plasma outward-shift due to a large
Pfirsch-Schluter current has significant stabilizirtpets
on ideal MHD instabilities, leading to partially resolving
the discrepancy on MHD stability between experimental
results and theoretical analyses [1].

Although experimental aspects on the boundary, the
pressure profile, and the current condition are included in
the equilibria used in Ref.[1], such equilibria are still the-
oretically idealized judging from the experimental point of
view [2]. Thus, it is needed to use equilibria which are
more relevant to the experimental conditions, in order to
more clarify MHD stability in planar axis Heliotron con-
figuration with a large Shafranov shift like LHD. The pur-

author’s e-mail: nakajima.noriyoshi@nifs.ac.jp
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pose of the present research is to clarify MHD stability es-
pecially in IDB-SDC plasma or higi-plasma of LHD by
comparing between theoretically idealized MHD equilib-
ria and experimentally reconstructed MHD equilibria. For
such a purpose, especially, higtballooning local mode
stability analysis is performed, because such local mode
analysis does not need whole information of MHD equilib-
rium. The precise information of MHD equilibrium near
the plasma periphery is not needed, once the core MHD
equilibrium is consistently reconstructed to experimental
conditions. This research might lead to more deeper un-
derstanding of MHD equilibrium and stability in the planar
axis Heliotron configuration with a large Shafranov shift
like LHD.

2 intheoretically idealized MHD equi-

libria

In order to clarify dependence of the stability properties of
the ideal higha ballooning on MHD equilibrium, firstly,
high-n ballooning stability analyses are performed for the-
oretically idealized MHD equilibria in the inward-shifted
vacuum configuration witRax = 3.75 m.

2.1 in currentless MHD equilibria with peaked

pressure profile

The properties of currentless MHD equilibria with a
peaked pressure profil®(s) = Py(1%)?, under the fixed
boundary condition are shown in Fig.1, whesas the
normalized toroidal flux. A3 increases by usingpo,



tokamak-like magnetic shear is created near the magnetic qualitatively similar to those in fixed boundary equilibria,

axis. Although the magnetic hill still remains near the
plasma periphery, the Mercier stability in the magnetic
hill region is improved a3 increases. Boundary be-

tween magnetic well and hill exists in helical-like magg-

change of iota in free boundary equilibrium is more signif-
icant than that in fixed boundary equilibrium, and forma-
tion of magnetic islands is suggested in shearless region
judging from the spikes ob;. The spike comes from the

netic shear region. The corresponding normalized growth divergence of the Pfirsch-Sch”ulter current indicating ex-

rates of higha ballooning modes are shown in Fig.2. High-

istence of the magnetic island. The corresponding normal-

n ballooning modes are destabilized in the peripheral mag- ized growth rates of higin-ballooning modes are shown in

netic hill region with helical-like magnetic shear. Bsn-
creases, properties of the highsallooning modes change
from helical-like ones with strong magnetic field line de-

Fig.4. Most significant dferences between fixed boundary
equilibria and free boundary equilibria are that helical-like
ballooning modes destabilized in the magnetic hill region

pendence to tokamak-like ones with weak magnetic field with helical-like magnetic shear extend to the magnetic

line dependence. Helical-like high-ballooning modes
become unstable only near the magnetic field line with
a = (- gf = 0 where the local magnetic curvature is
baddest. On the other hand, tokamak-like higialloon-

ing modes become unstable independent of the magnetic *

field line, even in the magnetic field line with= 7/M (M
is the toroidal field period of the MHD equilibrium) where
the local magnetic curvature is locally good.
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Fig. 1 p-dependences of the rotational transform , magnetic well
and hill-V”, and Mercier criteriorD, with pressure pro-
file Pin currentless MHD equilibria with the peaked pres-
sure profile under the fixed boundary condition.
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Fig. 2 pB-dependence of the normalized growth rajes, for
three diferent plasma volumes. The most right column
corresponds to 1

In order to investigateféects of the boundary condi-
tion, the MHD equilibria are created under the free bound-
ary condition. In Fig.3, the properties of currentless MHD
equilibria under the free boundary condition is shown. Al-
though thes-dependences of the magnetic shear, magnetic
well, and Mercier stability in free boundary equilibria are
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well region with tokamak-like magnetic shear. Since bal-
looning formalism breaks near shearless region, the global
mode analysis migh be needed for precise stability.
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Fig. 3 p-dependences of the rotational transform , magnetic well
and hill-V”, and Mercier criteriorD, with pressure pro-
file Pin currentless MHD equilibria with the peaked pres-
sure profile under the free boundary condition.
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Fig. 4 p-dependence of the normalized growth rajeg, for
three diferent plasma volumes. The most right column
corresponds to 3

2.2 in currentless MHD equilibria with broad

pressure profile

In order to investigateféects of the pressure profile, the
currentless MHD equilibria are made with a broad pres-
sure profile;P(s) = Po(1 - s%)°. In Fig.5, the properties of
the currentless MHD equilibrium with the broad pressure
profile under the fixed boundary is shown. The steep pres-
sure gradient near the plasma periphery coming from the
broad pressure prifile makes magnetic hill region narrow.



