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Nonlinear Wave Propagations in Binary-Gas Mixture

Kazuyoshi Yoshimura

Mathematical Science and Information Technology Research Institute
4-11-10 Miyamae, Suginami, Tokyo 168-0081, Japan

Nonlinear wave propagations in binary-gas mixture in one-
dimensional half-space[0,0) are discussed, based on two Boltzmann

equations. The nonlinear integro-partial differential equations are
derived applying the reductive perturbation method to the three
conservation equations with relaxation terms and the equation of
state. Further, the Ginzburg-Landau equation for the gas densities is
derived using Fourier perturbed expansion from the nonlinear
integro-partial differential equations. Based on the Ginzburg-Landau
equation derived, the necessary conditions and the numerical
calculation results for the stationary propagating nonlinear waves in
binary-gas mixture are discussed.

Key word: Binary-Gas Mixture, Stationary Wave Propagation, Boltzmann Equation, Ginzburg-
Landau Equation, Reductive Perturbation Method, Fourier Perturbed expansion
method, Solitary wave

1. Introduction

In this paper, the propagation of disturbance in a binary gas-mixture is discussed based on
the fluid mechanics. The fluid mechanical equations for a binary gas-mixture where the
temperatures of both gases are equal are known [1]. The fluid mechanical equations for the
binary gas mixture in which the temperatures as well as the velocities, the densities, the
pressures and the stresses are not equal between the gas components have been obtained [2], [3].

Here the nonlinear wave propagation phenomena in binary-gas mixture are further studied
with theoretical and numerical standpoints. In section 2, the basic equations for binary-gas
mixture are presented. In section 3, the nonlinear integro-partial differential equation for a gas
density is derived applying the reductive perturbation method to the basic equations. In section 4,
in order to theoretically analyze the equations derived, the Fourier expansion method is applied
to them. Then the equation derived finally is the Ginzburg-Landau (GL) equation for the gas
density. In section 5, based on the known solution [4] of the GL equations the necessary

conditions for stationary propagating waves in binary gas-mixture are discussed. In section 6,



the stationary wave propagation by the local disturbance is numerically investigated based on

the GL equations under the condition discussed in section 5.

2. Basic Equations

One dimensional fluid motion of binary-gas mixture may be described by the following basic

equations based on the Boltzmann equations [2]:

on® Ayl

+ =0. 2.1
ot ox @D
() () (0) o '
) ov L) v n p) _ 77(”)(\/(") _ v(l)): 0. (2.2)
ot ox ox

3ky o o oT") aq" v G () 0y O O
n' +y! - + py =k A\TY =TV )+ MYV’ (WY —yW .
2 (ar ax ) o T e ol Jr )

(2.3)
Equations (2.1), (2.2) and (2.3) are the continuity equation for gas moleculei (i=1 or 2,1 # j),
the motion equation for the gas molecules and the energy conservation equation, respectively;
n' denotes the density of gas molecule i, v the average velocity of gas molecule i, m" the
mass of gas molecule i, pl(’i) the momentum and q(i)heat flux are described as follows [1],

i i i a"(i) i i aT(i)
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where the coefficients ,u‘(,i) and A¥ are the proportional constants of the velocity gradient and
the heat gradient respectively. k, Boltzmann constant, 7 @) the temperature of gas molecule i,
MY :m(j)/mo, m, =m +m\)

The velocity dissipation n(ij) and the heat dissipation x'") between the different gas components

are expressed as follows,
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where k'7is written as
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b, )((ij) and g=‘c(‘f )—c(i)‘ are respectively the impact parameter, the deflection angle and the

relative velocity between i—and j —component molecules. ¢ denotes the velocity of gas

(&)

(o3

denotes the total cross-section of the collision for different component gases.

(&)

(o2

molecule i. S

The total collision cross-section S,”’ may be estimated by the interactive potential energy

U = K, / rt—x, / r? where k., k, are respectively the potential coefficients of the repulsive

and attractive forces [5]. The interactive potential energies U @ U@ between same

components gases also exist.