The corresponding normalized growth rates are indicated

in Fig.6. As well as the MHD equilibria with peaked pres-
sure profile, higha ballooning modes are destabilized in
the peripheral magnetic hill region with helical-like mag-
netic shear. A® increases, properties of the highbal-
looning modes change from helical-like ones with strong
magnetic field line dependence to tokamak-like ones with
weak magnetic field line dependence.
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Fig. 5 B-dependences of the rotational transform , magnetic well
and hill-V", and Mercier criteriorD, with pressure pro-
file P in currentless MHD equilibria with the broad pres-
sure profile under the fixed boundary condition.
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Fig. 6 B-dependence of the normalized growth rajes, for
three diferent plasma volumes. The most right column
corresponds to 5

The dfacts of the free boundary are shown in Figs.7
and 8 for currentless MHD equilibria with a broad pressure
profile. The diterences between fixed boundary and free
boundary are same as the case of currentless MHD equi-
libria with peaked pressure profile.

3 inreconstructed MHD equilibria
In this section. the stability of high-ballooning modes is
investigated in the reconstructed MHD equilibria.

The Fig.9 denotes the properties of both the recon-
structed MHD equilibrium and the variations correspond-
ing to IDB-SDC plasma in the standard configuraion with
Rax = 3.75m. The corresponding normalized growth rates
are shown in Fig.10. The behaviors of all quantities of
equilibrium and stability are similar to those in the theoret-
ically idealized MHD equilibria.
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Fig. 7 p-dependences of the rotational transform , magnetic well
and hill-V”, and Mercier criteriorD, with pressure pro-
file P in currentless MHD equilibria with the broad pres-
sure profile under the free boundary condition.
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Fig. 8 B-dependence of the normalized growth rajeg for
three diferent plasma volumes. The most right column
corresponds to 7

The properties of the reconstructed MHD equilibrium
corresponding to IDB-SDC plasma in the outward-shifted
vacuum configuraion witiR,x = 3.85m are denoted in
the upper row of Fig.11. The corresponding normalized
growth rate is shown in the left column of FR. The
most significant feature of stability of the highballoon-
ing modes is that helical-like ballooning modes appear in
the both magnetic hill region with helical-like magnetic
shear and magnetic well region with tokamak-like mag-
netic shear. Moreover, high-n ballooning modes in the
magnetic well region with tokamak-like magnetic shear
are more tokamak-like ballooning modes than those in the
magnetic hill region with helical-like magnetic shear, be-
cause the magnetic field lines where the mode is unsta-
ble are wider in the magnetic well region with tokamak-
like magnetic shear than in the magnetic hill region with
helical-like magnetic shear. As is understood from the
pressure profile shown in upper row of Fig.11, the recon-
structed pressure profile has fine structures, namely, slight
stair-case like structures. Although those fine structures
are not so significant, it is considered that such fine struc-
ture changes the stability criterion of the higlpallooning
modes through the balance between stabilizatitetedue
to the local magnetic shear and destabilizatiffect due to
the local magnetic curvature. High-n ballooning modes in
the magnetic well region with tokamak-like shear might
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The upper (lower) row includes tltevariations of whole
(core) region.
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Fig. 10B8-dependence of the normalized growth rajeg, for
three diferent plasma volumes. The left (right) column
includes thes-variations of whole (core) region.

lead to core density collapse experimentally reported.
The properties of the reconstructed MHD equilib-
rium corresponding to higA-plasma in the inward-shifted
vacuum configuraion witlR,x = 3.60m are denoted in
the lower row of Fig.11. The corresponding normalized
growth rate is shown in the right column of F¥g. As well
as the above case of IDB-SDC, fine structures of the pres-
sure profile makes the significant change in the Mercier
criterion, leading to the non-monotonic change in the nor-
malized growth rate as os shown in the right column of
Fig.?2.

4 Summary

Up to now, theoretically idealized MHD equilibria reflect-
ing experimental conditions have been used in order to ex-
amine the ideal MHD stability. This approach has been
useful from the aspect of investing general properties of
the ideal MHD stability. As is well know, however, the
properties of a three dimensional MHD equilibirium with
large Shafranov shift significantly change by the pressure
profile, the current profile, and the boundary condition. In-
deed, high-n ballooning stability is completelyfidrent
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Fig. 118-dependences of the rotational transform , magnetic well
and hill -=v”, and Mercier criterionD, with pressure
profile P in reconstracted MHD equilibria. The upper
(lower) row corresponds to the reconstructed equilibrium
in the outward-shifted (inward-shifted) vacuum configu-
ration with R, = 3.85 (3.60) m.
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Fig. 12 8-dependence of the normalized growth rates,. The
left (right) column corresponds to the reconstructed equi-
librium in the outward-shifted (inward-shifted) vacuum
configuration withR,, = 3.85 (3.60) m.

between equilibria under fixed boundary and those under
free boundary. Although free boundary equilibria are more
stable than fixed boundary ones in the inward-shifted vac-
uum configuration witlR;x = 3.60m, free boundary equi-
libria are more unstable than fixed boundary ones in the
standard vacuum configuration wiRy, = 3.75m. More-
over, it is shown that ideal MHD stability based on the
realistic reconstructed MHD equilibrium with fine struc-
tures is diferent from that based on the theoretically ide-
alized MHD equilibrium. Especially, it is firstly shown
that highn ballooning modes are destabilized in the mag-
netic well region with tokamak-like magnetic shear, which
means that higim-ballooning stability is quite sensitive to
MHD equilibrium. Stability analyses based on idealized
MHD equilibria might not be enough to interpret experi-
mental results on MHD stability. More extensive stability
analyses based on reconstructed MHD equilibria will be
needed.
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