2.1 Total Collision Cross-section
The deflection angle ;((ij) is obtained by the orbit integration, that is,
" \/(rz/b)2 (1 - U(U)/E(l))— r

Where the total energy E @ of a molecule is ug’ / 2 andr,, is the most neighboring distance

(2.8)

between two molecules. ,u=m(i)m(j) /mo is the effective mass of binary gas and g is the

relative velocity expressed by the average of thermal velocity and the relative velocity as

follows[6],
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Putting Y = b/, then the range lrme of r integration are transformed into [yo ao] of Y

integration. Furthermore, we introduce a variableu for simplifying of integrations as follows,

U=4/1- 2a0‘y2/1/2 i, using parameter as follows ¢, =2k, /,ngb4 , By =2k, /,ugzb2 ,
2= \/(l_ﬂo)2 +4a, +1- 4, v? = \/(l_ﬁo)2 +4a, _(1_ﬂo)= (2.10)

and ko2 =V2/ (/12+V2), where the ending point Yy, of the y integration is transformed to

u, :\/1—2ao(yg / Vz) of the u integration. The distance r between two molecule centers

become most neighbor r,, when the differential distance to the angle ¢ = (7z - ;((ij))/ 2 between



the direction of the relative velocity and apse line becomes zero, that is, or/d¢ = 0. Because, in

that case, u, = 0, the first kind of Legendre-Jacobi's elliptic integration is zero

) sz“° du/(\/l—kozuz \/1—u2)=0. 2.11)
Therefore, we obtain the integration of the deflection angle as
29 = 7= 22K (k) N2+ V7, (2.12)

where K is the first kind of the complete elliptic integration,

ko):jo1 du/[\/l—kozuzx/l—uz). (2.13)

In the case of k, <<1, then K(k,)~(z*/4f1+(1/2)k,> +---)

Consequently, when ;((ij) =0, then

2K,
b(0) ~ = l+—+sd +— 1—— S 128 (2.14)
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In the case of ;( =r, ( ) =0. Then the total collision cross-section may be estimated as
S = 7 db d;( gl 27zg| —b(O)ZX
, (2.15)
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where &% is deflection angle viewed from i — component molecule and,

3 3
o 1. 32k, 154x4x,’  64x, 8 K, - K, 5+16;<b2 . (2.16)
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3. Derivation of Nonlinear Integro-Partial Differential Equation by Reductive

Perturbation Method

The propagation of disturbance in a binary gas-mixture could be expressed as slowly varying
phenomena when it would be observed on coordinate moving with near velocity of the
disturbance propagation. Then, in the two component gases, the coordinates (£ ,7) moving on
the velocity V is introduced using an parameter & (<1) as follows,

C=elx-Vi), r=6 (3.1)

Then the spatial and time derivative of phenomena are expressed as
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The physical variable n(i), v(i),T(i) are expanded with a perturbation parameter & as follows,

n =n + e + 220 + &l + 40l 4. (3.3)
v =0+l + 20l + 20l 4 el 4. (3.4)
TO =T 4 T + 2T + 2T 4+ T .. (3.5)

Where n((f)and];i) are the spatial uniform constant values. As a binary-gas is initially stationary

state, v(()i) =0. The relative velocity (2.9) is expanded as,

g =a,+a, +&%a, +&%a, +&a, (3.6)

b

where the coefficients a,,a,,a,,a,, - are expressed by vl(i),vgi),vgi),---and ﬁi),ﬂ(i),ﬁi),n(i),---

These values are symmetric for the gas component i and j which can be replaced each other in

the equations.. The total collision cross-section are also expanded as

S = W) 4 o8 1 2810) 1 380 4 48w ... (3.7)

o

where SS{;),SQ{),SE;?,SQ?,---, are expressed by a,,a,,a,,a,, - and n".

Introducing the above equations (3.1) ~ (3.7) into the basic equations (2.1) ~ (2.3), the following

sets of equations for each power of ¢ are derived.

3.1. Each & power equation for equation (2.1)
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3.2. Each & power equation for equation (2.2)

Where due to simplify the expression, we use the notation &),(,{i) Evg)—vf,? , and
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Where, &) =y ) and 5Tﬁ ET') T,S) (m=0,1.2,3..).

3.3. Each & power equation for equation (2.3)

&+ (4/my)Snn, ST =0, (3.17)
e m‘:sv S st =0, (3.18)
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3.4. Physical Variable of €° and &' order Approximation
The notation of V7 Ev((f) ~Vand VY —vO —V are introduced to simplify the expression.

(i)

Integrating the first &' order term of equation (3.8), n0 =const. As n, "and Vare assumed

the constant parameters, then vo(i) =const.

) — )

From &° order term equation (3.12), the average velocities of i, j component, Us

Similar, To(j = T() from & order-term equation (3.17) because (4m /mO)S no(i)no(j ) 20.

3.5. Physical Variable of &' Order Approximation



From ¢' order term equations (3.13) and (3.18), vm —v() and Tl(j) =Tl(i) because

avl! fo¢ =0,6n) Jo¢ =0and AT [0¢ = 0.

3.6. Physical Variable of &* Order Approximation
(@)

Integrating the & order term equation (3.9), the variable U, can be expressed by using nl(i),
that 1s v1 = ( / n; )n . As vl( i) vl(i), nl(j) can be expressed by using nl(i)as,

nY = (no(j)V(i) ) )'11(i)- (3.22)
Furthermore, integrating the sum of the exchanged i and j of & order equation (3.14) for¢ and

using the relations between U(J )and nl(j ), following relation can be derived.

kBTl - agfjl%nl(i)’ (3.23)
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Similarly, kBTl(j) is also expressed by nl(i) , using the relation kBTl(j ) :kBTl(i). Sfj{) is

proportional to nl(i) as

S( e ﬂ(co/(2 a, )+ 01@X3am/y)n = asylon1 (3.24)

3.7 Physical Variables of & and & order Approximation
From the &° order equation (3.10), 8n2i)/6§ and Gngj)/acf are expressed by 6v§i)/8§ ,
8v§j ) / o¢ andnl(i)as follows,
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Using above equations, the sum of iand j component exchanged equations for the &’ order
term equation (3.15) are expressed with vgi),vgj ),Tz(i),Tz(j ), nl(i)as follows,
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where, the coefficients, Q,;,Q,;,Qr;, Ay, Ay, A,y -, and Ay, are respectively constants depend
on only Tl(()i),n(()j ), TO(i),V(i) ,V(j ) , m') ,m(j ), y‘(j) , and /1‘9.). Next, the derivative equations for ¢

about the &° order equation (3.14) is expressed by vz(,i) , v§f ), nl(i)as follows,

d () o'n"
g(vﬁ”—vﬁ)ﬁbm;z—a e (3.28)
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Furthermore, the derivative equation for ¢ about the & order equation (3.19) is expressed by

T, T, nas follows,
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Last, the sum of iand j component exchanged equations for the & order equation (3.20) are
expressed with vgi),vgj ),71"2(i),71"2(j ),nl(i)as follows,
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where the coefficients, d;,d;,d;,dy.d,,..d,, ., and d,,, are respectively constants

nlz?
expressed by n((,i),n((,j), TO(i),V(i),V(j), m®. mW, 19 and AU Solving above four equations

(3.27), (3.28), (3.30) and (3.32) about v, /o¢ ,6v,” Joc 0T [o¢ , 0T Jo¢ , these variables

are expressed by nl(i) as,
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Where, the coefficients pD,,;,,

potential parameters k,,x;, and the physical parameters

differential equations for ¢ , these variable v

(3.33)

™, Prajs are expressed by & order physical parameters, the

(i) 4,7)

2’v2’

J /1(i),/1(j). Integrating these

Tz(i),Tz(j Jare described with the first order

approximation of the number density nl(i) and it’s integration for¢ , which is described by

4 .
N, 2.[ nl(l)dé' ". Thus, we get the solutions of the second order approximation v

and 7;0 ) as,
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Where, the integral constants are zero as the disturbances are regarded as zero at the infinity.

3.8Physical Variables of &* order Approximation

Using the £ order equation (3.11), ngi)and n§f are expressed by using variables vgi),v3

as follows,
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Now, &/ =v4(j) —U4(i) in eq.(3.16) and Sﬂ(ji)Zﬂ(j) —T4(i) in eq.(3.21) are neglected to close

the high expansion order calculation. Then substituting §v§-’ i)=v3(j ) v3(i) get from eq.(3.15) and

ST =TY — T,V get from eq.(3.20) into egs.(3.16) and (3.21), following set of equations are

obtained,
(i) . () ,

O~ av3 aTikB & + (Dv3(1) = O’ avj av3 aTjkB & + (Dv3(]) =0

oc oc oc oc
. . . (3.36)
8v3 8T ( ov,”’ 8T ()
;—— +@,," =0, — +@,,7 =0
ﬂvl aé, ﬁTl é, ﬂv] é, ﬁT] é, E3
where, @, ),CD U) CDE3(),(DE3U) are the function of nl()and Qyis Cyis Bois Bujs Pris Pris Vs Op are

expressed by the & order physical variables. From above four equations, following equations

are obtained.
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Substituting eq.(3.37) into eq.(3.16), following nonlinear integro-partial differential equations

(3.37)

for nl(i) is derived.
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o | or o¢ o¢ or
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Where, the coefficients P,Q,R, A, A,,A,,A,are expressed by the £° order physical variables.

4. Derivation of the Ginzburg-Landau Equation by Fourier Perturbed Expansion Method
In order to study the characteristic of the nonlinear wave propagations based on the equation

(i)

(3.38), we expand furthermore the gas densityn;’ with Fourier “perturbed” expansion method

[7] as,
W)=Y ¢ iv (&, o)), @.1)

Where, k and w are respectively the wave number and the frequency, which are complex

parameters. A higher Fourier expanded term of nl(i)may become to be small rapidly. The

11



coordinate (§ ,O')describes an envelope part and the coordinate ({ ,r) describes a carrier part of
the wave. The variables of (£,0) is the coordinate of slowly moving than({,z). Then(&,o)
may be described, using a small parameter & (<1) as

&= 5(4’ - vgr), c=¢1. (4.2)

Therefore the time and the spatial derivative of nl(i) are described as,

(i) _ (i) _
|0 g Lip n'", AU SN N n'". (4.3)
or \or ‘e bo oc \ac ok

From egs.(4.1), (4.2) and (4.3), the indefinite integration of nl(i) about ¢ is,

0

| o | - (m)) -
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1

m=1 (=—o0 8 g

Furthermore performing integration of right side of eq.(4.4) and neglecting higher order of ¢,

following approximation is derived,

()
fn("w' ~ L0 Lo (4.5)
iAk ik o0&

Above relation means that the integration can be described approximately using the differential
term. The derivative of the indefinite integration of nl(i) for ¢ is returned nearly to nl(i) from eq.
(4.2), as follows,

o
¢

Next, as a higher perturbed expansion term of ﬁﬁm)

1 82n(i) (i)

gn(i)dé" = n" &l i —852 ~n

(4.6)

© become to be small rapidly, the higher
perturbed terms of m > 2 are neglected. And 0 order perturbed gas density is zero. Further,

neglecting the terms of |/1| > 2, the nonlinear term in the equation (3.38) is described as

) A () () A () (0) )@ A (1)) A (1)(0)

ARV Ry AAWTAMT (4.7)

We could describe ﬁl(l)(i)to be nl(i) if above conditions of A, m are satisfied.

Furthermore, the terms of Fourier expansion of A = 0 are the constants. Substituting the Fourier
perturbed expansion of nl(i) into the nonlinear integro-partial differential equations (3.38),
following equations are obtained for each ¢ order,

&' :ka)+i(—k3P+A3(i)w2/k):0, (4.8)

g —3PVk? +2A3(i)a)ug/k—i(kug + a)): 0, (4.9)
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. oA"Y on! A" (ov o'n|
g3:(1k— 13c 2a)j¥+ ~v, +1| 3Pk + ? Tg—u 85 +Q lk‘n1 ‘ n'
(4.10)

The wave number k and the frequency @ which are complex numbers can be obtained, solving

the equations (4.8) and (4.9). The real and imaginary parts of k,w, that is, k.,k;,®,,®, are
expressed by P, A;andV,. From equation (4.10), the Ginzburg-Landau (GL) equation is derived

as,

onl0) &' )2

i+ (p, +ip,) - +(q. +ig,)n)’

. Y =0. 4.11)

where coefficients p,, p;,q,,q; are expressed by k. k,,@.,0., O, A4,,4,,4,. A special solution of
GL equation are known [4] as

n' = n_sech™*(0&)exp(—i(p, +ip;)o). (4.12)
where the coefficients a,0,¢,,@: are expressed by p,,P;.q,.q;. In eq. (4.12), the growing or

the damping phenomena are included, depending on the values of ¢,.,¢;,@,,@:.

5. Necessary Conditions for Stationary Wave Propagations

First, the &” order densities of both gas components, no( ),no( ) must be real and positive.

Then the relations of the densities between gas components derived from the &> order of

equation (3.19) must be concluded as follows,

2
0 _GENA DD o

n,’ = b n, (5.1)
where,
a = (3V(’) +3VV7 44yl }f T +mD PP
b, = 2V(1>V(f>(3m<f>v<f>2 _sk,T, l b, = 2V(J)V<i>(3m<f>v(f>2 _sk,T, )
As no(j) is real and positive, that is, a,” —bb;>0anda, +./a,” —bb; /bj >0,
then the values of V(i), V') must be within the limits as
S,<V"<S; and S,<VY<S, (5.2)

where, S, and S, are obtained from the real and positive condition of no(j ),
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Second, as the wave number &, , k; and the frequency @, , , must be real numbers, then
PA, >0.25.
Third, when @=m, +iw, and k=k, +ik, are substituted to the equations (4.8) and (4.9), only

trivial solution v, =0 is obtained. Then instead of @, , we introduce the real frequency

r

o, =—% f,, where f,, is weight function.
v

7

.
Then we can get the values of V¥, VU, T," and v, " by solving the simultaneous four
equations
g,=0,¢;,=0,¢,=0¢,=0 (5.3)
where ¢,,,¢&,,,¢&,,&,; are the real and the imaginary parts of egs.(4.8) and (4.9),
&, =(4P4, 13 (624, —1)0P4, —1)W2(1, —v2)/[4P* 0P4, ~2)')
£, = (4PA, —1 (0PA, —1)f, —v2)(PA. £, (OP4, 1)+ (1+ P4, (0P4, 7)1 )/ (4P* (0P 4, —2)')

£, =(4P4, ~1)>(6P4, ~1)(0P4, 1), (1, —v’ )/ (aP>(oP4, - 2) )
£, =(4PA, —1)(6P4, ~1YoP4, -1, (1, —v?)/[4P* (9P4, —2))

Fourth, the coordinate transformations (4.2) with use of Fourier perturbed expansion methods
have also means of the Galilean transformation. We can get the new GL solution with Galilean

invariance by transforming the GL equation (4.11) to new GL equations as follows,

on' NG EY ‘ NI on'
ln—+(pr+lpl.) 622 +(q,,+lqi1n()‘ I’l()—lVG gg =0 . (5.4)

oo
Obtaining the new GL solutions with the Galilean invariance, we replace n with a new

function as follows,

n =n_sech™™(@&)exp(i(K, +iK,)E+i(Q, +iQK,)o). (5.5)
Then we get the necessary conditions for stationary wave propagation without growing or
damping in any values ¢ and o as,

k.+K;,=0, k, +K, =0, y;+w,+02,=0, v;=0

2 2 : (5.6)
fu=2pa-plat -1)=0. 8,1y, +0, -~
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As v, =0, the wave propagating velocity of Galilei invariability is the velocity U, which is used
in the coordinate transformation of the Fourier perturbed expansion series. f is the Galilei

invariant function which describes the condition of the Galilean invariance at f, =0.

6. Numerical results

In order to investigate the nonlinear wave propagation in binary-gas mixture, we put the

physical parameters m" , m") , n(gi) , and vV AV respectively as here

2

m = 130, mY) = l,n(()i) =100, andv") =1,49) =1. Then V¥ V1), To(i)(= n(j))and v(i)(z véj)) can

g
be obtained, numerically solving the simultaneous equations (5.3) if f,, is determined. Here, we
put f, as the construction factor to the interpolation function of the experimental data which are
presented by D. G. Henshaw and A. D. B. Woodsn [8]. The interpolation function is described

as follows,

fw _ (wvg)ca(wvg)s + cb(wvg)z + cc(wvg)+ Cy
Cp(l,UUg)2 +cq(wvg)+ C.

(6.1)

where, w is the weight parameter of v, and the coefficients ¢,~c, are shown in Table 1. Here
we putw =1and use the values of Kb’\“ﬂ(i) as shown in Table 2, then we obtain the values of
vy, YB(i) 272)0 ), and v éi) =v éj ) as Table 2. These values satisfies the conditions
PA; > 0.25and (5.2). In this case, the condition (5.2) and the values of (V(i),V(j )) in Table 2
are shown in Fig.1. We can plot f, and f,, aboutv, with several weight parameter w as Fig2.

We put n® = n.+1n; in the new GL equation (5.4), then the real and imaginary parts are,

2

on. o’n o’n, ) > on,

i L+ p,——2—(n"+n"fgn, —qn)-v,—L=0
o pr 852 pl 852 (r 1 er r qx 1) g aé: (6 2)
on, 62nr+ azni+(n2+nzx n.+qmn)-v o _y | |
Fys b; 08 p; 0 r i At + 4,1 9 9&

In the numerical calculations for the differential equations (6.2), we set the initial and boundary

conditions as follows,
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a’+2

n, =n,sec h(@(f -V, (0 -0, )))cos(aLog[sec h(@(ga -V, (c-0, )))] Mo (a - l)q (0 -0, ]

at+2

= s Hole v, o~ i atogfsc Hole v, - -2 o)

(6.3)

where, 0, a,q, are the functions of the weight parameterw .
We put o, =40, then the numerical calculation is done around o =40. The direction of

wave propagation in the numerical calculation is disposed so that the incident wave

propagates from the left hand side to right hand side. From the equation f; = 0 of the Galilei
invariant condition (5.6), we get the numerical solution of v, which must be almost
correspond to the value v, obtained from equation (5.3). It means that v; which meet the

Galilei invariant condition also almost satisfies the equation (5.3) under the proper value for
Ky, vWand A®.
By numerical calculations for equation (5.3), we obtain the solitary wave propagation

profiles which are different from the soliton of the nonlinear Shrodinger equation [9] because
a #0 . The numerical calculation of the simultaneous differential equations (6.2) is
performed with various weight parameter w for the incident wave of n, =4 . The amplitude
change with time for the incident waves are shown in Fig.3. In the case of weight parameter
w = 0.187, the incident wave does not change the amplitude during propagation.

The wave propagation in the case ofw =0.187 andn, =8 is shown in Fig.4. When the
amplitudes of the incident wave become high, the amplitudes of the propagating waves
temporarily change and then approach to the incident amplitude as shown in Fig.5a. Fig.5b
indicates the stationary state amplitudes by numerical calculation for the incident wave

amplitudes. The reciprocal @ of the solitary wave width does not change in the Galilean

transformation. In eq.(5.5),

® =Ck|n,| (6.4)
where, coefficient Ck is determined by m(i),m(j ), V(i),V(j ),n(i),vg),/ca,/cb, V(i),l(i).

The numerical results of ® in propagating waves in case ofw = 0.187 are plotted for several

incident wave amplitudes 7, in Fig.6. This results are compatible with the estimation by
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eq.(6.4). The solitary wave velocities (A E/A o-) numerically calculated are plotted in Fig.7
under the same condition as the calculation of Fig.5 and Fig.6.

Fig.8 shows the propagation profiles of nl(i), nl(j ),ﬂ(i),vl(i) for the incident wave of amplitude

n,(li) =2. These numerical results are in consistency with the analytical estimates.

On the other hand, under the other values Kb,v(i),l(i) of the matter, we may get also the

stationary propagating wave which have the other value of the velocity weight.

The value of the velocity v, satisfied with the Galilean invariance condition in the profile of
f,,onw = 0.187 have the position at df,, /dvg <0. But in the case of the other values of

Kb,v(i),l(i) andw , the velocity v, is at df, /dvg >0 . There are no relations between the

positions of the velocity on the profiles of f, and the conditions of the stationary propagation

of the solitary waves.

7. Conclusions

The nonlinear solitary wave propagation generated by the laser sheet injection in the
molecular binary-gas mixture is discussed. First the nonlinear integro-partial differential
equations for the first order approximation of the i component gas density are derived by
applying the reductive perturbation method to the three macro conservation laws with relaxation
terms and the state of the equation based on the two Boltzmann equations. Furthermore, from
the nonlinear integro-partial differential equations, the Ginzburg-Landau (GL) equation is
derived by expanding the first order approximation gas density using Fourier perturbed
expansion method. Then applying Galilean transformation to the GL equation and the particular
solution, the conditions of Galilean invariance are obtained. If the velocity of the coordinate in
the Galilean transformation correspond to the velocity which satisfy the simultaneous equations
constituted of the first and second approximate relations on the Fourier perturbed expansion of
the gas density, the velocity of the Galilean invariance also satisfy the first and second
approximation relations with the weight function (the construction factor) under the suitable
value of the matter which are the parameter of the intermolecular attractive force, the coefficient

of the resistance and the heat conductivity under the ratio of the masses of i and j component

gas molecules. The propagation profiles of stationary propagating solitary waves based on the
new GL equations derived are numerically calculated in the certain values of the matter as

shown in Section 6. In other cases of the mass ratio fori and j gas component molecules, the
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stationary propagating nonlinear wave propagations can be investigated with the GL equation
derived here. Moreover, as the solitary wave solution is only a particular solution of the GL
equation, other physical phenomena expressed by the GL equation may also exist in the binary-

gas mixture.
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Table 1. Coefficients of the interpolation function f,, eq. (6-1).

c,=-272003
cy=2117.2
c.=-5196.0
ci—4171.6
c,=42.20
c~171.3
¢=189.9

Table 2. The solution values of V®, V1), To(i) = To(j ) and vf]i) = vgj Junder Kb’\%(i) given.

v¥=0.1053
v9=0.8353
To"=T,?=0.9403
v"=v,0=4.5726

Kb:2.799
w,"=1.329
29=1.200
2.0
1.5 S].
1.0 + .
-
0.5
Sha
00 —
S S.
0.5 as
0 0.1 0.2
V.

Fig.1. Wave existence condition (gray part) in (V(i),V(j )) coordinate by eq.(5.2). Black dot

shows a (V(i),V(j ) ) point in case of m” =130,m") = 1.
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Fig.2. Profiles of the weight function f,, of the real frequency and the Galilei invariant function

Jo for velocities U, .
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Fig.3. Temporal amplitude development of the incident wave n, =4 with various weight

parameter w .
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Fig. 4. Plots of the propagating wave at the spatial points of & = 0,40,80,120, 160,200,240
in case of m’ =130 nt) =1, the amplitude n, =8 of the incident wave. The bold, thin and

broken lines indicate respectively the absolute, the real and the imaginary part of the gas

density.
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Fig.5a. Temporal amplitude change for incident waves of n, =1,2,3,4,6,8 .
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Fig.5b. Stationary state amplitudes (shown by dots) by numerical calculation for the incident
wave amplitudes.
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Fig.6. Numerical results of inverse number ® which is the reciprocal of the solitary wave width

are plotted in case of w = 0.187 . Solid line shows the estimation by eq.(6.4).
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Fig.7. Solitary wave velocities (A /A 0) numerically calculated in case ofw = 0.187.
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Fig.8. Propagation profiles of nl(i),nl(j ),Tl(i),vl(i) for the incident wave of amplitude n‘(f) =2 in

case ofw =0.187.
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